柴油机螺旋进气道设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机工作过程及整机性能的好坏与供油系统和喷油情况、进气系统和气流组织以及燃烧室形状三者(简称油、气、室)之间的匹配情况有着因果关系。对于中小型高速直喷式柴油机,因其需要较强的进气涡流、压缩挤流和燃烧紊流,其进气道一般做成螺旋的或切向的形状。螺旋进气道由于相对于切向气道涡流强度更大、容积效率小被广泛应用于单缸柴油机中。因此对螺旋进气道的结构参数和布置位置的研究显得尤为重要。
     本文通过对比目前广泛应用于螺旋进气道设计的正向设计和逆向设计方法,对柴油机螺旋进气道的造型设计进行研究。基于表达式参数方程的正向设计方法,可以快速、准确的完成新型螺旋进气道的研制。而通过逆向软件Imageware的进气道逆向设计方法可以精确的对已有螺旋进气道反求。
     为了深入了解螺旋进气道结构参数对其涡流比和流量系数的影响,并设计出满足单缸柴油机设计要求的螺旋进气道。本文通过三维建模软件UG设计了具有不同入口形状、入口高度、螺旋段高度和螺旋段夹角的11种螺旋进气道方案。对不同设计方案的螺旋进气道的气道稳流模拟试验表明:在螺旋进气道的设计中涡流比与流量系数总体呈现此消彼长的趋势;在涡流比一定的条件下,螺旋进气道形状设计的好坏对流量系数起着至关重要的作用。由于进气门偏心率(气缸中沿径向的位置)影响气缸内气流的均匀性、同向性和流速以及气门盘区域的回流,所以螺旋进气道的布置位置同样十分重要。对进气门偏心率的计算显示:在0.2~0.33的偏心率范围内,流量系数较大,处于最佳区域;选择偏心率为0.33~0.41时,可以取得一个相对较大的涡流比值。最后通过FIRE对进气过程进行瞬态模拟计算并揭示了缸内涡流、滚流等气流在缸内的形状、大小和数目随曲轴转角的变化关系。
Diesel Engine work process and overall performance depends on matching between the fuel supply and injection system, intake system and air movement and combustion chamber shape (referred to as oil, gas, room). As the small and medium sized high-speed direct injection diesel engine needs strong intake swirl, squish compression and combustion turbulence, its intake port generally made spiral or tangential shape. Compared with tangential intake port, the spiral intake port has greater swirl strength and volumetric efficiency, is widely used in small single-cylinder diesel engine. Therefore, the research on structural parameters and location layout of the helical intake port is very important.
     This paper compares the forward and reverse design method, which current widely used in helical intake port design, do research on the diesel engine helical intake port design. Based on Parameter equation expression construct the diesel engine spiral screw segment, thereby establishing a forward model of intake port design method can quickly and accurately complete the development of a new spiral intake port. Through reverse Software -- Imageware can accurately reverse design helical intake port.
     To better understand the structural parameters of Helical intake port influence on swirl ratio and flow coefficient, and designed a helical intake port meet the design requirements. In this paper, through three-dimensional modeling software UG designed 11 programs intake port with different entrance shape, entrance height, spiral height and helical screw section angle. The different spiral intake port design's steady flow simulation experiments show that:swirl ratio and flow coefficient showing the shift in the trend, The quality of the intake port shape design plays a vital role on the flow coefficient as the swirl ratio certain. As the intake valve eccentricity (cylinder radial position) affect the uniformity、isotropic and flow speed of air flow inside the cylinder, so the arrangement of the intake port location is equally important. The intake valve Eccentricity calculations show:The eccentricity within 0.2~0.33 in the best area, flow coefficient is larger, when the eccentricity was 0.33 to 0.41, you can get a relatively large swirl ratio. Finally, simulate the transient intake process on FIRE and reveals the shape, size and number of vortex flow, swirl flow, and other air flow in the cylinder relations with the crank angle.
引文
[1]Gosman A D, Ahmed AMY. Measurement and Multidimensional Prediction of Flow in an Axisysmmetic Port,Valve Assembly. SAE 870592
    [2]Shigeki Sugiura. Numerical Analysis of Flow in the Induction System of Internal Combustion Engine. SAE 900255
    [3]Naitoh K, Fujii H, Urushihara T, Takagi Y Kuwahara K. Numerical Simulation of the Deailed Flow in Engine Ports and Cylinders. SAE Paper 900256
    [4]Daniel C Haworth, SherifH EL Tahry,Mark S HuebleL Shengming Chang. Multidimensional Port—and—Cylinder Flow Calculations for Two valves and Four-Valve-per-Cylinder:Influence of Intake Configuration on Flow Structure. SAE 90257
    [5]Bahrain khalighi, Daniel C Haworth, Mark S Huebler. Multidimensional Port-and-In-Cylinder Flow Calculations and Flow Visualization Study in an Internal Combustion Engine With Different Intake Configurations. SAE 941871
    [6]Kang Y Huh,Chang Ryol Choi, Jong Gyn Kim. Flow Analysis of the Helical Intake Port and Cylinder of a Direct Injection Diesel Engine. SAE 952069
    [7]William Taylor HI, et al. IC Engine Intake Region Design Modifications for Loss Reduction Based on CFD Methods. SAE 981026
    [8]Gerber A, Charnay G Comparisons between Steady and Unsteady Flows in Cylinders of an Internal Combustion Engine. SAE 850121
    [9]Tang Wei Kuo. Multidimensional Port—and · Cylinder Gas Flow,Fuel Spray, and Combustions for a Port—Fuel—Injection Engine. SAE Paper 9205 15
    [10]Wolf Bauer and John B, Heywood, et al. Flow Characteristics in Intake Port of Spark Ignition Investigated by CFD and Transient Gas Temperature Measurement. SAE 961997
    [11]Pierre Godrie, Mark Zellat. Simulation of Flow Field Generated by Intake Port and-In-Cylinder Configuration-Comparision with Measurements and Applications. SAE 940521
    [12]Tang Wei Kuo. Multidimensional Port—and-Cylinder Gas Flow,Fuel Spray,and Combustions for a Port—Fuel—Injection Engine. SAE Paper 920515
    [13]C. M. Moraes, Jeffrey C. Buell,Robert M. Fefencein-Cylinder Cold Flow Simulation using a Finite element Method. Compute Methods ppl. Mesh Engine.2001(190):3069-3080.
    [14]Ugnr kesgin. Study on the Design of Inlet and Exhaust System of a Stationary Internal Combustion Engine. Enemy Conversion and Management.2005,46:2258--2287.
    [15]解茂昭,用任意拉格朗日-欧拉法计算内燃缸内流场,大连理工大学学报.1986.2
    [16]解茂昭,压燃式发动机中环涡流流谱的研究,内燃机学报,1987.2
    [17]解茂昭,直喷式柴油机内涡流、挤流和湍流的数值研究,大连理工大学学报1990.1
    [18]刘业民等,内燃机缸内层流流动模型的研究,内燃机学报,1986.1
    [19]朱埏章, 涡流使燃烧室内流场的二维模拟,内燃机学报,1989.2
    [20]蒋勇,范维澄,计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC—CFD[J],燃烧科学与技术,2000.06(04):342-345
    [21]夏兴兰,杨雄,朱忠伟,数值模拟方法在柴油机进气道改进中的应用,内燃机学报,2002(5).20(05):424-428
    [22]张小芹,蒋勇.燃烧室内空气运动三维数值模拟,山东内燃机,2002年3月.第1期:7-11,19
    [23]罗马吉,陈国华,蒋炎坤等,进气管内三维稳态流动特性的数值分析,小型内燃机与摩托车,2001(2),30(02):1-4
    [25]里卡多公司柴油机的设计和研制.国外内燃机.上海.1978
    [26]何学良,李疏松,内燃机燃烧学.机械工业出版社.北京.1990
    [27]靳红玲.469Q汽油机进气系统流场特性及优化设计.[硕士学位论文].山西:太原理工大学,2006
    [28]崔东晓.4V105柴油机四气门缸盖进气道的设计研究.[硕士学位论文].湖南:湖南大学,2006
    [29]王卫华.]4112四气门柴油机进气流动及气道优化.[硕士学位论文].湖北:武汉理工大学,2006
    [30]张亮峰.SL1126柴油机螺旋进气道建模及CFD分析.[硕士学位论文].湖南:湖南大学,2005
    [31]郭立新.柴油机缸内流场三维数值模拟计算.[硕士学位论文].辽宁:大连理工大学,2004
    [32]李会收.柴油机缸内流动及喷雾特性模拟研究.[硕士学位论文].山东:山东大学,2008
    [33]吴浩.柴油机螺旋进气道结构参数对气道性能的影响及其优化设计.[硕士学位论文].湖北:华中科技大学,2006
    [34]何常明,毕玉华,雷基林等.一种新的柴油机螺旋进气道参数化设计方法,内燃机学报,2009
    [35]夏兴兰.6110柴油机进气过程的三维数值模拟及其性能改进.[博士论文].浙江:浙江大学,2001.
    [36]许俊峰,白敏丽,吕继祖.四气门柴油机缸内流场LDA实验数据的分析研究[J].内燃机学报,2007,25(03):241-246
    [37]吴志军,孙济美,黄震.四气门柴油机进气道性能的试验研究[J].农业机械学报,2001,32(02):1-4
    [38]康秀玲,祖炳锋,徐玉梁.4气门柴油机进气道的设计模拟及试验匹配研究[J].拖拉机与农用运输车,2006.33(04):25-27
    [39]黄荣华,肖华,纪志高,等.4气门柴油机进气道结构参数对进气性能的影响[J].华中科技大学学报,2008.36(07):52-56
    [40]曹暑林,黄荣华.四气门柴油机进气道的三维实体造型及流场数值模拟[J],内燃机工程,2004,25(06):38-43
    [41]康秀玲,付光琦,祖炳锋等.4气门柴油机进气特性的数值模拟和试验研究[J].内燃机学报,2003,21(03):261-264
    [42]宁成钢.车用柴油机螺旋进气道三维流动的研究[D].[硕士论文].武汉:武汉理工大学,2007
    [43]常思勤,何小明.柴油机螺旋进气道的参数化设计[J].武汉汽车工业大学学报,1999,21(01):10-14
    [44]王忠,苟菁,梅德清.柴油机螺旋进气道的三维造型设计[J].江苏大学学报,2004,25(04):306-309
    [45]沈捷,覃文,尧命发等.YC6108ZQ4气门柴油机的开发及性能研究[J],内燃机学报,2003,21(02):130-134
    [46]李理光.进气门座结构参数对进气道性能影响的试验与模拟计算研究[J].内燃机工程,1995,16(01):25-30
    [47]周松,戴景民,王贺武,螺旋气道结构参数对内燃机流场的影响[J],西安交通大学学报,2003.,37(05):456-458
    [48]朱剑明,彭代勇,世界能源现状与内燃机节能减排的战略意义,现代车用动力,2009,04:36-42
    [49]郭立新.柴油机缸内流场三维数值模拟计算.硕士论文].辽宁:大连理工大学,2004
    [50]王丽平.基于CAD/CFD的135型柴油机螺旋进气道的研究.[硕士论文].辽宁:大连理工大学,2007
    [51]赵新顺.高雷诺数气道稳流变压差试验研究,[硕士论文].天津:天津大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700