基于典型农药残留规律的结球芸苔属蔬菜作物分类及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药的科学管理需要大量的残留试验数据作为支持,但有限的人力、物力和财力决定了无法在每种农药/作物上都进行残留试验,并获得残留数据。小作物上农药登记不足,农药无限量标准可依的情况普遍存在。结合作物分类研究作物组或亚组的农药残留规律,并以此制定相关农药的作物组限量,是解决组内小作物上农药登记和限量标准缺失的有效方法。本论文对结球甘蓝上残留量的比例类推(proportionality),五种结球芸苔属蔬菜上六种典型农药的残留规律,五种结球芸苔属蔬菜的作物分类及结球芸苔属亚组的残留数据集应用进行了研究和评价。论文就几个方面的研究内容和主要结果如下:
     建立了五种结球芸苔属蔬菜上甲基托布津、多菌灵、甲霜灵、精吡氟禾草灵、毒死蜱和高效氯氟氰菊酯残留的QuEChERS提取,LC-MS/MS或GC-ECD分析的方法。在结球甘蓝、紫甘蓝、抱子甘蓝、球茎甘蓝和羽衣甘蓝五个基质的空白样品中进行三个水平的添加回收验证:0.01、0.05和0.1mg/kg,六种农药的平均回收率在76.9-117.4%之间,相对标准偏差在3.7-10.8%之间。六种农药在五种结球芸苔属蔬菜基质中的定量限(LOQ)均为0.01mg/kg。
     设计田间试验,考察了两种施药量条件(1倍和1.5倍GAP)下结球甘蓝上六种农药的残留水平,并以此进行了残留量的比例类推研究。通过不同种类农药的残留量自然对数线性回归分析可知:残留量的比例类推需要在有明显残留的情况下才可以应用;有明显残留量的农药残留汇总后的线性回归方程为y=0.803x+0.4928,相关系数为0.9346,斜率接近理论值1,由截距计算的残留倍数为1.6,接近理论值1.5。对各农药进行单独考察,非内吸性农药毒死蜱和高效氯氟氰菊酯残留量的比例关系明显,线性回归方程与理论方程较为一致,可以进行直接的残留量比例类推;内吸性农药多菌灵(含甲基托布津)和甲霜灵残留量的线性回归方程与理论方程在斜率上有一定的差异,但仍保持良好的线性关系。仓储条件下高低剂量施药试验结果与田间结球甘蓝的试验结果相似,说明环境因素对残留量的比例类推影响可以忽略。因此,可以通过残留量的比例类推实现不同GAP施药量产生的残留数据的整合利用。
     设计田间试验,对六种典型农药在五种结球芸苔属蔬菜上的残留规律进行了研究。田间消解动态试验结果表明:甲基托布津、多菌灵、甲霜灵、毒死蜱、高效氯氟氰菊酯和精吡氟禾草灵在五种结球芸苔属蔬菜中的半衰期分别在0.9-6.1天、1.3-5.0天、0.9-6.9天、0.8-4.0天、1.4-6.2天和0.3-3.3天之间,在所有的五种结球芸苔属蔬菜中,结球甘蓝上六种农药的半衰期几何平均数最长,为2.1-3.5天。多菌灵和高效氯氟氰菊酯的半衰期几何平均数最大。大多农药在球茎甘蓝上有最低的原始沉积量,而在羽衣甘蓝或抱子甘蓝上有最高的原始沉积量。
     根据7天安全间隔期下五种结球芸苔属蔬菜上的农药残留数据差异及作物形态的比较,对五种结球芸苔属蔬菜的作物分类进行了考察。羽衣甘蓝的残留量最高且差异明显,作物形态也不同,不应纳入结球芸苔属亚组;结球甘蓝、抱子甘蓝和紫甘蓝的残留量无明显差异且作物形态较类似,均应纳入结球芸苔属亚组;球茎甘蓝的残留量最低,无健康风险,可以纳入结球芸苔属亚组。因此,合理的结球芸苔属亚组应包括结球甘蓝、紫甘蓝、抱子甘蓝和球茎甘蓝,结球甘蓝应作为该亚组的代表作物。
     根据结球芸苔属亚组的蔬菜种类及每种蔬菜上的六种农药残留数据所形成的完整残留数据集对结球芸苔属亚组蔬菜的组限量进行了计算,OECD和NAFTA计算器的结果较为一致。对结球芸苔属亚组蔬菜的残留量进行了慢性和急性风险评估,慢性风险商在0-0.6%之间,急性风险商在0.4-54.1%之间,均低于100%,对消费者健康无慢性和急性风险。以完整数据集的组限量计算结果作为参照,评价了以代表作物结球甘蓝的残留数据集进行残留外推(residue extrapolation)的限量计算。结果表明,应用残留外推法的多菌灵总量、甲霜灵、高效氯氟氰菊酯和精吡氟禾草灵组限量值与基于完整数据集的组限量值无明显差异;而毒死蜱的外推组限量计算值0.06mg/kg则与参照0.4mg/kg差异较大。因此,在结球芸苔属亚组蔬菜上大多数农药的残留外推法应用具有可行性。对于非内吸性且具有较高残留量的农药,如毒死蜱,应在残留外推法应用的基础上,辅助组内作物残留试验进行验证,以保证组限量值可以反映真实残留情况,并保证消费者健康。
Scientific regulation of pesticides requires a large amount of residue data, while limited resources could be used in supervised residue trials for each pesticide/crop combination, in which residue levels are investigated. Therefore, the situations that few pesticides are registered on minor crops and lack of Maximum Residue Limits (MRLs) are widely observed. It would be a useful way that pesticide registrations and MRLs setting could be carried out for crop group by utilizing the combined residue dataset of crop group or the representative commodity. In this thesis, residue behaviors of six pesticides on brassica vegetables were investigated. Commodity group was classified and different types of residue datasets of the Head Brassicas subgroup were evaluated in MRLs setting for the subgroup. Specified results are summarized as follows:
     A QuEChERS-LC-MS/MS and GC-ECD method for simultaneously analysis of thiophanate-mehtyl, carbendazim, metalaxyl, Fluazifop-P-butyl, chlorpyrifos and lambda-cyhalothim residues on five brassica vegetables (cabbage, red cabbage, kohlrabi, kale and brussels sprout) was developed and validated. At fortification levels of0.01,0.05and0.1mg/kg, it was shown that recoveries ranged from76.9%to117.4%with RSDs of3.7-10.8%(n=5) in all samples. The LOQs of six pesticides in five matrixes were all0.01mg/kg.
     Pesticide residues in cabbage at the application rates of both GAP and1.5*GAP were investigated. The result showed that a proportionality existed in residues from different application rates on condition that the residues were at measurable levels. Equation of linear regression of natural logarithms of residues was y=0.803x+0.4928, with a correlation coefficient of0.9346. The slope was close to1(theoretical value) and the calculated multiple from the concept (1.6) was close to1.5(theoretical value). Proportionality was obvious in chlorpyrifos and lambda-cyhalothim residues rather than thiophanate-methyl and metalaxyl residues, but linear relationships performed well in all residues. Results from field and storage were similar and it confirmed that environment did not affect the proportionality of residues in side-by-side trials. This result would be useful in utilizing residue data from different application rates of pesticides.
     Residue behaviors of six pesticides in five brassica vegetables were investigated. Half-lives of thiophanate-methyl, carbendazim, metalaxyl, chlorpyrifos, lambda-cyhalothrin and fluazifop-P-butyl in five brassica vegetables were0.9-6.1days,1.3-5.0days,0.9-6.9days,0.8-4.0days,1.4-6.2days and0.3-3.3days. Pesticides had the longest geo-mean half-life of2.1-3.5days in cabbage. Carbendazim and lambda-cyhalothim had the slowest dissipation in all five brassica vegetables. The lowest initial deposits of most pesticides were found on kohlrabi and the highest initial deposits were on kale or brussels sprouts.
     Commodity group was classified according to the results of comparison of residue data on different commodities and the morphology of five brassica vegetables. With the highest residue and different morphology, kale should not be classified into Head Brassicas subgroup. Cabbage, red cabbage and brussels sprouts could be classified into Head Brassicas as they had similar residue data and morphology. Though residues in kohlrabi were at low levels, it could be classified into Head Brassicas because it would not present health risk to customers. Therefore, an appropriate subgroup of Head Brassicas should include cabbage, red cabbage, kohlrabi and brussels sprouts. Cabbage should be selected as the representative commodity as it had the highest residues and largest production and consumption.
     Combined datasets of5pesticide residues in the subgroup of Head Brassicas were used in MRLs calculations with both NAFTA and OECD MRL calculators. The results of two calculators were similar. Acute and chronic risk assessments were carried out and the chronic and acute risk quotients were0-0.6%and0.4-54.1%, respectively. That both results were below100%indicated that no acute and chronic risk would be presented. Estimated MRLs based on the residue data of the representative commodity cabbage with residue extrapolation were evaluated by comparing to those from the residue datasets of the whole subgroup. The results showed that there were no difference between the two kinds of estimated MRLs of calculated carbendazim (sum of thiophanate-methyl and carbendaizm), metalaxyl, lambda-cyhalothirn and fluazifop-P-butyl based on datasets of representative commodity and the whole subgroup. Significant lower estimated MRL of chlorpyrifos was found in residue extrapolation based on the representative commodity:a MRL of0.06ing/kg compared to0.4mg/kg. This finding indicated that extra residue trials on crops within the commodity group should be carried out to comfirm the rational use when residue extrapolation was applied on pesticides like chlorpyrifos which might have high residue levels. While residue extrapolation in the other pesticides could be applied directly in the subgroup of Head brassicas.
引文
[1]周成,陈海涛,李丽霞.结球甘蓝特性及收获机械化现状分析.东北农业大学学报,2012,43(8):135-138
    [2]刘玉芹,江婷,赵先恩,等.高效液相色谱-四极杆飞行时间质谱分析紫甘蓝和羽衣甘蓝中花色苷.分析化学,2011,39(3):419-424
    [3]王美玲,艾希珍,丁飞,等.紫甘蓝和普通甘蓝光合特性的比较.园艺学报,2008,35(4):547-552
    [4]王超楠,刘晓晖,闻凤英,等.苤蓝优质高效栽培技术.农业科技通讯,2011(9):178-180
    [5]吴国平,王建华,陈智超,等.出口苤蓝种子制种技术.种子科技,2013(8):55-56
    [6]王鑫.抱子甘蓝特征特性及露地栽培技术.上海蔬菜,2011(6):28-29
    [7]沈颖,徐程,张铭.抱子甘蓝组织培养及人工种子研究.中国蔬菜,2005(7):12-14
    [8]纪林海,闻明,高丽平,等.日光温室抱子甘蓝高产栽培技术.天津农林科技,2011(2):6-7
    [9]姜凤英,冯辉,王超楠.羽衣甘蓝的小孢子胚诱导和植株再生.植物生理学通讯,2005,41(6):725-727
    [10]FAOSTAT. the Food and Agriculture Organization of the United Nations (FAO) Statistical Database, 2013, http://faostat.fao.org
    [11]Global Environment Monitoring System (GEMS)/Food cluster diets 2012. http://www.who.int/nutrition/landscape_analysis/nlis_gem_food/en/
    [12]黑登照,薛道富.定边苤蓝(球茎甘蓝)及其高产栽培.中国蔬菜,2012(13):34
    [13]中国农药信息网.http://www.chinapesticide.gov.cn/service/aspx/B4.aspx.2014
    [14]朱桂明.330g/L二甲戊灵乳油防除甘蓝田杂草药效试验简报.上海农业科技,2011(03):128-129
    [15]李小方,薛万新,孙玉东,等.芸苔属植物CAL基因的结构特征与花球的形态遗传.植物学报,2000,42(7):712
    [16]王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力.福建农林大学学报(自然科学版),2004,33(1):94-99
    [17]Wang L., Zhao P., Zhang F., et al.. Dissipation and residue behavior of emamectin benzoate on apple and cabbage field application. Ecotoxicology and environmental safety,2012,78:260-264
    [18]Liu S., Zhang F., Wang L., et al.. Dissipation and residues of emamectin benzoate in cabbage. Bulletin of environmental contamination and toxicology,2012,89(3):654-657
    [19]Chatterjee N. S., Gupta S.. Persistence of metaflumizone on cabbage (Brassica oleracea Linne) and soil, and its risk assessment. Environmental monitoring and assessment,2013,185(Copyright (C) 2014 U.S. National Library of Medicine.):6201-6208
    [20]Duhan A., Duhan S., Kumari B.. Behaviour of endosulfan in cabbage (Brassica oleracea L.). Toxicol. Environ. Chem.,2011,93 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.):1960-1970
    [21]Tao C., Li D., Zhang X., et al.. Residue analysis of acephate and its metabolite methamidophos in open field and greenhouse pakchoi (Brassica campestris L.) by gas chromatography-tandem mass spectrometry. Environ. Monit. Assess.,2010,165 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.):685-692
    [22]Mohapatra S., Ahuja A. K., Deepa M., et al.. Persistence and Dissipation of Flubendiamide and Des-iodo Flubendiamide in Cabbage (Brassica oleracea Linne) and Soil. Bull. Environ. Contam. Toxicol.,2010, 85 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.):352-356
    [23]Lozowicka B., Jankowska M., Kaczynski P.. Pesticide residues in Brassica vegetables and exposure assessment of consumers. Food Control,2012,25(2):561-575
    [24]Anastassiades M., Mastovska K., Lehotay S. J.. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. Journal of Chromatography A,2003,1015(1-2):163-184
    [25]Kmellar B., Fodor P., Pareja L., et al.. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography-tandem mass spectrometry. Journal of chromatography. A,2008,1215(1-2):37-50
    [26]Park J.-Y., Choi J.-H., Abd El-Aty A. M., et al.. Simultaneous multiresidue analysis of 41 pesticide residues in cooked foodstuff using QuEChERS:Comparison with classical method. Food Chemistry, 2011,128 (1):241-253
    [27]Zhao P., Wang L., Zhou L., et al.. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. Journal of chromatography. A,2012,1225:17-25
    [28]Camino-Sanchez F. J., Zafra-Gomez A., Ruiz-Garcia J., et al.. UNE-ENISO/IEC 17025:2005 accredited method for the determination of 121 pesticide residues in fruits and vegetables by gas chromatography-tandem mass spectrometry. Journal of Food Composition and Analysis,2011,24 (3):427-440
    [29]Gonzalez-Curbelo M. A., Hernandez-Borges J., Ravelo-Perez L. M., et al.. Insecticides extraction from banana leaves using a modified QuEChERS method. Food Chemistry,2011,125(3):1083-1090
    [30]Su R., Xu X., Wang X., et al.. Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography-mass spectrometry. Journal of Chromatography B,2011, 879 (30):3423-3428
    [31]Chen X., Lu C., Fan S., et al.. Determination of residual flubendiamide in the cabbage by QuEChERS-liquid chromatography-tandem mass spectrometry. Bulletin of environmental contamination and toxicology,2012,89(5):1021-1026
    [32]Liu X., Xu J., Dong F., et al.. Residue analysis of four diacylhydrazine insecticides in fruits and vegetables by Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Analytical and bioanalytical chemistry,2011,401 (3):1051-1058
    [33]Liang X., Liu X., Dong F., et al.. Simultaneous determination of pyrimethanil, cyprodinil, mepanipyrim and its metabolite in fresh and home-processed fruit and vegetables by a QuEChERS method coupled with UPLC-MS/MS. Food Additives & Contaminants:Part A,2013,30(4):713-721
    [34]Singh B., Kar A., Mandal K., et al.. Development and Validation of QuEChERS Method for Estimation of Chlorantraniliprole Residue in Vegetables. Journal of food science,2012,77(12):T208-T215
    [35]Sinha S. N., Vasudev K., Vishnu Vardhana Rao M.. Quantification of organophosphate insecticides and herbicides in vegetable samples using the " Quick Easy Cheap Effective Rugged and Safe " (QuEChERS) method and a high-performance liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS/MS) technique. Food Chemistry,2012,132(3):1574-1584
    [36]Zhang H., Wang S., Zhou Z., et al.. Food Safety:Monitoring of Organophosphate Pesticide Residues in Crops and Food. Phosphorus, Sulfur, and Silicon and the Related Elements,2008,183 (2-3):280-290
    [37]Zhang K., Wong J. W., Yang P., et al.. Multiresidue pesticide analysis of agricultural commodities using acetonitrile salt-out extraction, dispersive solid-phase sample clean-up, and high-performance liquid chromatography-tandem mass spectrometry. Journal of agricultural and food chemistry,2011,59(14): 7636-7646
    [38]Kmellar B., Abranko L., Fodor P., et al.. Routine approach to qualitatively screening 300 pesticides and quantification of those frequently detected in fruit and vegetables using liquid chromatography tandem mass spectrometry (LC-MS/MS). Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment,2010,27(10):1415-1430
    [39]Zheng H. B., Zhao Q., Mo J. Z., et al.. Quick, easy, cheap, effective, rugged and safe method with magnetic graphitized carbon black and primary secondary amine as adsorbent and its application in pesticide residue analysis. Journal of chromatography. A,2013,1300:127-133
    [40]Lu Y., Yang Z., Shen L., et al.. Dissipation behavior of organophosphorus pesticides during the cabbage pickling process:residue changes with salt and vinegar content of pickling solution. Journal of agricultural and food chemistry,2013,61 (9):2244-2252
    [41]Yang A., Park J.-H., Abd El-Aty A. M., et al.. Synergistic effect of washing and cooking on the removal of multi-classes of pesticides from various food samples. Food Control,2012,28 (1):99-105
    [42]Srivastava A. K., Trivedi P., Srivastava M. K., et al.. Monitoring of pesticide residues in market basket samples of vegetable from Lucknow City, India:QuEChERS method. Environmental monitoring and assessment,2010,176(1-4):465-472
    [43]Nguyen T. D., Han E. M., Seo M. S., et al.. A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry. Analytica chimica acta,2008, 619 (1):67-74
    [44]http://www.epa.gov/opp00001/minoruse/index.html
    [45]http://www.oecd.org/chemicalsafety/pesticides-biocides/minoruses.htm
    [46]Commission E.. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. http://ec.europa.eu/food/plant/protection/resources/app-d.pdf,2011
    [47]CCPR. Consideration of matters arising from global minor use summit. Codex Committee on Pesticide Residues 40th session, China,2008, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr40/
    [48]CCPR. Discussion paper on the guidance to facilitate the establishment of CODEX MRLs for minor uses and specialty crops. Codex Committee on Pesticide Residues 41th session, China,2009, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr41/
    [49]CCPR. Discussion paper on the guidance to facilitate the establishment of MRLs for pesticides for minor use and specialty crops. Codex Committee on Pesticide Residues 42nd session, China,2010, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr42/
    [50]CCPR. Discussion paper on the guidance to facilitate the establishment of discussion paper on the guidance to facilitate the establishment of MRLs for pesticides for minor use and specialty crops. Codex Committee on Pesticide Residues 43rd session, China,2011, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr43/
    [51]CCPR. Discussion paper on the guidance to facilitate the establishment of MRLs for pesticides for minor uses and specialty crops CX/PR 13/45/11. Codex Committee on Pesticide Residues 45th session, China, 2013, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr45/
    [52]CCPR. Discussion paper on the guidance to facilitate the establishment of maximum residue limits for pesticides for minor uses and specialty crops CX/PR 12/44/12. Codex Committee on Pesticide Residues 44th session, China,2012, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr44/
    [53]CCPR. Draft revision of the classification of foods and animal feeds:selected vegetable commodity groups CX/PR 14/46/12. Codex Committee on Pesticide Residues 46th session, China,2014, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr46/
    [54]http://www.chinapesticide.gov.cn/nydjzlgd/view.html
    [55]http://www.farmer.com.cn/jjpd/nz/ny/201402/t20140227_942496.htm
    [56]Global Minor Use Summit, http://gmup.org/
    [57]http://www.chinapesticide.gov.cn/docl2/12030615.html
    [58]Commission C. A.. Codex Classification of Foods And Animal Feeds, Draft Revision-1.2006
    [59]Environmental Protection Agent.40 CFR Ch. I (7-1-05 Edition),2005
    [60]Kunkel D.. Current State of Specialty Crop Programs, Initiatives,& Challenges in NAFTA countries-Canada, Mexico, United States. Global Minor Use Summit, Rome, Italy,2007
    [61]the IR-4 Project. http://ir4.rutgers.edu/other/CropGroup.htm
    [62]CAC. http://www.codexalimentarius.net/pestres/data/commodities/index.html?expand=CLl
    [63]Codex classification of foods and animal feeds-draft revision-1. ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr38/pr38CxCl.pdf
    [64]CCPR. Draft revision of the codex classification of foods and animal feeds at step 7:fruit commodity groups (excluding edible flowers and assorted tropical and sub-tropical fruits-edible and inedible peel) CX/PR 12/44/8. Codex Committee on Pesticide Residues 44th session, China,2012, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr44/
    [65]CCPR. Draft revision of the codex classification of food adn animal feeds at step 7:Fruit commodity groups:edible flowers adn tropical and sub-tropical fruits edible and indeible peel CX/PR 12/44/9. Codex Committee on Pesticide Residues 44th session, China,2012, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr44/
    [66]CCPR. Proposed draft revision of the codex classification of foods and animal feeds at step 4:selected vegetable commodity groups. Codex Committee on Pesticide Residues 44th session, China,2012, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr44/
    [67]CCPR. Draft revision of the classification of foods and animal feeds:selected vegetable commodity groups CX/PR 13/45/8. Codex Committee on Pesticide Residues 45th session, China,2013, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr45/
    [68]CCPR. Proposed draft revision of the classificatoin of foods and animal feeds:other selected vegetable commodity groups CX/PR 13/45/9. Codex Committee on Pesticide Residues 45th session, China,2013, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr45/
    [69]CCPR. Draft revision of the classification of foods and animal feeds:selected vegetable commodity groups CX/PR 14/46/7. Codex Committee on Pesticide Residues 46th session, China,2014, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr46/
    [70]CCPR. Draft revision of the classification of foods and animal feeds:selected vegetable commodity groups CX/PR 14/46/8. Codex Committee on Pesticide Residues 46th session, China,2014, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr46/
    [71]CCPR. Proposed draft principles and guidance on the selection of representative commodities for the extrapolation of MRLs to commodity groups. Codex Committee on Pesticide Residues 42nd session, China,2010, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr42/
    [72]CCPR. Proposed draft addenda to the draft principles and guidance for the selection of representative commodities for the expolation of MRLs for pesticides for commodity groups. Codex Committee on Pesticide Residues 43rd session, China,2011, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr43/
    [73]CCPR. Draft principles and guidance for the selection of representative commodities for the extrapolation of MRLs for pesticides for commodity groups at step 7. Codex Committee on Pesticide Residues 44th session, China,2012, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr44/
    [74]CCPR. Examples of selection of representative commodities for selected vegetable commodity groups and other selected commodity groups. Codex Committee on Pesticide Residues 45th session, China, 2013, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr45/
    [75]CCPR. Proposed draft table 2-examples of selection of representative commodities (vegetable commodity groups). Codex Committee on Pesticide Residues 46th session, China,2014, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr46/
    [76]日本肯定列表. http://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/pages/MRLs-p
    [77]Food Classification, Ministry of Health, Labour and Welfare. http://www.mhlw.go.jp/english/topics/foodsafety/positivelist060228/dl/r04.pdf
    [78]李子昂,潘灿平,宋稳成,等.日本农药残留限量综概述.农药科学与管理,2009,30(2):40-45
    [79]中华人民共和国农业部公告第1490号.
    [80]MinistryofAgriculture. Announcement 1490:crop groups for MRL setting. Announcement 1490:crop groups for MRL setting,2010, http://www.moa.gov.cn/govpublic/ZZYGLS/201012/t20101227_1798155.htm
    [81]Residue Chemistry Crop Groups. http://www.hc-sc.gc.ca/cps-spc/pest/part/protect-proteger/food-nourriture/rccg-gcpcr-eng.php#a5
    [82]EU Pesticides Database. http://ec.europa.eu/sanco_pesticides/public/?event=homepage
    [83]NY/T788-2004.. Guideline on pesticide residue trials.2004
    [84]Food and Agriculture Organization. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed (FAO manual 2009), Rome.2009
    [85]OECD, Crop field trial test guideline, Version 5.0.5, November 2008. http://www.oecd-ilibrary.org/environment/test-no-509-crop-field-trial_9789264076457-en,
    [86]USEPA, Residue Chemistry Test Guidelines OPPTS 860.1500 Crop Field Trials,1996. http://www.epa.gov/ocspp/pubs/frs/publications/Test_Guidelines/series860.htm
    [87]NRA of Australia, Residue Trials to Obtain Permanent MRLS for Crops, Residue Guideline No.24, December 2000. http://www.apvma.gov.au/publications/guidelines/rgl_24.php
    [88]Regulation 91/414 Appendix B. http://ec.europa.eu/food/plant/protection/resources/app-b.pdf
    [89]MacLachlan D. J., Hamilton D.. A review of the effect of different application rates on pesticide residue levels in supervised residue trials. Pest management science,2011,67(6):609-615
    [90]CCPR. Discussion paper on principles and guidance for the use of the concept of poportionality to estimate MRLs for pesticides CX/PR 13/45/6. Codex Committee on Pesticide Residues 45th session, China,2013, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr45/
    [91]JMPR. Pesticide residues in food. Joint FAO/WHO Meeting on Pesticide Residues (JMPR),2010, http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmpr/jmpr-rep/en/
    [92]JMPR. Pesticide residues in food. Joint FAO/WHO Meeting on Pesticide Residues (JMPR),2013, http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmpr/jmpr-rep/en/
    [93]宋稳成,单炜力,潘灿平,徐志,王以燕.小作物用农药登记管理研究.中国农学通报,2010,26(2):212-215
    [94]Commission Regulations (EC) No 178/2006. Official journal of the European union,2006
    [95]European Commission. The Scope For Extending Extrapolations To Reduce The Need For Plant Protection Residues Trials On Minor Crops (SANCO/D3/SI2.396179),2005
    [96]Reynolds S. L., Fussell R. J., Macarthur R.. Investigation into the validity of extrapolation in setting maximum residue levels for pesticides in crops of similar morphology. Food Additives and Contaminants,2005,22 (1):31-38
    [97]European Commission. Proposals For Extending And Harmonizing Efficacy And Crop Safety Extrapolations To Reduce The Need For Efficacy Trials On Minor Crops (SANCO/D3/SI2.395857), 2005
    [98]王雪娟,吴亚楠,王振国,等.离子对高效液相色谱法测定多果定含量.农药科学与管理,2009 (03):9-11
    [99]何太喜,匡维华,段兵,等.高效液相色谱-串联质谱法测定水果中多果定残留量.理化检验(化学分册),2011(06):675-677
    [100]http://apps.who.int/pesticide-residues-jmpr-database/pesticide?name=DODINE
    [101]Pesticide residues in food 2003 Joint FAO/WHO Meeting on Pesticide Residues.2003:217-223
    [102]Reasoned opinion on the modification of the existing MRL for dodine in pome fruit, apricots and olives. http://www.efsa.europa.eu/en/efsajoumal/pub/3112.htm
    [103]Development) O. O. f. E. C.-o. a.. OECD MRL Calculator:spreadsheet for single data set and spreadsheet for multiple data set,2 March 2011.. In:Pesticide Publications/Publications on Pesticide Residues. Available from:http://www.oecd.org/env/pesticides,2011
    [104]CCPR. Disscussion paper on the applicability of codex maximum residue limits for citrus fruits to kumquats CX/PR 14/46/6. Codex Committee on Pesticide Residues 46th session, China,2014, ftp://ftp.fao.org/codex/Meetings/CCPR/ccpr46/
    [105]Ambrus A. a., Lantos J.. Evaluation of the Studies on Decline of Pesticide Residues. Journal of agricultural and food chemistry,2002,50 (17):4846-4851
    [106]Ambrus A.. Within and between field variability of residue data and sampling implications. Food Addit Contain,2000,17(7):519-537
    [107]Singh S. B., Foster G. D., Khan S. U.. Determination of thiophanate methyl and carbendazim residues in vegetable samples using microwave-assisted extraction. Journal of chromatography. A,2007,1148 (2):152-157
    [108]Veneziano A.. Determination of carbendazim, thiabendazole and thiophanate-methyl in banana (Musa acuminata) samples imported to Italy. Food Chemistry,2004,87(3):383-386
    [109]Nakamura M., Furumi Y., Watanabe F., et al.. Determination of carbendazim, thiophanate, thiophanate-methyl and benomyl residues in agricultural products by liquid chromatography-tandem mass spectrometry. Shokuhin Eiseigaku Zasshi,2011,52(3):148-155
    [110]JMPR. Pesticide residues in food. Joint FAO/WHO Meeting on Pesticide Residues (JMPR),2006, http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmpr/jmpr-rep/en/
    [111]JMPR. Pesticide residues in food. Joint FAO/WHO Meeting on Pesticide Residues (JMPR),1998, http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmpr/jmpr-rep/en/
    [112]Wang M., Zhang Q., Cong L., et al.. Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere,2014,95 (0):241-246
    [113]Yuan Y., Chen C.,Zheng C., et al.. Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control,2014, 36 (1):63-68
    [114]Lofty H. M., Abd El-Aleem A. E.-A. A., Monir H. H.. Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography. Bulletin of Faculty of Pharmacy, Cairo University,2013,51 (2):255-260
    [115]Rokich D. P., Harma J., Turner S. R., et al.. Fluazifop-p-butyl herbicide:Implications for germination, emergence and growth of Australian plant species. Biological Conservation,2009,142(4):850-869
    [116]http://www.codexalimentarius.net/pestres/data/index.html
    [117]http://www.chinapesticide.gov.cn/mprlsv/mprls.html
    [118]http://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/pages/MRLs-p
    [119]http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=1c8cd959ef0d373fb7620f42c8445cca&tpl=/ecfrbrows e/Title40/40cfr 180_main_02.tpl
    [120]http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=activesubstance.selection
    [121]http://www.mrldatabase.com/
    [122]Wang M., Zhang Q., Cong L., et al.. Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere,2014,95 (0):241-246
    [123]Lu Y., He Z., Diao J., et al.. Stereoselective behaviour of diclofop-methyl and diclofop during cabbage pickling. Food Chemistry,2011,129(4):1690-1694
    [124]Zhao Y.-G., Shen H.-Y, Shi J.-W., et al.. Preparation and characterization of amino functionalized nano-composite material and its application for multi-residue analysis of pesticides in cabbage by gas chromatography-triple quadrupole mass spectrometry. Journal of Chromatography A,2011,1218 (33):5568-5580
    [125]Chai L.-K., Elie F.. A rapid multi-residue method for pesticide residues determination in white and black pepper (Piper nigrum L.). Food Control,2013,32 (1):322-326
    [126]Wang L., Zhao P., Zhang F., et al.. Dissipation and residue behavior of emamectin benzoate on apple and cabbage field application. Ecotoxicology and environmental safety,2012,78 (0):260-264
    [127]Zhang H.-y., Wang C., Lu H.-z., et al.. Residues and dissipation dynamics of molluscicide metaldehyde in cabbage and soil. Ecotoxicology and environmental safety,2011,74(6):1653-1658
    [128]Bhardwaj U., Kumar R., Kaur S., et al.. Persistence of fipronil and its risk assessment on cabbage, Brassica oleracea var. capitata L. Ecotoxicology and environmental safety,2012,79 (0):301-308
    [129]Li W., Ma Y, Li L., et al.. The dissipation rates of trichlorfon and its degradation product dichlorvos in cabbage and soil. Chemosphere,2011,82 (6):829-833
    [130]Chen C, Qian Y, Chen Q., et al.. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. FoodControl,2011,22(7):1114-1120
    [131]Liu C., Lu D., Wang Y, et al.. Residue and risk assessment of pyridaben in cabbage. Food Chemistry, 2014,149 (0):233-236
    [132]Wilkowska A., Biziuk M.. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry,2011,125(3):803-812
    [133]Fan S., Zhang F., Deng K., et al.. Spinach or amaranth contains highest residue of metalaxyl, fluazifop-P-butyl, chlorpyrifos, and lambda-cyhalothrin on six leaf vegetables upon open field application. Journal of agricultural and food chemistry,2013,61 (9):2039-2044
    [134]Ripley B. D., Ritcey G. M., Harris C. R., et al.. Comparative persistence of pesticides on selected cultivars of specialty vegetables. Journal of agricultural and food chemistry,2003,51(5):1328-1335
    [135]OECD Maximum Residue Limit Calculator. http://www.oecd.org/chemicalsafety/pesticides-biocides/oecdmaxmumresiduelimitcalculator.htm
    [136]NAFTA Maximum Residue Levels (MRL) Calculator. http://www.epa.gov/oppfeadl/international/naftatwg/mrl-calculator.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700