中国西北地区回族非综合征型耳聋患者常见聋病基因突变的特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是导致言语交流障碍最主要的原因,严重影响人口质量,病因包括遗传因素和环境因素,其中遗传因素占60-80%,在遗传因素中70%为非综合征型感音神经性耳聋(nonsyndromic sensorineural hearing loss,NSHL)目前发现与耳聋相关的基因超过140个,其中线粒体DNA12Sr RNA1555A>G (m.1555>G), GJB2和SLC26A4突变是最常见的NSHL致病基因,国内外多年的研究证实上述三种基因突变所致的NSHL在不同种族、不同地域有很大的差异,包括不同的突变形式和突变频率。回族在中国是比较特殊的一个民族,历史上,回族是阿拉伯人的后裔,后经不断的迁徙、融合和演变,与许多民族之间相互融合,形成了
     一个特殊的群体。中国回族人口总数逾千万,其中一半以上聚集于中国西北地区,呈“大分散,小聚集”的分布特点,目前国内尚无关于回族聋病基因详细的研究报道,本研究收集来自中国西北地区的420例回族NSHL患者作为研究对象,探究上述三种基因的热点突变和突变频率,分析其特变特征与种族起源的相关性,为该地区回族耳聋人群的分子病因学诊断和遗传咨询提供分子流行病学基础,为政府制定因地制宜的防聋治聋策略提供依据。
     本研究通过对来自中国西北地区(包括甘肃、宁夏、青海、新疆和陕西)的420例回族非综合征型感音神经性耳聋(nonsyndromic sensorineural hearing loss,NSHL)患者进行药物相关性耳聋基因m.1555A>G、GJB2及SLC26A4的突变特征分析,探究三种常见聋病基因在该地区回族耳聋人群的热点突变和突变频率。m.1555A>G突变是氨基糖苷类抗生素致聋(aminoglycoside antibiotic-induced deafness, AAID)的分子学病因,因此对患者的临床病因进行分析,结果显示,420例回族NSHL患者中285例为先天性耳聋,占所有耳聋患者的67.86%(285/420),其中有耳聋家族遗传病史患者40例;108例为药物性耳聋,占所有患者的25.71%(108/420),其中氨基糖苷类抗生素(aminoglycoside antibiotic, AmAn)所致耳聋占所有药物性耳聋的84.26%(91/108);其他病因引起的耳聋患者27例。由此可见,先天性耳聋(包括遗传性聋)和药物性耳聋是该地区回族耳聋发病的主要原因。基因检查结果发现11例患者为m.1555A>G均质性突变,突变携带频率为2.62%(11/420)。在11例m.1555A>G基因突变患者中,6例有明确的AmAn用药史,占病因明确患者的54.55%,一例为可疑药物性聋患者。因此,与AmAn致聋相关的m.1555A>G基因筛查对该地区回族人群防聋意义重大。通过对420例回族NSHL患者进行常见致聋基因GJB2基因的编码区和SLC26A4基因的第8、19外显子的检测,绘制中国西北地区回族NSHL患者GJB2基因突变图谱,明确两种基因在中国西北地区回族NSHL耳聋患者中的突变频率及主要的突变方式,分析其与种族起源间的关系。盐析法提取基因组DNA后运用多聚酶链反应(polymerase chain reaction, PCR)技术扩增GJB2基因的编码区和SLC26A4基因第8、19外显子,然后对上述PCR产物进行测序(上海美吉生物医药科技有限公司—北京测序部)。将生物公司反馈的测序结果利用Sequence Scanner v1.0和SeqMan与来自NCBI的标准序列(mtDNA:NC012920.1;GJB2: NG_008358.1; SLC26A4:N T_007933.15)进行对比。结果发现420耳聋患者中41例为GJB2基因突变所致,包括纯合和复合杂合,占所有患者的9.76%(41/420),是最常见的致聋病因。其中c.235delC等位基因突变频率为6.90%(58/840),占所有致病等位基因的51.33%(58/113),是GJB2最常见的突变方式;20例为SLC26A4双等位基因改变,占所有患者的20/420(4.76%),其中c.919-2A>G等位基因突变频率为5.0%(42/840),占所有等位基因碱基改变的68.85%(42/61),是SLC26A4的热点突变形式。
     通过上述三种常见聋病基因的检测,为该地区回族耳聋人群的基因诊断、遗传咨询及治疗提供分子流行病学依据。
Deafness, seriously affects the quality of population, is the most significant cause of linguistic barrier, the causes of which including inherit(60-80%) and environmental factors. Nonsyndromic sensorineural hearing loss(NSHL) accounts for70%in inherit factors.To date, there are more than140genes related hearing loss, mitochondria DNA12Sr RNA1555A>G, GJB2and SLC26A4gene are the most common deafness-related-genes of NSHL. Lots of studies proved that the mutation frequency and mutation pattern are disparate in different areas and races. Hui, the descendant of the Arabs, was a special nationality in China after constantly evolution, migration and fusion with other nationalities in history. Total of Hui ethnic group population is more than ten million in China, more than half of which live in Northwest China. So far, there was no detailed research report about Hui ethnic group, in this study we collected420Hui NSHL patients to discuss the hot-spot mutation, frequency and the relation-ship betweem characteristic of genes mutation and origin of the hui nationality,the results of which will provides the epidemiology basis on molecular etiology and genetic counseling for this population, at the same time, provides scientifice evidence for the government in order to draw up strategy in the work of prevention and treatment for deafness in different races and areas.
     The aim of this study is to analysis the characteristic of m.1555A>G, GJB2and SLC26A4genes mutation in Hui patients with non-syndromic hearing loss in Northwest China(Gansu, Ningxia, Qinghai, Xinjiang and Shaanxi), probing into the frequency and hotspot mutation types of three frequent deafness-correlative genes.Because m.1555A>G mutation is the molecular etiology of aminoglycoside antibiotic-induced deafness(AAID), we analysis the clinical etiology of all patients, the results showed that285(67.86%) patients are congenital deafness, in which40(9.52%)patients had a family history;108(108/420) had the history of prescribing drugs,in addition,91(84.26%) of these objects had a history of using aminoglycoside antibiotic(AmAn) Moreover,27patients were caused by other etiologies. Thus, it can be seen that congenital deafness(including Hereditary hearing loss) and hearing loss induced by drugs are the most common factors. Genetic testing showed that11(2.62%) cases were caused by m.1555A>G homozygous mutation in420patients with NSHL,6of whom had a specific history of AmAn(6/11=54.55%), and one case was doubtful. Therefore, there has a great significance of m.1555A>G gene screening in order to prevent the deafness occurring in Hui population in Northwest China.At the same time,we analysis the characteristic of GJB2and SLC26A4genes mutation in420Hui ethnic group patients with NSHL and draw the map of GJB2gene mutation investigate the mutation frequency and forms of two genes. Amplified the target gene by polymerase chain reaction (PCR) after extracting genomic DNA from whole blood, then direct sequencing was used to the coding region of GJB2gene,exon8and19of SLC26A4gene. Results showed that41(9.76%) cases,including homozygote and compound heterozygote,were caused by GJB2gene mutation, which was the most frequent deafness-related gene.The allel frequency of c.235delC accounts for6.90%,as well as the most frequent(51.33%) mutational pattern in GJB2gene.20patients(4.76%) were found carring two allel mutations in SLC26A4gene.The allel frequency of c.919-2A>G is5.0%,accounts for a total of68.85%in all base alterations of SLC26A4gene,is the major mutant form of SLC26A4gene.
     Through this study we can provide the molecular epidemiology basis for Hui ethnic group patients with NSHL from Northwest China in genetic diagnosis, genetic counseling and therapy by associated testing of the involved three genes.
引文
1. Yilmaz A, Menevse S, Bayazit Y, et al. Two Novel Missense Mutations in the Connexin 26 Gene in Turkish Patients with Nonsyndromic Hearing Loss. Biochemical Genetics,2010, 48:248-256.
    2. Hilgert N, Smith R J H, and Van Camp G. Function and Expression Pattern of Nonsyndromic Deafness Genes. Current Molecular Medicine,2009,9:546-564.
    3. Dai P, Yu F, Han B, et al. GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment. Journal of Translational Medicine,2009,7:26.
    4. Guo Y F, Liu X W, Guan J, et al. GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol,2008,128:297-303.
    5. Lazar C, Popp R, Trifa A, et al. Prevalence of the c.35delG and p.W24X mutations in the GJB2 gene in patients with nonsyndromic hearing loss from North-West Romania. International Journal of Pediatric Otorhinolaryngology,2010,74:351-355.
    6. Wu C C, Lee Y C, Chen P J, et al. Predominance of genetic diagnosis and imaging results as predictors in determining the speech perception performance outcome after cochlear implantation in children. Arch Pediatr Adolesc Med,2008,162:269-76.
    7. Abe S, Yamaguchi T, and Usami S. Application of deafness diagnostic screening panel based on deafness mutation/gene database using invader assay. Genet Test,2007,11:333-40.
    8. Tekin M, Xia X J, Erdenetungalag R, et al. GJB2 Mutations in Mongolia:Complex Alleles, Low Frequency, and Reduced Fitness of the Deaf. Ann Hum Genet,2010,74:155-164.
    9. Rydzanicz M, Wrobel M, Cywinska K, et al. Screening of the General Polish Population for Deafness-Associated Mutations in Mitochondrial 12S rRNA and tRNASer(UCN) Genes. Genetic Testing and Molecular Biomarkers,2009,13:167-172.
    10.Guo Y-F, Liu X-W, Xu B-C, et al. Analysis of a Large-Scale Screening of Mitochondrial DNA m.1555A>G Mutation in 2417 Deaf-Mute Students in Northwest of China. Genetic Testing and Molecular Biomarkers,2010,14:527-531.
    11.赵亚丽,王秋菊,李庆忠,等.95例前庭水管扩大核心家系Slc26a4基因特异突变图谱.听力学及言语疾病杂志,2008,16:171-177.
    12. Tekin M and Arici Z S. Genetic epidemiological studies of congenital/prelingual deafness in Turkey:population structure and mating type are major determinants of mutation identification. Am J Med Genet A,2007,143:1583-91.
    13.Apps S A, Rankin W A, and Kurmis A P. Connexin 26 mutations in autosomal recessive deafness disorders:a review. Int J Audiol,2007,46:75-81.
    14. Dent K M, Kenneson A, Palumbos J C, et al. Methodology of a multistate study of congenital hearing loss:preliminary data from Utah newborn screening. Am J Med Genet C Semin Med Genet,2004,125:28-34.
    15.戴朴,于飞,韩冰,等.中国不同地区和种族重度感音神经性聋群体热点突变的分布和频率研究.中华耳鼻咽喉头颈外科杂志,2007,42:804-808.
    16. Usami S, Abe S, Weston M D, et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet,1999,104:188-92.
    17. Maciaszczyk K and Lewinski A. Phenotypes of SLC26A4 gene mutations:Pendred syndrome and hypoacusis with enlarged vestibular aqueduct. Neuro Endocrinol Lett,2008,29:29-36.
    18. Yoon J S, Park H J, Yoo S Y, et al. Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet,2008,45:411-9.
    19. Sato E, Nakashima T, Miura Y, et al. Phenotypes associated with replacement of His by Arg in the Pendred syndrome gene. Eur J Endocrinol,2001,145:697-703.
    20. Cho M A, Jeong S J, Eom S M, et al. The H723R mutation in the PDS/SLC26A4 gene is associated with typical Pendred syndrome in Korean patients. Endocrine,2006,30:237-43.
    21. Wang Q J, Zhao Y L, Rao S Q, et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. Clin Genet,2007,72:245-54.
    22.朱一鸣,郭玉芬,刘晓雯,等.陕西省部分聋哑学生聋病易感基因分子流行病学研究.听力学及言语疾病杂志,2010:225-228.
    23.惠培林,郭玉芬,鲍晓林,等.青海省部分聋校学生线粒体DNA12SrRNAA1555G和GJB2基因突变筛查报告.听力学及言语疾病杂志,2009,17:23-26.
    24.刘晓雯,郭玉芬,关静,等.中国西北地区801例聋哑学生临床流行病学病因分析.听力学及言语疾病杂志,2008,16:99-102.
    25. Kokotas H, Grigoriadou M, Korres G S, et al. The A1555G mitochondrial DNA mutation in Greek patients with non-syndromic, sensorineural hearing loss. Biochemical and Biophysical Research Communications,2009,390:755-757.
    26. Dzhemileva L U, Posukh O L, Tazetdinov A M, et al. [Analysis of mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes in patients with nonsyndromic sensorineural hearing loss from various regions of Russia]. Genetika,2009,45:982-91.
    27. Berrettini S, Forli F, Passetti S, et al. Mitochondrial non-syndromic sensorineural hearing loss: a clinical, audiological and pathological study from Italy, and revision of the literature. Biosci Rep,2008,28:49-59.
    28. Yuan Y, You Y, Huang D, et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. Journal of Translational Medicine,2009,7:79.
    29.朱庆文,刘新,韩东一,等.西北五省573例非综合征型耳聋患者线粒体DNAA1555G突变分析.临床耳鼻咽喉头颈外科杂志,2007,21:460-463.
    30. Common J E, Di W L, Davies D, et al. Further evidence for heterozygote advantage of GJB2 deafness mutations:a link with cell survival. J Med Genet,2004,41:573-5.
    31. Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet,2005,14:1641-50.
    32. Dalamon V, Lotersztein V, Beheran A, et al. GJB2 and GJB6 Genes:Molecular Study and Identification of Novel GJB2 Mutations in the Hearing-Impaired Argentinean Population. Audiology and Neurotology,2010,15:194-202.
    33. Al-Qahtani M H, Baghlab I, Chaudhary A G, et al. Spectrum of GJB2 Mutations in a Cohort of Nonsyndromic Hearing Loss Cases from the Kingdom of Saudi Arabia. Genetic Testing and Molecular Biomarkers,2010,14:79-83.
    34. Sansovic I, Knezevic J, Musani V, et al. GJB2 mutations in patients with nonsyndromic hearing loss from Croatia. Genet Test Mol Biomarkers,2009,13:693-9.
    35. DAI P, Yi-wen Y, Jing-hong C, et al. GJB2 mutation spectrum in deaf population in a typical southeastern area of China.耳科学杂志(英文版),2006,5:283-286.
    36. Bhalla S, Sharma R, Khandelwal G, et al. Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochemical and Biophysical Research Communications,2009,385:445-448.
    37. Everett L A, Morsli H, Wu D K, et al. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A,1999,96:9727-32.
    38. Everett L A, Belyantseva I A, Noben-Trauth K, et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet,2001,10:153-61.
    39. Dai P, Stewart A K, Chebib F, et al. Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with nonsyndromic hearing loss. Physiol. Genomics,2009,38:281-290.
    40. Miller S A, Dykes D D, and Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res.,1988,16:1215.
    41.J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等泽,分子克隆实验指南(第三版)2002:社科学出版社.
    42.刘新,黄德亮,袁永一,等.药物性耳聋及防治策略.中国药物应用与监测,2008,2:31-34.
    43.程祖建,杨滨,江凌欧,等.福建省486例耳聋患者致聋原因及线粒体DNA突变分析.pdf.听力学及言语疾病杂志,2008,16:271-274.
    44.郭玉芬,关静,徐百成,等.甘肃省盲聋哑学校283名聋哑学生的病因分析.中华耳科学杂志,2006,4:30-33.
    45. Neiman M and Taylor D R. The causes of mutation accumulation in mitochondrial genomes. Proceedings of the Royal Society B:Biological Sciences,2009,276:1201-1209.
    46. Yamasoba T, Someya S, Yamada C, et al. Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res,2007,226:185-93.
    47.陈沛伟,龙华梅,刘忠,等.氨基糖甙类抗生素致聋患者的线粒体基因突变分析.数理医药学杂志,2003,4:307-308.
    48. Tian G, Liu Y H, Ma Y N, et al. [Molecular genetic analysis of mitochondrial DNA C1494T mutation in non-syndromic hearing loss of Chinese population]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2007,24:464-6.
    49. Prezant T R, Agapian J V, Bohlman M C, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet,1993, 4:289-294.
    50. Bardien S, Human H, Harris T, et al. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness. BMC Medical Genetics,2009,10:2.
    51. Ramsebner R, Lucas T, Schoefer C, et al. Relevance of the A1555G mutation in the 12S rRNA gene for hearing impairment in Austria. Otol Neurotol,2007,28:884-6.
    52. Xu X, Xing G, Wei Q, et al. Frequency of mitochondrial 12S rRNA gene A1555G and 961 insC mutations among children with sensorineural deafness in China.南京医科大学学报(英文版),2006,5:283-286.
    53. Dai P, Liu X, Han D, et al. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families:Implication for early detection and prevention of deafness. Biochemical and Biophysical Research Communications,2006, 340:194-199.
    54. Stergaard O E, Montserrat-Sentis B, Gronskov K, et al. The A1555G mtDNA mutation in Danish hearing-impaired patients:frequency and clinical signs. Clin Genet,2002,62:303-5.
    55. Kupka S, Bodden-Kamps B, Baur M, et al. [Mitochondrial A1555G mutation. Molecular genetic diagnosis in sporadic cases of non-syndromic hearing impairment]. Hno,2004, 52:968-72.
    56. Li R, Greinwald J H, Jr., Yang L, et al. Molecular analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet, 2004,41:615-20.
    57. Tekin M, Duman T, Bogoclu G, et al. Frequency of mtDNA A1555G and A7445G mutations among children with prelingual deafness in Turkey. European journal of pediatrics,2003, 162:154-158.
    58. Mkaouar-Rebai E, Tlili A, Masmoudi S, et al. Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss. Biochem Biophys Res Commun,2006,340:1251-8.
    59. Noguchi Y, Yashima T, Ito T, et al. Audiovestibular findings in patients with mitochondrial A1555G mutation. Laryngoscope,2004,114:344-8.
    60. Bae J W, Lee K Y, Choi S Y, et al. Molecular analysis of mitochondrial gene mutations in Korean patients with nonsyndromic hearing loss. Int J Mol Med,2008,22:175-80.
    61. Malik S G, Pieter N, Sudoyo H, et al. Prevalence of the mitochondrial DNA A1555G mutation in sensorineural deafness patients in island Southeast Asia. J Hum Genet,2003,48:480-3.
    62.张锐宁,刘新,戴朴,等.运城市聋哑学校重度感音性聋分子病因学分析——GJB2 235delC突变和线粒体DNA 12SrRNA A1555G突变筛查报告.中华耳科学杂志,20064:21-23.
    63.于飞,戴朴,韩东一,等.柳州市盲聋学校非综合征性聋分子病因学分析——GJB2 235delC突变和线粒体DNA 12SrRNA A1555G突变筛查报告.中华耳科学杂志,2006,4:18-20.
    64.孙栓柱,杨淑芝,戴朴,等.大同市特教学校非综合征性聋分子病因学分析——GJB2235delC突变和线粒体DNA 12SrRNA A1555G突变筛查报告.中华耳科学杂志,2006,4:9-11.
    65.林红艳,刘新,戴朴,等.安阳市特教学校重度感音性聋分子病因学分析——GJB2235delC突变和线粒体DNA 12SrRNA A1555G突变筛查报告.中华耳科学杂志,2006,4:15-17.
    66. Wu C C, Chen P J, Chiu Y H, et al. Prospective mutation screening of three common deafness genes in a large Taiwanese Cohort with idiopathic bilateral sensorineural hearing impairment reveals a difference in the results between families from hospitals and those from rehabilitation facilities. Audiol Neurootol,2008,13:172-81.
    67.张劲,李琦,戴朴,等.乌鲁木齐市特教学校重度感音神经性聋GJB2和线粒体基因常见突变调查.中华耳科学杂志,2007,7:60-63.
    68.杨华.论回族伦理的起源和演变.回族研究,2007,1:45-48.
    69.谢小冬,陕雪梅.回族起源的DNA证据.回族研究,2002,47:75-77.
    70. Tsukamoto K, Suzuki H, Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese. Eur J Hum Genet,2003, 11:916-22.
    71. Dai P, Yuan Y, Huang D, et al. Molecular etiology of hearing impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis. J Transl Med,2008,6:74.
    72. Wu C C, Yeh T H, Chen P J, et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia:a unique spectrum of mutations in Taiwan, including a frequent founder mutation. Laryngoscope,2005,115:1060-4.
    73.Gravina L P, Foncuberta M E, Prieto M E, et al. Prevalence of DFNB1 mutations in Argentinean children with non-syndromic deafness. Report of a novel mutation in GJB2. International Journal of Pediatric Otorhinolaryngology,2010,74:250-254.
    74.韩明鲲,王秋菊,王大勇,等.非综合征型感音神经性聋易感聋病基因检测分析.听力学及言语疾病杂志,2008,16:89-91.
    75. HAN M-k, HAN D-y, GUO Y-f, et al. Screening of GJB2 mutations in Chinese population. Journal of Otology,2007,2:18-22.
    76. Dai P, Yu F, Han B, et al. The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genet Med,2007,9:283-9.
    77.于飞,韩东一,戴朴,等.1190例非综合征性耳聋患者GJB2基因突变序列分析.中华医学杂志,2007,87:2814-2819.
    78. LI Q, DAI P, HUANG D-1, et al. Prevalence of the GJB2 Mutations in Deafness Patients of Different Ethnic Origins in Xinjiang. Journal of Otology,2007,2:23-29.
    79.满荣军,郭玉芬,刘晓雯,等.新疆少数民族和汉族聋哑学生GJB2基因和线粒体DNA 12SrRNAA1555G突变研究.中国耳鼻咽喉头颈外科,2009:190-193.
    80. Putcha G V, Bejjani B A, Bleoo S, et al. A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet Med,2007,9:413-26.
    81. Lucotte G and Dieterlen F. The 35delG mutation in the connexin 26 gene (GJB2) associated with congenital deafness:European carrier frequencies and evidence for its origin in ancient Greece. Genet Test,2005,9:20-5.
    82. Roux A F, Pallares-Ruiz N, Vielle A, et al. Molecular epidemiology of DFNB1 deafness in France. BMC Med Genet,2004,5:5.
    83. Minarik G, Ferak V, Ferakova E, et al. High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys, 2003,22:549-56.
    84. Rabionet R, Gasparini P, and Estivill X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat,2000,16:190-202.
    85. Dai P, Li Q, Huang D, et al. SLC26A4 c.919-2A>G varies among Chinese ethnic groups as a cause of hearing loss. Genetics in Medicine,2008,10:586-592
    86. Sirmaci A, Duman D, Ozturkmen-Akay H, et al. Mutations in TMC1 contribute significantly to nonsyndromic autosomal recessive sensorineural hearing loss:a report of five novel mutations. Int J Pediatr Otorhinolaryngol,2009,73:699-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700