中国耳聋人群常见基因分子流行病学特征及其影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
听力障碍是人类最为常见感觉障碍之一,遗传因素在听力障碍致病因素中所占比例高达50%以上。耳聋基因的流行病学研究,不仅有利于揭示耳聋基因在人群中突变的流行病学特征,为耳聋疾病的早期诊断、早期干预、早期治疗和遗传咨询提供理论和数据支持,而且关系到我国人口整体素质的提高和国民经济的顺利发展。纵观近10年来对耳聋基因的流行病学研究发现,国内外在这类研究中都普遍存在的一个问题——不同研究数据结果差异性较大甚至相互矛盾。因此,为了准确反映我国耳聋基因的流行病学特征,找出导致研究数据之间差异性的影响因素,本课题通过文献回顾分析了目前我国耳聋基因流行学研究中存在的一些问题,并对我国大样本非综合征型感音神经性耳聋(nonsyndromic sensorineural hearing loss, NSHL)人群进行分组对比研究,对不同分组样本的常见核染色体耳聋基因GJB2和SLC26A4,以及线粒体DNA 12SrRNA A1555G (mitochondrial DNA 12SrRNA A1555G, mtDNAA1555G)的流行病学特征进行研究,不仅取得了不同来源和特征耳聋人群三种常见耳聋基因的流行病学数据资料,而且揭示了导致耳聋基因流行病学数据之间出现差异性的影响因素。本研究共分两个部分:
     第一部分耳聋基因突变流行病学研究现状分析
     本研究首先回顾了近10年来有关mtDNAA1555G、GJB2基因和SLC26A4基因突变的流行病学文献,提出了目前这类研究中存在的主要问题——数据之间存在较大的差异性甚至矛盾。为了进一步探讨导致这些差异性的原因,在第一部分第一章中我们检索了1996年~2008年3月间报道的我国各地区mtDNAA1555G突变流行病学文献资料,对每篇文献中样本量的选择、样本特征、地域分布、突变频率特征及该突变与氨基糖甙类抗生素(aminoglycoside antibiotics, AmAn)应用情况相互关系等多个因素进行分析。发现在国内mtDNAA1555G突变频率的流行病学调查中存在样本选择量不足、地区数据差异较大、缺少种族和年龄划分等较多问题。其中样本量差异可能是影响耳聋基因流行病学数据差异性的重要因素之一。因此在第二章中,采用严格的样本量估计公式,选择山东省NSHL耳聋人群进行mtDNA A1555G、GJB2和SLC26A4三种常见耳聋基因研究。在山东省485例患者中,mtDNAA1555G突变频率为5.57%;GJB2致病突变频率为24.12%,突变携带率为34.34%,高于多数的国内报道;SLC26A4基因致病突变频率为7.42%,突变携带率为13.61%。485名患者中有37.11%是由这三种基因突变导致的耳聋;推断山东省约有2.45万NSHL患者是由这三种基因突变所导致。
     第二部分ntDNAA1555G,GJB2和SLC26A4基因流行病学数据影响因素研究
     在本课题第二部分研究中,着重根据患者的来源和特征进行分组对比研究,对不同来源和特征的NSHL患者三种耳聋基因突变频率进行比较,找出可能影响耳聋基因突变频率的重要因素。在第一章研究中,发现mtDNAA1555G基因突变频率会受到研究样本中家系患者与散发患者数量比例,药物性耳聋(aminoglucoside antibiotics induced deafness, AAID)患者与非AAID患者数量比例的影响。对于散发样本来讲,聋校与门诊来源的患者数量比例变化也会影响到该基因突变频率。在第二章研究中,发现GJB2基因突变频率受到样本中语前聋与语后聋患者数量比例的影响;对于散发样本,聋校与门诊来源的患者数量比例变化同样也会影响到GJB2基因突变频率。在第三章研究中,发现SLC26A4突变频率相对于mtDNAA1555G和GJB2基因来讲,受到更多因素的影响,研究样本中家系患者与散发患者,语前聋患者与语后聋患者,门诊患者与聋校患者,EVAS (enlarged vestibular aqueduct syndrome,EVAS)患者与非EVAS患者的样本比例变化均是影响其数据结果的主要因素。
     通过两个部分的研究,本研究认为在耳聋致病基因的流行病学研究中,研究样本的样本量,样本来源和特征等诸多因素影响着流行病学数据资料的准确性。对不同基因来讲,这些影响因素的作用效应也是不同的。因此,为了准确反映耳聋基因的流行病学特征,必须进行大样本研究,根据不同的基因特征制定正确的符合流行病学要求的样本纳入标准,确保样本具有相同的来源和特征。只有这样,才能有效避免研究数据之间出现差异性,保证研究结果的准确性和稳定性,为防聋治聋措施和策略的制定提供准确的数据支持。
Hearing loss is the most common sensory impairment. Genetic factors are attributed to over 50% of all etiological factors. Conducting genetic epidemiological studies of deafness genes will be valuable to revealing epidemiological characteristics of deafness genes, and providing important data for prophylaxis, counseling, early diagnosis, early intervention and treatment. But reviewing epidemiological literatures about deafness genes in the past 10 years, we found that there were large differences and some inconsistencies data from many studies. In order to reveal the epidemiological characteristics of deafness genes in Chinese populations and find some factors leading differences, we used group studies and comparative studies to reveal the mutation characteristics of mtDNA A1555G, GJB2 and SLC26A4, and reveal some impact factors of mutation frequencies in the three genes. Based on these impact factors, we suggested it was very necessary to regulate the sample inclusion criteria according to individual characteristics of every gene in order to make these criteria fit the standard of epidemiological study. This study is divided into two parts:
     Part one:The Situation Analysis of Epidemiological Studies of mitochondrial DNA 12SrRNAA1555G, GJB2 and SLC26A4 Mutations.
     In part one, we firstly reviewed some epidemiological data of the three common deafness genes in past ten years, and indicated the large differences and contradictions existing between these data were one of main problems in present epidemiological studies. In the first chapter of Part one, we collected all published epidemiological literatures about Chinese mtDNA A1555G mutation from 1996 to March,2008. By literature review and statistical analysis, we believed some deficiencies, such as insufficiency of samples, age bias and area bias, existed in epidemiological researches about mtDNA A1555G mutation in China. We believed that the number of samples was a very important factor that influenced the accuracy of epidemiological data in the past studies. So in the second chapter, we determined the number of samples by using the formula for sample size estimates, enrolled 485 patients with NSHL in Shandong Province and screened mutations of the three common deafness genes in these patient. Of 485 patients, 180 patients (37.11%) had two mutated alleles (homozygote and compound heterozygote) of GJB2 (24.12%) and SLC26A4 (7.42%) and mtDNA A1555G (5.57%). We supposed that about 24.5 thousand deaf-mute patients who were caused by the three sensitive deafness genes mutation in Shandong province.
     Part two:Group and Comparative studies of Epidemiological data of mtDNA A1555G, GJB2 and SLC26A4 mutations
     In the Part two study, we divided research samples into different subgroups according to their sources and characteristics, and then we compared the mutation frequencies of the three deafness genes between different subgroups in order to find some factors that influenced the accuracy of epidemiological data of the three deafness genes mutation frequencies. In Chapter one, we found mtDNA A1555G mutation frequency was influenced by the proportionalities of familial and sporadic patients, AAID and non-AAID patients in research samples. The proportionality of SES patients and outpatients in sporadic samples was also important impact factor. In Chapter two, we found GJB2 mutation frequency was influenced by the proportionality of prelingual and postlingual patients among samples. The proportionality of SES patients and outpatient in sporadic samples was also impact factor. In Chapter three, compared with GJB2 and mtDNA A1555G, the mutation frequency of SLC26A4 were influenced by more factors. The proportionality of familial and sporadic patients, prelingual and postlingual patients, SES and outpatients, EVAS and non-EVAS patients all influenced the accuracy of SLC26A4 mutation frequency.
     We suggested that Ethnic background, samples'sources and characteristics including familial or sporadic patients, hospital or SES patients, prelingual or postlingual patients, EVAS and non-EVAS patients, AAID or non-AAID patients were all important impact factors in epidemiological studies. But the effects of these factors were different or converse for different gene. So we must regulate the correct and reasonable sample inclusion criteria according to different genes' characteristics in order to effectively avoid significant differences among data of the epidemiological studies and ensure the accuracy and stability of research results.
引文
[1]Fischel-Ghodsian, N. Genetic factors in aminoglycoside toxicity. Ann N Y Acad Sci.1999,28:99.
    [2]Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet,1993,4:289.
    [3]陈建明,陈金东,张丽珊,等.人体对链霉素致聋遗传易感性的分子遗传学研究.中华医学遗传学杂志.1996,13:152.
    [4]Guo YF, Liu XW, Guan J, et al.GJB2,SLC26A4 and mitochondrial DNA MTDNA A1555Gmutations in prelingual deafness in Northern Chinese subjects. Acta Oto-Laryngologica.2008,128:297.
    [5]鲍晓林,郭玉芬,王秋菊,等.29个近亲结婚致聋核心家系GJB2、SLC26A4和线粒体DNA12SrRNA基因分析.听力学及言语疾病杂志.2008,16:92.
    [6]戴朴,刘新,于飞,等.18省市聋校学生非综合症性聋病分子流行病学研究(Ⅰ)-GJB2 235delC和线粒体DNA12SrRNA MTDNA A1555G突变筛查报告.中华耳科学杂志.2006,4:1.
    [7]郭玉芬,徐百成,韩东一,等.中国西北地区线粒体DNA 12SrRNAMTDN A A1555G和GJB2基因突变.中华耳鼻咽喉科头颈杂志.2006,10:666.
    [8]Liao Z, Zhao J, Zhu Y, et al. The ND4 G11696A mutation may influence the phenotypic manifestation of the deafness-associated 12S rRNA MTDNA A1555G mutation in a four-generation Chinese family. Biochem Biophys Res Commun.2007,362:670.
    [9]Gallo-Teran J, Morales-Angulo C, del Castillo I, et al. Incidence of MTDNA A1555G mutations in the mitochondrial DNA and 35delG in the GJB2 gene (connexin-26) in families with late onset non-syndromic sensorineural hearing loss from Cantabria. Acta Otorrinolaringol Esp.2002,53:563.
    [10]Usami S, Abe S, Akita J, et al. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet.2000,37:38.
    [11]Noguchi Y, Yashima T, Ito T, et al. Audiovestibular findings in patients with mitochondrial MTDNA A1555G mutation. Laryngoscope.2004,114:344.
    [12]Berrettini S, Forli F, Passetti S, et al. Mitochondrial non-syndromic sensorineural hearing loss:a clinical, audiological and pathological study from Italy, and revision of the literature. Biosci Rep.2008,28:49.
    [13]Oshima T, Ueda N, Ikeda K, et al.Hearing loss with a mitochondrial gene mutation is highly prevalent in Japan. Laryngoscope.1999,109:334.
    [14]Estivill X, Govea N, Barcelo E, et al. Familial progressive sensorineural deafness is mainly due to the mtDNA MTDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet.1998,62:27.
    [15]Bravo O, Ballana E, Estivill X.Cochlear alterations in deaf and unaffected subjects carrying the deafness-associated MTDNA A1555G mutation in the mitochondrial 12S rRNA gene. Biochem Biophys Res Commun.2006,344: 511.
    [16]赵清波,徐勇勇.第三讲如何确定抽样研究所需要的样本量.中华预防医学杂志.2001,35:203.
    [17]刘晓雯,郭玉芬,韩东一,等.非综合征型聋患者线粒体DNA MTDNA A1555G突变频率分析.中华耳鼻咽喉头颈外科杂志.2007,42:739.
    [18]Li Z, Li R, Chen J, et al. Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss. Hum Genet.2005,117:9.
    [19]Li R, Greinwald JH, Yang L, et al. Molecular analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet.2004,41:615.
    [1]Marazita ML,Ploughman LM,Rawlings B,et al.Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet,1993,46:486-491.
    [2]Morton NE.Genetic epidemiology of hearing impairment. Ann N Y Acad Sci,1991,630:16-31.
    [3]王秋菊,韩东一,郭玉芬,等.遗传性耳聋的资源收集保存及基因定位克隆与分子流行病学研究.中国耳鼻咽喉头颈外科杂志,2006,13:661-665.
    [4]Wang QJ,Rao SQ,Zhao YL,et al.The large Chinese family DFNY1 with Y-linked inheritance of non-syndromic hearing impairment revisited: clinical investigation and karyotype analysis.Acta OtoLaryngol,2008,18:1-7.
    [5]戴朴,袁永一,康东阳,等.1552例中重度感音神经性聋患者SLC26A4基因外显子7和8序列测定及热点突变分析.中华医学杂志,2007,87: 2521-2525.
    [6]Guo YF,Liu XW,Guan J,et al.GJB2,SLC26A4 and mitochondrial DNA MTDNA A1555Gmutations in prelingual deafness in Northern Chinese subjects.Acta Oto-Laryngologica,2008,128:297-303.
    [7]赵清波,徐勇勇.如何确定抽样研究所需要的样本量.中华预防医学杂志,2001,35:203-204.
    [8]Coucke PJ,Van Hauwe P,Everett LA,et al.Identification of two different mutations in the PDS gene in an inbred familywith Pendred syndrome.J Med Genet 1999,36:475-477.
    [9]Hilgert N,Smith RJ,Van Camp G.Forty-six genes causing nonsyndromic hearing impairment:Which ones should be analyzed in DNA diagnostics?.Mutat Res,2009,681:189-196.
    [10]刘新,戴朴,黄德亮,等.线粒体DNA MTDNA A1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322.
    [11]Dent KM,Kenneson A,Palumbos JC,et al.Methodology of a Multistate Study of Congenital Hearing Loss Preliminary Data from Utah Newborn Screening.Am J Med Genet C Semin Med Genet,2004,125C:28-34.
    [12]Alvarez A,del Castillo I,Villamar M,et al.High Prevalence of the W24X Mutation in the Gene Encoding Connexin-26 (GJB2) in Spanish Romani (Gypsies) With Autosomal Recessive Non-Syndromic Hearing Loss. Am J Med Genet A,2005,137A:255-258.
    [13]Bajaj Y, Sirimanna T, Albert DM, et al. Spectrum of GJB2 mutations causing deafness in the British Bangladeshi population. Clin Otolaryngol 2008; 33:313-8.
    [14]Maheshwari M,Vijaya R,Ghosh M,et al. Screening of Families With Autosomal Recessive Non-Syndromic Hearing Impairment (ARNSHI) for Mutations in GJB2 Gene:Indian Scenario.Am J Med Genet A,2003,120A:180-184.
    [15]Campbell C,Cucci RA,Prasad S,et al.Pendred syndrome,DFNB4,and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat,2001,17:403-411.
    [16]Tsukamoto K,Suzuki H,Harada D,et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese. Eur J Hum Genet,2003,11:916-922.
    [17]Park HJ,Lee S J,Jin HS,et al. Genetic basis of hearing loss associated with enlarged vestibular aqueducts in Koreans. Clin Genet,2005,67:160-165.
    [18]Dai P,Yuan Y,Huang D,et al.Molecular Etiology of Hearing Impairment in Inner Mongolia:mutations in SLC26A4 gene and relevant phenotype analysis.J Transl Med,2008,6:74-85.
    [19]Hutchin TP,Thompson KR,Parker M,et al.Prevalence of mitochondrial DNA mutations in childhood/congenital onset non-syndromal sensorineural hearing impairment. J Med Genet,2001,38:229-231.
    [20]Lehtonen MS,Uimonen S,Hassinen IE,et al.Frequency of mitochondrial DNA point mutations among patients with familial sensorineural hearing impairment.Eur J Hum Genet,2000,8:315-318.
    [21]戴朴,刘新,于飞,等.18省市聋校学生非综合症性聋病分子流行病学研究(I)-GJB2 235delC和线粒体DNA12SrRNA MTDNA A1555G突变筛查报告.中华耳科学杂志,2006,4:1-5.
    [22]Oshima T,Kudo T,Ikeda K,et al.Point mutation of the mitochondrial genome in Japanese deaf-mutism.ORL J Otorhinolaryngol Relat Spec,2001,63:329-332.
    [23]王秋菊,赵亚丽,兰兰,等.新生儿聋病基因筛查实施方案与策略研究.中华耳鼻咽喉头颈外科杂志,2007,42:809-813.
    [1]Abreu Alves FR, Quintanilha Ribeiro Fde A. Diagnosis routine and approach in genetic sensorineural hearing loss. Rev Bras Otorrinolaringol (Engl Ed) 2007; 73:412-7.
    [2]Hilgert N, Smith RJ, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment:which ones should be analyzed in DNA diagnostics? Mutat Res 2009; 681:189-96.
    [3]Liu XZ, Angeli S, Ouyang XM, et al. Audiological and genetic features of the mtDNA mutations. Acta Otolaryngol 2008; 128:732-8.
    [4]Guo YF, Liu XW, Guan J, et al. GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol 2008; 128:297-303.
    [5]Yuan Y, You Y, Huang D, et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. J Transl Med 2009; 7:79.
    [6]Li Z, Li R, Chen J, et al. Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss. Hum Genet 2005; 117:9-15.
    [7]Wu CC, Chen PJ, Chiu YH, et al. Prospective mutation screening of three common deafness genes in a large Taiwanese Cohort with idiopathic bilateral sensorineural hearing impairment reveals a difference in the results between families from hospitals and those from rehabilitation facilities. Audiol Neurootol 2008;13:172-81.
    [8]Baysal E, Bayazit YA, Ceylaner S, et al. GJB2 and mitochondrial A1555G gene mutations in nonsyndromic profound hearing loss and carrier frequencies in healthy individuals. J Genet 2008; 87:53-7.
    [9]Hutchin TP, Thompson KR, Parker M, et al. Prevalence of mitochondrial DNA mutations in childhood/congenital onset non-syndromal sensorineural hearing impairment. J Med Genet 2001; 38:229-31.
    [10]Kokotas H, Van Laer L, Grigoriadou M, et al. Strong linkage disequilibrium for the frequent GJB2 35delG mutation in the Greek population. Am J Med Genet A 2008; 146A:2879-84.
    [11]Berrettini S, Forli F, Passetti S, et al. Mitochondrial non-syndromic sensorineural hearing loss:a clinical, audiological and pathological study from Italy, and revision of the literature. Biosci Rep 2008; 28:49-59.
    [12]Kupka S, Toth T, Wrobel M, et al. Mutation A1555G in the 12S rRNA gene and its epidemiological importance in German, Hungarian, and Polish patients. Hum Mutat 2002; 19:308-9.
    [13]Ballana E, Morales E, Rabionet R, et al. Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment. Biochem Biophys Res Commun 2006; 341:950-7.
    [14]Gallo-Teran J, Morales-Angulo C, del Castillo I, et al. [Familial susceptibility to aminoglycoside ototoxicity due to the A1555G mutation in the mitochondrial DNA]. Med Clin (Bare) 2003; 121:216-8.
    [15]Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 1993; 4:289-94.
    [1]Hilgert N, Smith RJ, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment:which ones should be analyzed in DNA diagnostics? Mutat Res 2009; 681:189-96.
    [2]Mahdieh N, Rabbani B. Statistical study of 35delG mutation of GJB2 gene:A meta-analysis of carrier frequency. Int J Audiol 2009; 48:363-70.
    [3]Khandelwal G, Bhalla S, Khullar M, et al. High frequency of heterozygosity in GJB2 mutations among patients with non-syndromic hearing loss. J Laryngol Otol 2009; 123:273-7.
    [4]Guo YF, Liu XW, Guan J, et al. GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol 2008; 128:297-303.
    [5]Abe S, Usami S, Shinkawa H, et al. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000; 37:41-3.
    [6]Lee KY, Choi SY, Bae JW, et al. Molecular analysis of the GJB2, GJB6 and SLC26A4 genes in Korean deafness patients. Int J Pediatr Otorhinolaryngol 2008; 72:1301-9.
    [7]Bajaj Y, Sirimanna T, Albert DM, et al. Spectrum of GJB2 mutations causing deafness in the British Bangladeshi population. Clin Otolaryngol 2008; 33: 313-8.
    [8]Alvarez A, del Castillo I, Villamar M, et al. High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet A 2005; 137A:255-8.
    [9]Chen D, Chen X, Cao K, et al. High prevalence of the connexin 26 (GJB2) mutation in Chinese cochlear implant recipients. ORL J Otorhinolaryngol Relat Spec 2009; 71:212-5.
    [10]Liu XZ, Xia XJ, Ke XM, et al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002; 111:394-7.
    [11]Hwa HL, Ko TM, Hsu CJ, et al. Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med 2003; 5:161-5.
    [12]Baysal E, Bayazit YA, Ceylaner S, et al. GJB2 and mitochondrial A1555G gene mutations in nonsyndromic profound hearing loss and carrier frequencies in healthy individuals. J Genet 2008; 87:53-7.
    [13]Gabriel H, Kupsch P, Sudendey J, et al. Mutations in the connexin26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Hum Mutat 2001; 17:521-2.
    [14]Gurtler N, Kim Y, Mhatre A, et al. GJB2 mutations in the Swiss hearing impaired. Ear Hear 2003; 24:440-7.
    [15]Sansovic I, Knezevic J, Musani V, et al. GJB2 mutations in patients with nonsyndromic hearing loss from Croatia. Genet Test Mol Biomarkers 2009; 13: 693-9.
    [16]Barashkov NA, Dzhemileva LU, Fedorova SA, et al. [Connexin gene 26 (GJB2) mutations in patients with hereditary non-syndromic sensorineural loss of hearing in the Republic of Sakha (Yakutia)]. Vestn Otorinolaringol 2008: 23-8.
    [17]Green GE, Scott DA, McDonald JM, et al. Carrier rates in the midwestern' United States for GJB2 mutations causing inherited deafness. Jama 1999; 281: 2211-6.
    [18]Dent KM, Kenneson A, Palumbos JC, et al. Methodology of a multistate study of congenital hearing loss:preliminary data from Utah newborn screening. Am J Med Genet C Semin Med Genet 2004; 125C:28-34.
    [19]Pandya A, Arnos KS, Xia XJ, et al. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med 2003; 5:295-303.
    [20]Kimberling WJ. Estimation of the frequency of occult mutations for an autosomal recessive disease in the presence of genetic heterogeneity: application to genetic hearing loss disorders. Hum Mutat 2005; 26:462-70.
    [21]Estivill X, Fortina P, Surrey S, et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 1998; 351:394-8.
    [22]Angeli SI. Phenotype/genotype correlations in a DFNB1 cohort with ethnical diversity. Laryngoscope 2008; 118:2014-23.
    [23]Gazzaz B, Weil D, Rais L, et al. Autosomal recessive and sporadic deafness in Morocco:high frequency of the 35delG GJB2 mutation and absence of the 342-kb GJB6 variant. Hear Res 2005; 210:80-4.
    [24]Wu CC, Chen PJ, Chiu YH, et al. Prospective mutation screening of three common deafness genes in a large Taiwanese Cohort with idiopathic bilateral sensorineural hearing impairment reveals a difference in the results between families from hospitals and those from rehabilitation facilities. Audiol Neurootol 2008; 13:172-81.
    [1]Hilgert N, Smith RJ, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment:which ones should be analyzed in DNA diagnostics? Mutat Res 2009; 681:189-96.
    [2]Wang QJ, Zhao YL, Rao SQ, et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. Clin Genet 2007; 72: 245-54.
    [3]Lee KY, Choi SY, Bae JW, et al. Molecular analysis of the GJB2, GJB6 and SLC26A4 genes in Korean deafness patients. Int J Pediatr Otorhinolaryngol 2008; 72:1301-9.
    [4]Tsukamoto K, Suzuki H, Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese. Eur J Hum Genet 2003; 11:916-22.
    [5]Kahrizi K, Mohseni M, Nishimura C, et al. Identification of SLC26A4 gene mutations in Iranian families with hereditary hearing impairment. Eur J Pediatr 2009; 168:651-3.
    [6]Anwar S, Riazuddin S, Ahmed ZM, et al. SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred's syndrome in Pakistanis. J Hum Genet 2009; 54:266-70.
    [7]Campbell C, Cucci RA, Prasad S, et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat 2001; 17:403-11.
    [8]Wu CC, Yeh TH, Chen PJ, et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia:a unique spectrum of mutations in Taiwan, including a frequent founder mutation. Laryngoscope 2005; 115:1060-4.
    [9]Dai P, Stewart AK, Chebib F, et al. Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with nonsyndromic hearing loss. Physiol Genomics 2009; 38:281-90.
    [10]Reyes S, Wang G, Ouyang X, et al. Mutation analysis of SLC26A4 in mainland Chinese patients with enlarged vestibular aqueduct. Otolaryngol Head Neck Surg 2009; 141:502-8.
    [11]Dai P, Li Q, Huang D, et al. SLC26A4 c.919-2A>G varies among Chinese ethnic groups as a cause of hearing loss. Genet Med 2008; 10:586-92.
    [12]Dai P, Yuan Y, Huang D, et al. Molecular etiology of hearing impairment in Inner Mongolia:mutations in SLC26A4 gene and relevant phenotype analysis. J Transl Med 2008; 6:74.
    [13]Albert S, Blons H, Jonard L, et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet 2006; 14:773-9.
    [14]Courtmans I, Mancilla V, Ligny C, et al. Clinical findings and PDS mutations in 15 patients with hearing loss and dilatation of the vestibular aqueduct. J Laryngol Otol 2007; 121:312-7.
    [15]Fitoz S, Sennaroglu L, Incesulu A, et al. SLC26A4 mutations are associated with a specific inner ear malformation. Int J Pediatr Otorhinolaryngol 2007; 71:479-86.
    [16]Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope,1978,88(5):723-728.
    [17]Yoshino T, Sato E, Nakashima T, et al. The immunohistochemical analysis of pendrin in the mouse inner ear. Hear Res 2004; 195:9-16.
    [18]Wu CC, Chen PJ, Chiu YH, et al. Prospective mutation screening of three common deafness genes in a large Taiwanese Cohort with idiopathic bilateral sensorineural hearing impairment reveals a difference in the results between families from hospitals and those from rehabilitation facilities. Audiol Neurootol 2008; 13:172-81.
    [1]Manor U, Kachar B. Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol,2008,19:502.
    [2]Zhu M, Yang T, Wei S, et al. Mutations in the gamma-actin gene (ACTG1)
    are associated with dominant progressive deafness (DFNA20/26). Am J Hum Genet 2003,73:1082.
    [3]Lynch ED, Lee MK, Morrow JE, et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science,1997,278:1315.
    [4]Seipel K, O'Brien SP, Iannotti E, et al. Tara, a novel F-actin binding protein, associates with the Trio guanine nucleotide exchange factor and regulates actin cytoskeletal organization. J Cell Sci,2001,114:389.
    [5]Rzadzinska A, Schneider M, Noben-Trauth K, et al. Balanced levels of Espin are critical for stereociliary growth and length maintenance. Cell Motil Cytoskeleton,2005,62:157.
    [6]Sekerkova G, Zheng L, Loomis PA, et al. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli. Cell Mol Life Sci,2006,63(19-20):2329.
    [7]Kitajiri S, Fukumoto K, Hata M, et al. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J Cell Biol, 2004,166:559.
    [8]Weil D, Blanchard S, Kaplan J, et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature,1995,374:60.
    [9]Weil D, Levy G, Sahly I, et al. Human myosin VIIA responsible for the Usher 1B syndrome:a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci U S A,1996,93:3232.
    [10]Prosser HM, Rzadzinska AK, Steel KP, et al. Mosaic complementation demonstrates a regulatory role for myosin Ⅶa in actin dynamics of stereocilia. Mol Cell Biol,2008,28:1702.
    [11]Watanabe S, Umeki N, Ikebe R, et al. Impacts of Usher syndrome type IB mutations on human myosin Ⅶa motor function. Biochemistry, 2008,47:9505.
    [12]Sweeney HL, Houdusse A. What can myosin VI do in cells? Curr Opin Cell Biol,2007,19:57.
    [13]Hertzano R, Shalit E, Rzadzinska AK, et al. A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells. PLoS Genet, 2008,4:e1000207.
    [14]Wells AL, Lin AW, Chen LQ, et al. Myosin VI is an actin-based motor that moves backwards. Nature,1999,401:505.
    [15]Liang Y, Wang A, Belyantseva IA, et al. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics,1999,61:243.
    [16]Delprat B, Michel V, Goodyear R, et al. Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet,2005,14:401.
    [17]Schneider ME, Dose AC, Salles FT, et al. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin Ⅲa expression. J Neurosci,2006,26:10243.
    [18]Walsh T, Walsh V, Vreugde S, et al. From flies' eyes to our ears:mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci U S A,2002,99:7518.
    [19]Mogensen MM, Rzadzinska A, Steel KP. The deaf mouse mutant whirler suggests a role for whirlin in actin filament dynamics and stereocilia development. Cell Motil Cytoskeleton,2007,64:496.
    [20]Modamio-Hoybjor S, Mencia A, Goodyear R, et al. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. Am J Hum Genet,2007,80:1076.
    [21]Willecke K, Eiberger J, Degen J, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem,2002,383:725.
    [22]Forge A, Marziano NK, Casalotti SO, et al. The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30. Cell Commun Adhes,2003,10:341.
    [23]Cohen-Salmon M, Ott T, Michel V, et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol,2002,12:1106.
    [24]Teubner B, Michel V, Pesch J, et al. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet,2003,12:13.
    [25]Chang Q, Tang W, Ahmad S, et al. Functional studies reveal new mechanisms for deafness caused by connexin mutations. Otol Neurotol,2009,30:237.
    [26]Zhao HB, Kikuchi T, Ngezahayo A, et al. Gap junctions and cochlear homeostasis. J Membr Biol,2006,209:177.
    [27]Anselmi F, Hernandez VH, Crispino G, et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A,2008,105:18770.
    [28]Wilcox ER, Burton QL, Naz S, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell, 2001,104:165.
    [29]Riazuddin S, Ahmed ZM, Fanning AS, et al. Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet,2006,79:1040.
    [30]Longo-Guess CM, Gagnon LH, Cook SA, et al. A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Proc Natl Acad Sci U S A,2005,102:7894.
    [31]Kazmierczak P, Sakaguchi H, Tokita J, et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature, 2007,449:87.
    [32]Yoshino T, Sato E, Nakashima T, et al. The immunohistochemical analysis of pendrin in the mouse inner ear. Hear Res,2004,195:9.
    [33]Nakaya K, Harbidge DG, Wangemann P, et al. Lack of pendrin HCO3-transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. Am J Physiol Renal Physiol,2007,292:F1314.
    [34]Zheng J, Long KB, Matsuda KB, et al. Genomic characterization and expression of mouse prestin, the motor protein of outer hair cells. Mamm Genome,2003,14:87.
    [35]Zheng J, Shen W, He DZ, et al. Prestin is the motor protein of cochlear outer hair cells. Nature,2000,405:149.
    [36]Yasunaga S, Grati M, Cohen-Salmon M, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet,1999,21:363.
    [37]Starr A, Picton TW, Sininger Y, et al. Auditory neuropathy. Brain, 1996,119:741.
    [38]Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci,2005,6:850.
    [39]Tyson J, Tranebjaerg L, Bellman S, et al. IsK and KvLQTl:mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet, 1997,6:2179.
    [40]Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet,1997,17:267.
    [41]Kharkovets T, Hardelin JP, Safieddine S, et al. KCNQ4, a K+channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A,2000,97:4333.
    [42]Kharkovets T, Dedek K, Maier H, et al. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. Embo J,2006,25:642.
    [43]Kurima K, Peters LM, Yang Y, et al. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet,2002,30:277.
    [44]Marcotti W, Erven A, Johnson SL, et al. Tmcl is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. J Physiol,2006,574:677.
    [45]Osman AA, Saito M, Makepeace C, et al. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem,2003,278:52755.
    [46]McGuirt WT, Prasad SD, Griffith AJ, et al. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet,1999,23:413.
    [47]Jovine L, Park J, Wassarman PM. Sequence similarity between stereocilin and otoancorin points to a unified mechanism for mechanotransduction in the mammalian inner ear. BMC Cell Biol,2002,3:28.
    [48]Robertson NG, Resendes BL, Lin JS, et al. Inner ear localization of mRNA and protein products of COCH, mutated in the sensorineural deafness and vestibular disorder, DFNA9. Hum Mol Genet,2001,10:2493.
    [49]Delmaghani S, del Castillo FJ, Michel V, et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 2006,38:770.
    [50]Weiss S, Gottfried I, Mayrose I, et al. The DFNA15 deafness mutation affects POU4F3 protein stability, localization, and transcriptional activity. Mol Cell Biol,2003,23:7957.
    [51]Wayne S, Robertson NG, DeClau F, et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 2001,10:195.
    [52]Peters LM, Anderson DW, Griffith AJ, et al. Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. Hum Mol Genet 2002,11:2877.
    [53]Weston MD, Pierce ML, Rocha-Sanchez S, et al. MicroRNA gene expression in the mouse inner ear. Brain Res,2006,1111:95.
    [54]Lewis MA, Quint E, Glazier AM, et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet,2009,41:614.
    [55]Soukup GA, Fritzsch B, Pierce ML, et al. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol,2009,328:328.
    [56]Abe S, Katagiri T, Saito-Hisaminato A, et al. Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am J Hum Genet, 2003,72:73.
    [57]Guipponi M, Vuagniaux G, Wattenhofer M, et al. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet,2002,11:2829.
    [58]Guan MX, Fischel-Ghodsian N, Attardi G. Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum Mol Genet 1996,5:963.
    [59]Bykhovskaya Y, Estivill X, Taylor K, et al. Candidate locus for a nuclear modifier gene for maternally inherited deafness. Am J Hum Genet, 2000,66:1905.
    [60]Ballana E, Mercader JM, Fischel-Ghodsian N, et al. MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene. BMC Med Genet, 2007,8:81.
    [61]Li X, Guan MX. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol, 2002,22:7701.
    [62]Li X, Li R, Lin X, et al. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem,2002,277:27256.
    [63]Yan Q, Li X, Faye G, et al. Mutations in MTO2 related to tRNA modification impair mitochondrial gene expression and protein synthesis in the presence of a paromomycin resistance mutation in mitochondrial 15 S rRNA. J Biol Chem,2005,280:29151.
    [64]Ramelli GP, Gallati S, Weis J, et al. Point mutation tRNA(Ser(UCN)) in a child with hearing loss and myoclonus epilepsy. J Child Neurol 2006,21:253.
    [65]Schuelke M, Bakker M, Stoltenburg G, et al. Epilepsia partialis continua associated with a homoplasmic mitochondrial tRNA(Ser(UCN)) mutation. Ann Neurol 1998,44:700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700