粉砂质海床对管跨涡激振动响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管道是一种高效连续的输运方式,其安全性和可靠性在规模日益扩大的海洋油气开发领域起着至关重要的作用。本文以国家自然科学基金“大风天气对海底管道稳定性影响机制”(41006024)为依托,在海底管道悬跨成因、悬跨段管道涡激振动、支撑段海床土对管跨涡激振动的响应、海底管道—外流—海床土三相耦合作用等方面进行了深入研究。结合实测资料和数值模拟计算结果对黄河三角洲埕岛海域典型粉砂质海床条件下海底管道的安全性进行了分析。本文进行的工作有以下四个方面:
     首先,分析比对不同区域的管道路由调查资料,对海床土的工程性质和海洋动力环境影响下海底管道悬跨成因和发展趋势进行研究;
     其次,基于探测资料建立研究区海底管道-外流-海床土系统振动数值模型;
     再次,为了获得模型中所需的关键参数——液化土阻尼,设计了管道与海床耦合振动物理模拟实验。通过对数据的分析计算,得出了研究区粉土液化后不同埋深管道系统振动的阻尼比;
     最后,将实测土工参数和物理模拟试验获得的计算参数代入数模,验证数模合理性之后进行相关计算。
     通过分析数模计算结果得到以下结论:
     相对于海床土而言管道刚度大,在发生振动时能量会沿管道传播一定距离,由于振动传播过程中管道某些位置的位移方向相反,材料会受到剪切力作用,可能造成入泥管道的破坏。
     对于海床而言,沿管道轴向一定范围的土体受到扰动刚度系数下降,土颗粒更容易被起动导致该处海床易受到冲刷,产生断续状悬跨。支撑段土体液化后,会吸收管跨振动的能量,从而缩短振动传播距离。
     从计算结果来看,支撑段土体液化导致管跨系统固有频率逐渐升高,可能跳出共振区间从而恢复静止状态。但在实际环境中底流速是逐渐提高再逐渐降低的,如果管跨在低流速时就发生了共振,虽然活动段增长后管跨会恢复静止状态,但当外流速提高后管跨可能再次发生共振。
     由于液化土无法对管道提供有效的支撑和约束,初始支撑段土体液化可视为管跨支点向两端逐渐移动,会使其向下弯曲的挠度增大,中点或结构强度较低的连接部位可能产生屈服变形或断裂。
     计算得出了49m是埕北海域半埋的508mm双层管的安全悬跨长度。在该长度下管跨系统的固有频率出现大幅度升高,这与悬跨长度变化引起的管跨系统总质量系数、总刚度系数变化规律有关。本文方法可用于计算其他海域、不同型号管道的安全悬跨长度,为管道安全评价和处置提供依据。
     本文研究在以下几个方面有一定的创新性:
     (1)提出了符合黄河水下三角洲埕岛海域真实土质和管道状态,考虑支撑段海床土体液化情况的管跨涡激振动数值模拟计算方法,建立了适用于该区域管道安全分析的数值计算模型。
     (2)通过数模计算得到了研究区典型管道的安全悬跨距离,可为该区域悬跨处置提供参考和依据。同时,如果考虑海床液化,传统的管道悬跨处理方式只能在一定程度上解决管跨结构在重力作用下挠度增大、屈服破坏的问题,对于涡激振动的预防效果十分有限,且一旦处理不当可能使管跨系统固有频率降低,增大发生涡激振动导致材料疲劳破坏的风险。
Due to the safety and reliability, submarine pipeline is a high effective and continuous transferring mode, and it has been served as an important role in the offshore oil and gas exploitation which expands day by day. According to the support of the National Science Foundation of China (NSFC.41006024)“The impact mechanism of the strong wind weather on the reliability of the submarine pipelines”, this work was focused on the following points: the cause of pipeline span; the vortex‐induced vibration of these pipelines during suspension status and the response of the supporting subsurface seabed soil and the coupling effect of the submarine pipelines, external current and seabed soil. Based on the typical bottom sedimentary setting, the safety of the submarine pipelines in the Chengdao, which located at the Yellow River Delta, was examined in the thesis according to the field observed data and the simulation result. The main topics of the thesis are divided into four aspects and list as following:
     1. Based on analyzing and comparing with numerous pipeline routes investigation data of different areas, the cause and developing trend of pipeline span under the characteristics of the marine dynamic environment was studied.
     2. VIV simulation model of pipeline‐fluid‐seabed system was established based on the geography data.
     3. In order to obtain the key parameters of the model, such as damping ratio of the liquefied soil, the physical simulation experiment between the pipe and seabed was designed. According to the analysis of the data, the system vibration damping ratios of the pipeline in different depth were obtained.
     4. The measured geotechnical data and physical simulation parameters are usedto verify the numerical simulation model, and then to calculate.
     By analysis of numericalsimulation model results, the conclusions are following:
     The rigidity of pipeline is relative larger than sea bed soil, when vibration occurred and energy would spread a certain distance along the pipeline. Due to different displacement of the pipeline during the vibration propagation, the berried pipeline would be destroyed by the effect of shear stress.
     For the seabed, the sediment along the pipe was disturbed leading to the declined rigidity coefficient, and sediment particles were more easily to be stirred, so that the seabed was eroded. Because of the pipeline belongs to light structure, vortex‐induced vibration leads to a pipeline flutter.
     Base on numerical models result, when the sediment of supporting section liquefied, it could absorb vibration energy of pipeline, and reducing the vibration propagation distance. However, in the real environment, the flow velocity gradually increases over time and then decreases gradually. If resonance of span pipeline happened in low flow velocity, although active section increasing led to increase of inherent frequency which then jumped out of resonance interval and restore stationary, when the velocity of flow increase,span pipeline could resonate again.
     Because of the liquefied sediment could not provide effective support and constraint for pipeline, the initial point failed to support the pipes, it can be regarded as the fulcrum of the pipeline span gradually moved to both ends and the deflection increase, midpoint or low structure strength joint might produce yield deformation or fracture.
     The49m was the safe span length of508mm half buried pipeline in the north of Cheng Dao obtained by calculations. At this length, the inherent frequency of the system of pipeline span appeared greatly raised, which concerned with the change rule of total mass coefficient and total rigidity coefficient resulted from the length change of pipeline span system. The method proposed in this paper can be used to calculate safe span length of different types of pipeline in other sea areas and provide foundation for pipeline safety evaluation and treatment method.
     There are some innovative points in this study and as followed:
     Firstly, we present real sediment and pipeline status of Chengdao in the Yellow River submarine delta, and establish the numerical model for regional pipeline safety, according to the numerical simulation methods of the tube cross vortex‐induced vibration during the liquefaction of the support seabed sediment.
     Secondly, the safety spanning distance of the typical pipeline in this study area are obtained by the numerical models. This work could provide information for the spanning case in this study area. If considering about the liquefaction of the seabed sediment, the question about deflection increases and damage by the gravity could be answered to a certain extent in the traditional method. And the traditional method is limited to the effect of the Vortex‐induced vibration. Once the process is not finished in a suitable way, the natural frequency of the pipeline spanning system is decreased, and increases the frequency of the vortex‐induced vibration leading to the risk of pipeline damage.
引文
[1]姚铁.海底管跨极限跨长的确定及其振动中同向横向的耦合作用.[硕士学位论文]天津:天津大学工程学院.2004.
    [2] Arnold K E. Soil movements and their effects on pipelines in the Mississippi delta region:
    [M.S. Thesis]. Tulane U New Orleans,1967.
    [3]DemarsK.R, NaeeiV.A.et al.Pipelinefailure.Aneedforimprovedanalyses andsitesurveys.Proc.OffshoreTech.Conf.OTC2966.Houston,1977:63-70.
    [4]桑运水,王希华.海底管道悬空隐患成因及防治.中国造船,2004.45:408-412.
    [5]肖文功.海底管道悬空隐患治理技术研究及应用.中国海洋平台,2004,年12月第19卷第6期:36-39.
    [6]潘学光.海底管道悬空成因及防治.中国船检.2005.10:68-69.
    [7]孟凡生.滩海海底管线悬空问题治理对策.中国海洋平台,2006,21(1):52-54.
    [8] DNV. Free spanning pipelines. Recommended practice DNV-RP-F105. Det Norske Veritas,Norway,2006
    [9] MaoY.Seabedscourunder pipelines. Proc.7th Int.Conf.onOffshoreMech.andArcticEngineering.ASME,NewYOrk,1988,Vol.5:33-38.
    [10]马良.海底油气管道工程.北京:海洋出版社.1987.89-94,112-125
    [11]阎通,李广雪等.埕北海域海底管线冲刷稳定性研究.青岛海洋大学学报,1999,29(4):721-726
    [12]浦群,李坤.管线振荡绕流对砂床的冲蚀.力学学报,1999,31(6):677-681.
    [13] B.M.Sumer,C.Truelsen,T.Siehmann,J.Fredsoe.Onset of seour below pipelines andself-burial[J].Coastal Engineering,2001,42(4):313-335.
    [14] A.Vijaya kumar, S.Neelamani, S. Narasimha Rao.Wave pressures and uplift forces on andscour around submarine pipeline in clayey soil. Ocean Engineering,2003(30):271–295.
    [15]陈小玲.春晓气田群海底管道稳定性分析.[硕士学位论文].浙江:浙江大学工程学院.2004.
    [16] Dongfang Liang,Liang Cheng*.Numerical modeling of flow and scour below a pipeline incurrents Part I. Flow simulation.. Coastal Engineering,2005(52):25–42.
    [17] Robin Morelissen,Suzanne J.M.H. Hulscher*,etc.Mathematical modelling of sand wavemigration and the interaction with pipelines. Coastal Engineering,2003(48):197-209.
    [18] Lin Lua,*,Yucheng Lia, Jianmin Qinb.Numerical simulation of the equilibrium profile oflocal scour around submarine pipelines based on renormalized group turbulence model.OceanEngineering,2005(32):2007–2019.
    [19] Stéphan T. Grilli1, Sergey I. Voropayev2,Firat Y. Testik2, and H. Joe S.Fernando2.Numerical Modeling and Experiments ofWave Shoaling over Semi-buried Cylinders inSandy Bottom. Proceedings of The Thirteenth (2003) International Offshore and PolarEngineering ConferenceHonolulu, Hawaii, USA, May25–30,2003.
    [20]刘乐军.莺歌海油气资源开发区工程地质和灾害地质特征.海洋科学进展.2004,22(4):454-464.
    [21] BijkerE.W,LeeuwesteinW.Interactionbetweenpiplinesandtheseabedunderinfluenceofwavesandcurrents.Proc.Symp.onInt.UnionofTheoreticalAppl.Mech./Int.Unionof GeologyandGeophys,England,1984:235-242.
    [22] Nataraja,M.S.,Singh,H. Maloney, D.Ocean wave-induced liquefaction anaiysis:aSimplifiedprocedure,Proceedings of an Intemational SymPosium on Soils under Cyelic and TransientLoadings,1980:509-516.
    [23] Nataraja, etal.Oceanwave-inducedliquefactionan alysis[Jl.Joumal of GeoteehoiealEngineering,1983,109(4):573-90,.
    [24]Ishihara,K.Yamazaki.et. Analysis of wave-induced liquefaction in seabed deposit of sand[J].Soil and Foundation,1984,24(3):85-100.
    [25]冯秀丽,沈渭铨等.海洋工程地质专论.青岛:中国海洋大学出版社.82-85
    [26]Tsotaos,et al. A Numerical analysis of liquefaction potential of partially drainedseafloor[J].Coastal Engineering1989,13(2):117-128.
    [27] Umehara.Design concept of treated ground by premixing method[C]. In:Proceedings of theInternational Conference on Geoteehnical Engineering for Coastal DeveloPment-Theory andPractice on Soft Ground(Geot-Coastal91),Yokohama, Japan,1991(l):519-524.
    [28] B.M.Sumer,C.Truelsen,T.Siehmann,J.Fredsoe.Onset of seour below pipelines andself-burial[J].Coastal Engineering,2001,42(4):313-335,.
    [29] F.P. Gaoa,*, D.S. Jengb, H. Sekiguchic.Numerical study on the interaction betweennon-linear wave,buried pipeline and non-homogenous porous seabed. Computers and Geotechnics2003(30):535-547.
    [30]张晨明,董秀竹,郭莹,栾茂田,波浪荷载作用下砂土变形特性的模拟试验研究,地震工程与工程振动,2005,25(2):155-159.
    [31]B. M. Sumer, Figen Hatipoglu Dixen, J rgen Freds e.Stability of submerged rock bermsexposed to motion of liquefied soil in waves.Ocean Engineering,,38(7):849-859
    [32] T.C.Teha, A.C.Palmera,*, J.S. Damgaardb.Experimental study of marine pipelines onunstable and liquefied seabed. Coastal Engineering2003(50):1–17.
    [33]P.Foray, D.Bonjean, et al.Flui-Soil-Strueture Interaction in Liquefaction around aCyclieally Moving Cylinder[J].Joumal of Waterway,Port,Coastal, and Ocean Engineering,2006,132(4):289-299.
    [34]Yamamoto C,Meneghini J,Saltara F,Fregonesi R,Ferrari J.Numerical Simulations of VIV onFlexible Cylinders[J].Gournal of Fluida and Structures,2004,19(4):467-489.
    [35]曹成林,孙永福,董斌.不同粘粒含量粉质土的动力强度特性研究.海岸工程.2009,28(3):27-32.
    [36]DF1—1油田输气管线外输管线段设计说明书[Z].天津:渤海石油公司,2000.
    [37] Mouselli A H. Offshore pipeline design analysis and methods. PennWell Publishing Company,1981:50-64
    [38] ShahB.C,WhiteC.N,Rippon I J.Designandoperationalconsiderationsforunsupportedoffshorepipelinespans.Proceedingsfromthe18thAnnualOffshoreTechnologyConferenee,Houston,TX,USA,1986:5.39MorkK.J,VitaliL.Anapproachtodesignagainst cross-flowVIVforsubmarine pipelines.DynamicsofStructures,AalborgUniversity,Denmark,1996:1-5.
    [40] Sumer B M, Freds e J. Scour below pipeline in waves. Journal of Waterway, Port, Coastaland Ocean Engineering,1990,116(3):307-323.
    [41] MMS. Analysis and assessment of unsupported subsea pipeline spans. Minerals ManagementService, USA,1997:13-42.
    [42]Damgaard J.S., Sumer B.M., Teh T.C., et al. Guidelines for pipeline on-bottom stability on liquefied noncohesive seabeds. Journal of Waterway, Port, Coastal, and Ocean Engineering,2006,132(4):300-309.
    [43] Pan Zhi-yuan,GuiWei-cheng, ZhangXiao-ci.An Overview on VIV of Slender MarineStructures[J].Joumal of Ship Meehanics,20059(6):135-154.
    [44]鄂学全,等.海底边界对水下管线的水动力影响.海洋工程.1989,7(1):90-100.
    [45]G.Bosch,M.Kappler,W.Rodi.Experiments on the Flow Past a Square Cylinde rPlaced near aWall[J].Experimental Thermal and Fluid Science,1996,13(3):292-305.
    [46] C.Lei,L.Cheng,K.Kavanagh.Re-examination of the effect of a plane boundary on force andvortex shedding of a circular cylinder[Jl.Journal of Wind Englneering and IndustrialAerodynamics,1999,80(3):263-286.
    [47] H.S. Choi, Free spanning analysis of offshore pipelines, Ocean Engineering,2001(28):1325–1338.
    [48] Larsen,et al. Frequency And Time Domain Analysis of Vortex Induced Vibrations For FreeSpan Pipelines[Cl.The21st International Conference on Offshore Meehanies and ArcticEngineering Osol,NORWAY,2002:l-9.
    [49] Rune Yttervik et al, FATIGUE FROM VORTEX-INDUCED VIBRATIONS OF FREE SPANPIPELINES USING STATISTICS OF CURRENT SPEED AND DIRECTION,22nd InternationalConference on Offshore Mechanics and Arctic Engineering, OMAE2003-37223.
    [50]杨新华,郭海燕,娄敏,傅强.考虑阻尼海底悬跨段管道的动力特性及允许悬空长度.200523(1):1-5.
    [51]马良,海底管道在水流作用时诱发的振动效应,中国海洋平台,2000,15(2):30-35.
    [52]余建星,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究.地震工程与工程振动.2001,21(4):93-97.
    [53]署恒木,黄小光.三维海底悬空管道的随机振动分析.中国海洋平台.2006,1:30-34.
    [54]杨兵,高福平.单向水流作用下近壁管道横向涡激振动实验研究,中国海上油气,2006,18(1):52-57.
    [55]宋玉鹏,孙永福,刘伟华,海底管线稳定性影响因素分析,海岸工程,2003,22(2):76-84.
    [56] L. Cheng, L.W. Chew, Modelling of flow around a near-bed pipeline with a spoiler, OceanEngineering,2003(30):1595–1611.
    [57]李广雪,刘贞飞,史经昊,初新杰,李俊杰,刘高高.海底管道掏空与波浪力变化关系试验.《海洋地质与第四纪地质》.2007,27(6):31-37.
    [58]包日东,等.液化土中输流管道的竖向地震响应研究.地震工程与工程振动.2008,28(4):173-177.
    [59]来向华等.多波束测深技术在海底管道检测中的应用.海洋工程,2006,24(3):68-73.
    [60]李安龙,曹立华,李广雪,杨荣民.旁侧声呐在海底探测中的应用和工作船动态定位施工技术.中国海洋大学学报,2006,36(2):331-335.
    [61]杨鲲等.声纳和浅剖在渤西管线物探调查中的应用.水道港口,2003,24(1):43-47.
    [62]张剑波,袁超红.海底管道检测与维修技术.石油矿场机械.2005,34(5):6-10.
    [63]周兴华.侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用.海洋测绘,2007,7(4):64-67.
    [64]王化仁,田春和等.浅地层剖面仪在管线铺设路由调查中的应用.水道港口,2007,28(2):133-135.
    [65]张文军,郑士君.基于有限元法的船舶管道振动分析.商品储运与养护.2008,30(2):99-101.
    [66]文立斌.管系振动的有限元分析法.广西电力技术.2002.3:41-46
    [67] Swift D J P et al. Relict sediments on continental shelf: a reconsideration. J Geology,1971,79:322-346.
    [68] Swift,D.J.P.,FieldM.E..Evolution of a classic sand ridge: Maryland sector, North Americaninner shelf, Sedimentary,1981,28:461-482.
    [69] Swift D J P. Tidal Sand Ridges,shoal Retreat Massifs. Mar Geol,1975,18:105-134.
    [70] Swift D J P, Parker G, Lanfredi N W, Perillo G, et al.. Shoreface-connected sand ridgeson American and European shelves-a comparison. Estuarine and coastal Marine Science,1978,7:257-273.
    [71] Swift D J P. Continental shelf sedimentation. IN: Marine Sediment Transport andEnvironmental Management,1976,311-350.
    [72] Swift D J P,Thorne J A. Sedimentation on continental margins,I: A general model for shelfsedimentation. In: swift, D J P, Oertel G F, Tillman R W, et al. eds. Shelf Sand andSandstone Bodies: Geometry, Facies and Sequence Stratigraphy. Oxford: Blackwell,1991,3-31.
    [73] Allen,J.R.L.,Sand wave immobility and the internal master bedding of sand wave deposits.Geological Magazine,1980,117(5):347-446.
    [74] Allen,J. R. L.,Simple models for the shape and symmetry of tidal sand waves:(2)Dynomically stable symmetrical equilibrium forms,Marine Geology,1982,48:51-73.
    [75]王琦,朱尔勤,海洋沉积学.北京:科学出版社.1989:56-70.
    [76]刘振夏,夏东兴.中国近海潮流沉积沙体.青岛:海洋出版社,2004.189-194.
    [77]杨作升等.黄河口水下滑坡体系.海洋与湖沼.1994,25(6):573-584.
    [78] LOCAT.J, LEE. H. J.Submarine landslides:Advances and challenges. CanadianGeotechnical Journal,2002,39:193-212.
    [79]Prior D.B,Coleman J.M.Aetive slides and flows in underconsolidate-dmarine sedimentsontheslopesoftheMississippidelta.Saxov S andNieuwenhiusJK.MarineSlidesandOtherMassMovements.NewYork:PlenumPress,1982:21-49.
    [80] Hance.Submaine slope stability.M.S.Engineering Thesis of The University of Texas atAustin.2003.
    [81] LOCAT J, BORNHOLD B, HART B, et al. COSTA-Canada, a Canadian cont ribution tothe study of continental slope stability: An overview of Proceedings of the54th CanadianGeotechnical Conference. Calgary,Canada,2001:730-737.
    [82]李培英等,中国海岸带灾害地址特征及评价.北京:海洋出版社.2007.37-46.
    [83]胡广海等.国内外海底斜坡稳定性研究概况.海洋科学进展.2006(24):130-136.
    [84] Canals M,Lastas G,et al.Slope failure dynamics and impacts from seafloor and shallowsub-seafloor geophysical data:Case studies from the COSTA project.MarineGeology,2004,213:9-72.
    [85] LEE S.H, CHOU GH S K, BACK G.G, et al.Chirp (2~7kHz) echo characters of the SouthKorea Plateau,East Sea: Styles of mass movement and sediment gravity flow[J].Marine Geology,2002,184:227-247.
    [86]杨子赓.第四纪海洋沉积高分辨地层划分.海洋地质动态.2000,16(2):1-4.
    [87]庄振业,林振宏,周江,刘志杰,刘毅飞.陆架沙丘(波)形成发育的环境条件.《海洋地质动态》.2004.20(4):5-10.
    [88] Stéphan T. Grilli, Sergey I. Voropayev,Firat Y. Testik, and H. Joe S. Fernando.NumericalModeling and Experiments ofWave Shoaling over Semi-buried Cylinders in Sandy Bottom.Proceedings of The Thirteenth (2003) International Offshore and Polar Engineering ConferenceHonolulu, Hawaii, USA,2003:25–30.
    [89] Catano-Lopera, Y.A.;Demir,S.T., Garcia, M.H.Self-Burial of Short Cylinders UnderOscillatory Flows and Combined Waves Plus Currents.Oceanic Engineering,2007,32(1):191-203.
    [90] Yovanni A. Cata o-Lopera,Marcelo H. GarcíaGeometry and migration characteristics ofbedforms under waves and currents: Part2: Ripples superimposed on sandwavesCoastalEngineering.2006,53(9):781–792.
    [91]Andreas Roulund,Mutlu Sumer,Jorgen Freds e,Jess Michelsen.Numerical and experimental investigation of flow and scour around a circularpile.Journal of Fluid Mechanics,2005,534:351-401
    [92]Sumer B M, Freds e J. Scour below pipeline in waves. Journal of Waterway, Port, Coastal andOcean Engineering,1990,116(3):307-323.
    [93]蒲进菁,曹立华,杨荣民,徐继尚.涡激振动对船舷安装的相干声纳条带测深系统测量精度影响分析.中国海洋大学学报(自然科学版).2011,41(12):86-90.
    [94] T.Sarpkaya.A critical review of the intrinsic nature of vortex-induced vibrationsJournal ofFluids and Structures.2004,19(4):389–447.
    [95] J. D. Gaston and Robert D. Ohmart, Effects of Surface Roughness on Drag Coefficients.CivilEngineering in the Oceans IV.1979:611-621.
    [96] Iwan R. Soedigdoa,,K.F. Lambrakosb,Billy L. Edgec.Prediction of hydrodynamic forces onsubmarine pipelines using an improved Wake II Model,Ocean Engineering.1998,26(5):431–462.
    [97] Bing Yang et al, Experimental study of vortex-induced vibrations of a pipeline near anerodible sandy seabed, Ocean Engineering,2008,(35)301–309.
    [98]杨兵,高福平,吴应湘.单向水流作用下近壁管道横向涡激振动实验研究.中国海上油气.2006,18(1):52-57.
    [99]祖楠.考虑流固耦合时的海底管道悬跨段非线性动力分析.[硕士学位论文]青岛:中国海洋大学工程学院.2005.
    [100] W.-J. KIM and N. C. Perkins,Two-Dimensional VIV of Cable Suspensions, Journal ofFluids and Structures,2002,16(2):229-245.
    [101]John F. A. Sleath.Wave-Induced Pressures in Beds of SandurnaloftheHydraulicsDivision,1970,96(2):367-378.
    [102]克拉夫,结构动力学.北京:高等教育出版社.2010:113-116.
    [103]白莱文斯.流体诱发振动.北京:机械工业出版社.1983:44-47,82-83.
    [104] Voropayev S.I, Testik F Y, Fernando H J S, et al. Burial and scour around short cylinderunder progressive shoaling waves. Ocean Engineering,2003,30:1647-1667.
    [105]Fyrileiv O, Mcrk K,DnV, et al. Free span assessment of the zeepipe IIA pipeline [C]//Proceedings of OMAE. Lisbon,Portugal,1998:36-43.
    [106]Edward C. Clukey, Fred H. Kulhawy, Philip L.F. Liu and George B. Tate.The impact of waveloads and pore-water pressure generation on initiation of sediment transport.Geo-Marine Letters.1985,5(3):177-183.
    [107]S.Y. Tzang.Resonant fluidization of silty soil by water waves,Journal of geophysical research,1994.
    [108] Bai Y,Bai Q.Subsea Pipelines and risers,Part11:Pipelinedesign(ISBN:0-080-4456-67).Elsevier Oeean Engineering Book Series.2005:83-88.
    [109] VerleyR.,LundK.M.,A soil resistancemodelfor pipelines placedon claysoil.ProeeedingsofOMAE’95,1995.
    [110] H. B. Seed.Simplified Procedure for Evaluating Soil Liquefaction Potential.Journal of theSoil Mechanics and Foundations Division.1971,97(9):1249-1273.
    [111]曹成效,刘乐军,李培英,杜军.循环荷载作用下粉土的动力学特性.海洋科学进展.2007,1:54-62
    [112]包日东等,液化土中输流管道的竖向地震响应研究,地震工程与工程振动.2001,28:174-177.
    [113] H. Marcolloa,J.B. Hinwoodb.On shear flow single mode lock-in with both cross-flowandin-line lock-in mechanisms.Journal of Fluids and Structures,2006,22(2):197–211.
    [114] Jonathan R. Binns, Hayden Marcollo, Jon Hinwood, Lawrence J. Dynamics of aNear-Surface Pipeline Tow.Offshore TechnologyConference.1995.
    [115]冯秀丽,庄振业,林霖等,现代黄河水下三角洲软土稳定性定量分析,海岸工程,2000,19(1):50-53.
    [116] Vitali L, Mork K J, Verley R, et al. The MULTISPAN project: response modelsfor vortexinduced vibration of submarine pipelines. Proceedings from the16thinternational conference onoffshore mechanics and Arctic Engineering, ASME, Yokahama,Japan,1997:1-5.
    [117] Rao S S. Mechanical vibrations, Second Edition. Addison-Wesley PublishingCompany,1990:25-89.
    [118] Mouselli A H. Offshore pipeline design analysis and methods. PennWellPublishingCompany,1981:50-64.
    [119] DNV.Environmental conditions and environmental loads.Classification Notes30.5. DetNorske Veritas, Norway,1991:23.
    [120] Prior D.B,Z.S.Yang,et al.Active slope failure sediment collapse and slit flows on the modernsubaqueous Huanghe (Yellow River)Delta.Geo-Marine Letters,1986(6):85-95.
    [121]杨子庚.海洋地质学.济南:山东教育出版社.2004.
    [122]Nielsen R, Gravesen H, edited by de la Mare R F. Advances in offshore oil and gas pipelinetechnology. Gulf publishing company, Houston TX, USA,1985:326pp.
    [123]余建星,李红涛.波流联合作用下海底管跨疲劳失效的分析.天津大学学报.2006,9:1015-1020.
    [124]Fumes G K, Bemten J. On the response of a free span pipeline subjected to ocean currents.Ocean Engineering,2003,30:1553-1577.
    [125]Carl M. Larsen, Kamran Koushan. FREQUENCY AND TIME DOMAIN ANALYSIS OFVORTEX INDUCED VIBRATIONS FOR FREE SPAN PIPELINES. The21stInternationalConference on Offshore Mechanics and Arctic Engineering Oslo, NORWAY,2002:23-28.
    [126]艾尚茂,孙丽萍.图解法预报悬跨管道涡激振动响应.船海工程,2009,38(5):157-161.
    [127]余建星等,船舶与海洋结构物可靠性原理.天津:天津大学出版社,2001.122-124.
    [128]何旭,王永学,李小超,考虑管土作用海底管线涡激振动分析,中国海洋平台,2011,26(6):21-27
    [129]Xu Tao, Lauridsen B, Bai Yong. Wave-induced fatigue of multi-span pipelines, MarineStructures,1999,12(2):83-106.
    [130]A.Vijaya kumar, S.Neelamani, S.Narasimha Rao.Wave interaction with a submarine pipelinein clayey soil due to random waves.Ocean Engineering,2005,32:1517-1538.
    [131]李广雪.中国海洋石油总公司科技课题(项目)可行性研究报告.2005
    [132]Katinas V., Perednis E., Svedoscius V., Vibrations of smooth and finned tubes in crossflowsof viscous fluids with different turbulence levels.Heat Transfer-Soviet Research,1991,23:844~851.
    [133]李宁,我国海洋石油油气储运回顾与展望,油气储运,2003,22(9):30~32.
    [134]刘贞飞,海底管道冲刷及波浪力试验研究,[硕士学位论文],青岛:中国海洋大学地学院,2007.
    [135]刘海笑等,改进的等效线性化计算模型及在结构海床耦合系统动力分析中的应用.中国港湾建设,2006,141(1):12-15.
    [136]沈纪苹,杨骁,部分浸入水中的柔性梁非线性自由振动,应用力学学报,2009,26(4):705-709.
    [137] S. Pasto, Vortex-induced vibrations of a circular cylinderin laminar and turbulent flows,Journal of Fluids and Structures,2008(24):977–993.
    [138]OTC15306Deepwater pipeline spanning and rectification: lessons learned[R].
    [140]API. Recommended practice for planning, designing and constructing fixed offshoreplatforms-working stress design[S]. API RP2A-WSD.2000.
    [141]谢丽婉,陈国明,鞠少栋,许亮斌.基于管土耦合的海底管跨涡激疲劳分析程序.石油矿场机械.2011,2:1-4.
    [142]潘冬子,波浪荷载作用下海床及管线的动力响应研究,[博士学位论文]杭州:浙江大学工程学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700