中国西北地区藏族、土族、蒙古族非综合征型耳聋常见聋病基因特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋影响患者的日常交流与信息获取,是一种严重影响人类身心健康和生活质量的疾病。研究发现引起耳聋的病因包括遗传因素和环境因素,其中60%的耳聋是由遗传缺陷引起的,与耳聋相关的基因多达140个,但绝大部分耳聋患者是由少数几个单基因的缺损导致。全国范围的聋病分子流行病学调查数据显示GJB2、SLC26A4、线粒体基因mtDNA (A1555G和C1494T突变)是导致中国大部分遗传性耳聋发生的3个最为常见的耳聋基因,但不同地区和不同民族间检出率有明显差异。中国西北地区藏族、土族、蒙古族的常见聋病基因研究报道甚少,因此我们对来自甘肃、青海的189例藏族、土族、蒙古族非综合征型耳聋患者进行常见聋病基因突变特征研究,以初步了解该地区遗传性耳聋病因学特点,为聋病基因诊断、遗传咨询提供科学依据。
     本研究收集中国西北地区121例藏族、49例土族、19例蒙古族非综合征型耳聋患者的临床资料和静脉血样,提取基因组DNA,PCR扩增后对GJB2基因编码区、SLC26A4基因第8、18外显子进行直接测序,1mtDNA行特异性PCR后对阳性样品行测序验证。结果三个民族在藏族和土族中检测到GJB2致病突变,蒙古族中未检测到致病突变,这可能是由于样本量太小,抽样误差所致。藏族的GJB2等位基因突变率为5.8%(14/242),其中c.235delC为最常见的突变方式,另外还检测到其他4种突变:c.94C>T、c.257C>G、c.299-300delAT、c.504insAACG;土族的GJB2等位基因突变率为11.2%(11/98),突变方式有两种:c.235de1C、 c.176-191del16。c.235de1C是这两个民族GJB2的热点突变,这也进一步证实c.235de1C是中国人中最为常见的突变形式。明确了3.3%(4/121)的藏族患者和10.2%(5/49)的土族患者为GJB2基因突变所致。统计分析显示藏族和土族GJB2等位基因突变率之间无差异,但c.235de1C携带率藏族低于土族。
     这三个少数民族SLC26A4基因突变携带率分别为:4.54%、6.12%、15.79%。其中,c.919-2A>G是SLC26A4基因的热点突变,这也与国内其他的关于SLC26A4基因的研究结果一致。明确了5%的藏族患者、6.12%的土族患者和15.79%的蒙古族患者是由SLC26A4基因突变导致。统计学分析显示蒙古族的SLC26A4等位基因频率和c.919-2A>G携带率最高,土族次之,藏族最低。
     mtDNA12S rRNA基因突变携带率在这三个少数民族中分别为5.79%、10.2%和5.26%,统计分析显示三个民族mtDNA12S rRNA突变率之间的差异无统计学意义。
     结论:西北地区藏族、土族、蒙古族中GJB2基因、SLC26A4基因、线粒体DNA突变高发,常见耳聋基因筛查有助于推动本地区这三个少数民族基因诊断和遗传咨询的进步。
Deafness affects patients'daily communication and access to information, and influences human physical and mental health and the quality of life. Studies have found that the causes of deafness including genetic factors and environmental factors. About60%deafness people are caused by genetic defects. Genes related to deafness were about140, but the majority patients with deafness was caused by a handful of single gene defects. Nationwide deaf disease molecular epidemiology survey data shows that GJB2, SLC26A4and mtDNA (A1555G and C1494T) mutations were three most common deafness genes in hereditary deafness. But the detection rates of different regions and different ethnic groups were obvious different. At present studies in China's northwest ethnic minorities, especially Tibetan, Tu nationality and Mongolian are rare. The aim of this study is to research common deafness gene mutation characteristics in189cases of Tibetan, Tu nationality and Mongolian NSHI patients from Gansu and Qinghai province. We can preliminary understand the hereditary deafness etiology characteristics in this region, and provide a scientific basis for disease gene diagnosis and genetic counseling
     In this study, we collected189Tibetan, Tu nationality and Mongolian NSHI patient's data and peripheral blood. We extract DNA from peripheral blood. PCR and direct sequencing were used to analyze the coding region of GJB2, mtDNA and exons8and18of SLC26A4gene. The disease causative mutations were detected in Tibetan and Tu nationality patients whereas the GJB2mutations were not detected in Mongolian cases in present work due to the selection effect of low sample coverage. The mutant allele rate of GJB2gene is5.8%(14/242) in Tibetan, of which c.235delC is the most prevalent mutation. Four other kinds of pathogenic mutations were detected in Tibetan patients:c.94C     Mutant allele frequency of SLC26A4in Tibetan, Tu nationality and Mongolian were4.54%,6.12%and15.79%respectively, c.919-2A>G was the most common mutation of the SLC24A4gene, which is consistent with other domestic research results concerning the SLC26A4gene.5%Tibetan,6.12%Tu nationality and15.79%Mongolian patients were caused by SLC26A4gene mutations. Statistical analysis showed that mutant allele frequency of SLC26A4and c.919-2A>G carry rate were highest in Mongolian, next in Tu nationality, minimum in Tibetan.
     The mutation frequency of mtDNA12SrRNA in Tibetan, Tu nationality and Mongolian deaf populations was5.79%,10.2%and5.26%. There was no significant difference between Tibetan, Tu nationality and Mongolian in mutation frequency of mtDNA12SrRNA.
     In conclusion, the mutation of GJB2gene, SLC26A4gene and mtDNA gene among Tibetan, Tu nationality and Mongolian in northwest of China are high. Common deafness gene screening helps us with the progress of the gene diagnosis and genetic counseling in the three minority nationalities in our region.
引文
[1]第二次残疾人抽样调查办公室.全国第二次残疾人抽样调查主要数据手册.北京:华夏出版社,2007:2-38.
    [2]Van Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment:Unparalleled heterogeneity. Am J Hum Genet,1997,60:758-764.
    [3]Bayazit Y A, Yilmaz M. An Overview of hereditary hearing loss[J]. ORL J Otorhinolaryngol Relat Spec 2006; 68(2):57-63.
    [4]Liu XZ, Xia XJ, Ke XM, et al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population[J]. Hum Genet.2002, 111(4-5):394-7.
    [5]戴朴,韩东一,冯勃,等.大前庭水管的基因诊断和SLC26A4基因突变分析[J].中国耳鼻咽喉头颈外科,2006,13:303-7.
    [6]刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨[J].中华医学杂志.2006.86:1318-22.
    [7]Kenneson A, Van Naarden Braun K, Boyle C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss:a HuGE review[J]. Genet Med,2002,4:258-74.
    [8]Seott D A, et al. Connexin mutations and hearing loss[J]. Nature.1998,391(6662):P.32.
    [9]Kiang D T, Jin N, Tu Z J, et al. Upstream genomic sequence of the human connexin26 gene[J]. Gene.1997.199:165-71.
    [10]Forge A, Becker D, Casalotti S, et al. Gap junctions and connexin expression in the inner ear[J]. Novartis Found Symp.1999.219:134-50.
    [11]Kikuchi T, Kimura RS, Paul DL, et al. Gap junct ion systems in the mammalian cochlea[J]. Brain Res Brain Res Rev.2000; 32:163-6.
    [12]Common JE, Di WL, Davies D, et al. Further evidence for heterozygote advantage of GJB2 deafness mutations:a link with cell survival[J]. J Med Genet,2004.41(7):573-5.
    [13]Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppression of GJB2 expression by RNA interference[J]. Hum Mol Genet,2005.14(12):1641-50.
    [14]Thonnissen E, Rabionet R, Arbones ML, et al. Human connexin 26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression[J]. Hum Genet,2002.111(2):190-7.
    [15]Jun AL, McGuirt WT, Hinojosa R, et al. Temporal hone histopathology in connexin 26-related hearing loss[J]. Laryngoscope.2000,10(2):269-275.
    [16]Rabionet R, Zelante L, Lopez-Bigas N, et al. Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene[J]. Hum Genet.2000.106:40-4.
    [17]Gualandi F, Ravani A, Berto A, et al. Exploring the clinical and epidemiological complexity of GJB2-linked deafhess[J]. Am. J. Med. Genet.2002.112:38-45.
    [18]Davarnia B, Babanejad M, Fattahi Z, et al. Spectrum of GJB2 (Cx26) gene mutations in Iranian Azeri patients with nonsyndromic autosomal recessive hearing loss[J].Int J Pediatr Otorhinolaryngol.2012,76(2):268-71.
    [19]Chaleshtori MH, Farrokhi E, Shahrani M, et al. High carrier frequency of the GJB2 mutation (c.35delG) in the north of Iran. Int J Pediatr Otorhinolaryngol[J].2007,71(6):863-7.
    [20]Dong J, Katz DR, Eng CM, et al. Nonradioactive detection of the common Connexin 26 167 del T and 35 delG mutations and frequencies among Ashkenazi Jews[J]. Mol Genet Metab. 2001,73(2):160-3.
    [21]Brobby GW, Miiller-Myhsok B, Horstmann RD. Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa[J]. N Engl J Med.1998, 338(8):548-50.
    [22]Tsukada K, Nishio S, Usami S. A large cohort study of GJB2 mutations in Japanese hearing loss patients[J]. Clin Genet.2010,78(5):464-70.
    [23]Lee KY, Choi SY, Bae JW, et al. Molecular analysis of the GJB2, GJB6 and SLC26A4 genes in Korean deafness patients[J]. Int J Pediatr Otorhinolaryngol.2008,72(9):1301-9.
    [24]李庆忠,王秋菊,韩东一,等.GJB2基因突变始祖效应对中国耳聋人群的影响[J].解放军医学杂志,2005.30(5):394-396.
    [25]王秋菊,杨伟炎,韩东一.遗传性耳聋资源的收集、保存及利用-综合系统的建立.中华耳科杂志[J].2003.4(1):65-69.
    [26]Su B, Xiao C, Deka R, et al. Y chromosome haplotypes reveal prehistorical migrations to the Himalayas[J]. Hum Genet.2000,107(6):582-90.
    [27]袁义达,杜若甫.中国十七个民族间的遗传距离的初步研究[J].遗传学报,1983,10(5):395—-405.
    [28]温有锋.西藏藏族起源初探[博士论文].沈阳:中国医科大学,2007.
    [29]戴朴,于飞,韩冰,等.中国不同地区和种族重度感音神经性聋群体热点突变的分布和频率研究[J].中华耳鼻咽喉头颈外科杂志.2007.42(11):804-8.
    [30]Guo YF, Liu XW, Guan J, et al. GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects[J]. Acta Otolaryngol 2008.128(3): 297-303.
    [31]Yuan Y, Zhang X, Huang S, et al. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment[J]. Plos one 2012; 7(2):e30720.
    [32]杨虎德.土族族源与吐谷浑——读吕建福先生新作《土族史》札记[J].青海民族学院学报.2006.32(4):37-9.
    [33]戴玉景.青海土族体质人类学研究[J].人类学学报.1997.16(2):274-284.
    [34]耿排力,吴洪福,朱海宏,等.青海土族、撒拉族]1LA2DQA1和2DQB1基因多态性探讨.遗传免疫学.2005.21(1):35-9.
    [35]Ohtsuka A, Yuge I, Kimura S, et al. GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation[J]. Hum Genet.2003,112(4): 329-33.
    [36]Park HJ, Hahn SH, Chun YM, et al. Connexin26 mutations associated with nonsyndromic hearing loss[J]. Laryngoscope.2000,110(9):1535-8.
    [37]Wang YC, Kung CY, Su MC, et al. Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan[J]. Eur J Hum Genet.2002,10(8):495-8.
    [38]Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss[J]. Am J Hum Genet.1998,62(4):792-9.
    [39]Wilcox SA, Saunders K, Osborn AH, et al. High frequency hearing loss correlated with mutations in the GJB2 gene[J]. Hum Genet.2000,106(4):399-405.
    [40]袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究[博士论文].北京:军医进修学院,2007.
    [41]Shi GZ, Gong LX, Xu XH, et al. GJB2 gene mutations in newborns with non-syndromic hearing impairment in Northern China[J]. Hear Res.2004,197(1-2):19-23.
    [42]Yuan Y, You Y, Huang D, et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China[J]. J Transl Med 2009; 7:79(1-12).
    [1]Kraiem Z, Heinrich R, Sadeh O, et al. Sulfate transport is not impaired in pendred syndrome thyrocytes[J]. J Clin Endocrinol Metab.1999,84(7):2574-6.
    [2]Reardon W, OMahoney CF, Trembath R, et al. Enlarged vestibular aqueduct:a radiological marker of pendred syndrome, and mutation of the PDS gene[J]. QJM.2000,93(2):99-104.
    [3]Usami S, Abe S, Weston MD, et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations[J]. Hum Genet.1999,104(2):188-92.
    [4]Yuan Y, You Y, Huang D, et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China[J]. J Transl Med.2009,7(79):1-12.
    [5]Campbell C, Cucci RA, Prasad S, et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations[J]. Hum Mutat.2001,17(5):403-11.
    [6]Tsukamoto K, Suzuki H, Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese[J]. Europ J Hum Genet.2003, 11:916-922.
    [7]Park HJ, Lee SJ, Jin HS, et al. Genetic basis of hearing loss associated with enlarged vestibular aqueducts in Koreans[J]. Clin Genet.2005,67(2):160-5.
    [8]赵亚丽,王秋菊,李庆忠,等.95例前庭水管扩大核心家系SLC26A4基因特意突变图谱[J].听力学及言语疾病杂志.2008.16(3):171-7.
    [9]袁永一,戴朴,朱庆文,等.1552例重度感音神经性聋患者与SLC26A4基因IVS7-2 A>G突变相关的全序列分析[J].中华耳鼻咽喉头颈外科杂志.2009.44(6):449-54.
    [10]Dai P, Yuan Y, Huang D, et al. Molecular etiology of hearing impairment in Inner Mongolian: mutations in SLC26A4 gene and relevant phenotype analysis[J]. J Transl Med.2008,6:74.
    [11]Arcand P, Desmsiers M, Dube J, et al. The large vestibular aqueduct syndrome and sensorineural hearing loss in the pediatric population[J]. J Otolaryngol,1991,20:247-50.
    [12]Van Hauwe P, Everett LA, Coucke P, et al. Two frequent missense mutations in Pendred syndrome[J]. Hum Mol Genet.1998,7(7):1099-104.
    [13]Tsukamoto K, Suzuki H, Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese[J]. Eur J Hum Genet.2003, 11(12):916-22.
    [14]遗传性听力下降网站.http://webh01.ua.ac.be/hhh/.
    [15]Anwar S, Riazuddin S, Ahmed ZM, et al. SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred's syndrome in Pakistanis[J]. J Hum Genet.2009,54(5): 266-70.
    [16]Kahrizi K, Mohseni M, Nishimura C, et al. Identification of SLC26A4 gene mutations in Iranian families with hereditary hearing impairment[J]. Eur J Pediatr.2009,168(6):651-3.
    [17]Tsukamoto K, Suzuki H, Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese[J]. Eur J Hum Genet.2003, 11(12):916-22.
    [18]Lee KY, Choi SY, Bae JW, et al. Molecular analysis of the GJB2, GJB6 and SLC26A4 genes in Korean deafness patients[J]. Int J Pediatr Otorhinolaryngol.2008,72(9):1301-9.
    [19]Wang QJ, Zhao YL, Rao SQ, et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China[J]. Clin Genet.2007,72(3):245-54.
    [20]Dai P, Yuan Y, Huang D, et al. Molecular etiology of hearing impairment in Inner Mongolian: mutations in SLC26A4 gene and relevant phenotype analysis[J]. J Transl Med,2008,6:74.
    [21]Yuan YY, Huang DL, Kang DY, et al. Analysis of the SLC26A4 gene hot spot mutation regions in Chinese Enlarged Vestibular Aqueduct Patients[J]. Chinese Journal of Otology, 2010,8:292-295.
    [22]袁永一,黄莎莎,王国建,等.27个省市聋校学生基于SLC26A4基因IVS7-2A>G突变的全序列分析[J].中华耳科学杂志.2011.9(1):17-23.
    [23]Yuan Y, Zhang X, Huang S, et al. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment[J]. Plos one.2012,7(2):e30720.
    [24]Guo YF, Liu XW, Guan J, et al. GJB2, SLC26A4 and mitochondrial DNA A1555G mutations in prelingual deafness in Northern Chinese subjects[J]. Acta Otolaryngol.2008,128(3): 297-303.
    [1]Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates[J]. Annu Rev Biochem,1997,66:409-35.
    [2]Croteua DL& Bohr VA. J Biol Chem.272,25409-25412Beal, M. F. (1996) Curr. OPin. Neurobiol.1997,6:661-6
    [3]Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[J].Nat Genet.1993, 4(3):289-94.
    [4]Guan MX, Fischel-Ghodsian N, Attardi G. A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity[J]. Hum Mol Genet.2000,9(12):1787-93.
    [5]Zhao H, Li R, Wang Q, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family[J]. Am J Hum Genet.2004,74:139-52.
    [6]刘晓雯,郭玉芬,韩东一,等.非综合征型聋患者线粒体DNA A1555G突变频率分析[J].中华耳鼻咽喉头颈外科杂志,2007,42(10):739-42.
    [7]Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity[J]. Pharmacogenomics.2005, 6(1):27-36.
    [8]Ding D, Jin X, Zhao J. Accumulative sites of knanmycin in cochlea basal membrane cell[J]. Chinese J Otorhinolaryngol,1995,30:323-5.
    [9]Fischel-Ghodsian N, Prezant TR, Chaltraw WE, et al. Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity[J]. Am J Otolaryngol.1997, 18(3):173-8.
    [10]Hu DN, Qui WQ, Wu BT, et al. Genetic aspects of antibiotic induced deafness:mitochondrial inheritance[J]. J Med Genet.1991,28(2):79-83.
    [11]Dzhemileva LU, Posukh OL, Tazetdinov AM, et al. Analysis of mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes in patients with nonsyndromic sensorineural hearing loss from various regions of Russia[J]. Genetika.2009,45(7):982-91.
    [12]Kokotas H, Grigoriadou M, Korres GS, et al. The A1555G mitochondrial DNA mutation in Greek patients with non-syndromic, sensorineural hearing loss. Biochem Biophys Res Commun[J].2009,390(3):755-7.
    [13]Konings A, Van Camp G, Goethals A, et al. Mutation analysis of mitochondrial DNA 12SrRNA and tRNASer(UCN) genes in non-syndromic hearing loss patients[J]. Mitochondrion.2008,8(5-6):377-82.
    [14]Bardien S, Human H, Harris T, et al. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness[J]. BMC Med Genet.2009,13:10:2.
    [15]欧启水,程祖建,陈静,等.中国人非综合征型耳聋患者线粒体DNA A1555G突变分析[J].中华检验医学杂志.2007.30(3):273-5.
    [16]何勇,戴朴,于飞,等.福州市特教学校非综合征性聋分子病因学分析-GJB2 235delC突变和线粒体DNA 12SrRNAA1555G突变筛查报告[J].中华耳科学杂志.2006,4(1):12-4.
    [17]刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨[J].中华医学杂志.2006,86(19):1318-22.
    [18]戴朴,刘新,于飞,等.18个省市聋校学生非综合征性聋病分子流行病学研究(I)-GJB2 235delC和线粒体DNA12srRNAA1555G突变筛查报告[J].中华耳科学杂志.2006,4(1):1-5.
    [19]郭玉芬,徐百成,韩东一,等.中国西北地区线粒体DNA12SrRNAA1555G和GJB2基因突变[J].中国耳鼻咽喉头颈外科.2006.13(10):666-9.
    [20]徐百成,郭玉芬,关静,等.线粒体DNA12SrRNAA1555G突变在中国西北地区的流行病学研究[J].中华耳科学杂志.2007,5(1):56-9.
    [21]刘晓雯,郭玉芬,韩东一,等.非综合征型聋患者线粒体DNAA1555G突变频率分析[J].中华耳鼻咽喉头颈外科杂志.2007,42(10):739-42.
    [22]满荣军,郭玉芬,刘晓雯,等.新疆少数民族和汉族聋哑学生GJB2基因和线粒体DNA12SrRANA1555G突变研究[J].中国耳鼻咽喉头颈外科.2009.16(4):190-3.
    [23]惠培林,郭玉芬,鲍晓林,等.青海省部分聋校学生线粒体DNA12SrRNAA1555G和GJB2基因突变筛查报告[J].听力学及言语疾病杂志.2009.17(1):23-6.
    [24]朱一鸣,郭玉芬,刘晓雯,等.陕西省部分聋哑学生聋病易感基因分子流行病学研究[J].听力学及言语疾病杂志.2010.18(3):225-8.
    [25]Estivill X, Govea N, Barcelo A, et al. Familial progressive sensofineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment with aminoglycosidas[J]. Am J Hum Genet.1998.62:27-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700