豆豉纤溶酶定向进化及突变酶基因的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆豉纤溶酶(Douchi fibrinolytic enzyme,DFE)是从中国传统发酵食品豆豉中发现的新型纤溶酶,具有开发成新一代溶栓药物和相关功能食品的巨大潜力。本文从产纤溶酶的枯草芽孢杆菌DC12中克隆豆豉纤溶酶基因并对其进行了验证,在此基础上通过定向进化得到催化效率提高的突变酶,将突变酶基因在枯草芽孢杆菌蛋白酶缺陷株WB800中进行了诱导型分泌表达及发酵优化。主要内容与结果如下:
     利用PCR技术从产纤溶酶的枯草芽孢杆菌DC-12中扩增豆豉纤溶酶基因,为验证豆豉纤溶酶基因正确与否以及方便在后续研究中对随机突变文库的筛选,将豆豉纤溶酶基因连接到表达载体pET-32a中,构建豆豉纤溶酶重组表达质粒然后转化到E.coli BL21(DE3)中,重组菌株于37℃培养至OD600为0.6左右,加入终浓度为0.4 mmol/L的IPTG于24℃进行诱导,SDS-PAGE显示表达产物同时存在于菌体破碎后的上清液和沉淀中,菌体破碎后上清液的纤溶酶活力为200 IU/mL。通过Ni-NTA亲和柱层析和Sephadex G-75分子筛层析对重组豆豉纤溶酶进行纯化,得到分子量约为28 kDa的目的蛋白,重组蛋白纯化后N-端氨基酸序列测定结果与表达质粒构建时的DNA序列推导的氨基酸序列一致。通过表达产物的纤溶酶活性、纯化后目的蛋白的分子量、纯化后目的蛋白N末端氨基酸序列测定证实所克隆的基因为豆豉纤溶酶基因。
     通过易错PCR技术对豆豉纤溶酶基因进行体外随机突变,并构建突变体文库,利用血纤溶酶最适底物H-D-Val-Leu-Lys-pNA对突变体文库进行筛选,经过三轮易错PCR,筛选到对H-D-Val-Leu-Lys-pNA底物特异性提高,催化效率为未突变豆豉纤溶酶2.57倍的突变酶mDFE3。序列分析表明突变酶基因发生六处碱基突变(C119G /T236C /A308T/G397A/A633T/T705C),其中四处突变发生氨基酸取代(P40R/ V79A/ Q103L/ A133T),另两处为同义突变。
     为了提高突变酶的产量并缩短发酵周期,利用PCR方法从质粒pBE3中扩增卡那霉素抗性基因并将其插入到载体pHT43中,构建了携带卡那霉素抗性基因的重组载体pHK11。PCR扩增突变酶基因并插入到pHK11中,构建了突变酶基因表达质粒并将其转入枯草芽孢杆菌蛋白酶缺陷株WB800中进行表达。将重组菌株培养至对数中期,加入终浓度为1 mmol/L IPTG进行诱导,经诱导5 h,发酵上清液纤溶酶活力达1164 IU/mL。发酵液经SDS-PAGE分析可见约28 kDa目标蛋白条带。质粒稳定性试验表明突变酶重组表达质粒在无卡那霉素的LB培养基中具有一定的分裂不稳定性,而在30μg/mL卡那霉素的选择压力下重组质粒具有良好的结构稳定性,传代50代仍具有良好的产酶能力。
     对突变酶基因重组菌株进行了摇瓶条件下的产酶发酵优化研究,优化后发酵培养基:碳源为葡萄糖,浓度为2 %;氮源为大豆蛋白胨,浓度为2 %;无机盐组合为:0.6 % K_2HPO_4、0.2 % KH2PO4、0.04 % CaCl2、0.075 % MgSO_4;培养基初始pH为7.0。优化后诱导产酶条件为:250 mL三角瓶中装液量40 mL;以2 %接种量接入种子培养液;在37℃振荡培养至对数生长中期,加入终浓度为1 mmol/L的IPTG后转至30℃进行诱导。在此条件下,重组菌pHK-mDFE3/WB800发酵上清液纤溶酶活性为1948 IU/mL。
DFE(Douchi fibrinolytic enzyme) is a new fibrinolytic enzyme which was discovered in Douchi. DFE is worthy developing as either natural thrombolytic agent or health food to prevent thrombotic diseases.The gene encoding pro-DFE from DC-12 was cloned and expressed in E. col.i The catalytic efficiency of DFE was improved by directed evolution. The mutant DFE was expressed in Bacillus subtiilis WB800 by induction with IPTG and the fermentation conditions were optimized. The main results of the thesis are as follows:
     A functional expression is favorable for high throughput screening(HTS) which is applied to screen libraries consisting of a large number of variants produced by random mutation experiments such as directed evolution. The pro-DFE gene was amplified from DNA of Bacillus subtiilis DC-12 isolated from Douchi-a traditional Chinese fermented-soybean food, The fragment was cloned into PET-32a, and then transformed into E.coli BL21(DE3).The recombinant strain was grown at 37℃. At an OD600 of 0.6,cells were induced by additional IPTG(0.4 mmol/L final concentration). Growth was continued at 24℃. The expressed products were analyzed through SDS-PAGE, the recombinant protein exist in the supernatants and pellets. The strong fibrinolytic activity was detected in the supernatants and reached 200 IU/mL. The recombinant protein with a molecular weight of 28 kDa was purified by Ni2+-NTA column and Sephadex G-75 column.N-terminal sequence of the recombinant protein is in according with the result deduced by DNA sequence.DFE gene was confirmed by the functional expression in E.coli, the molecular weight and N-terminal sequence of the recombinant protein.
     Mutagenesis on Douchi fibrinolytic enzyme gene was performed by using error-prone PCR strategy. After three cycles of error prone PCR and screening by substrate H-D-Val-Leu-Lys-pNA, the mutant enzyme with improved substrate specificity and catalytic efficiency was obtained. Gene analysis of the mutant enzyme gene showed that the mutant had six nucleotide substitutions(C119G/T236C/A308T/G397A/A633T/T705C)and four of them caused amino acid changes(P40R/ V79A/ Q103L/ A133T).
     In order to highly express of mDFE3 gene in B.subtilis WB800 and shorten the fermentation period,the full Kanr gene including its promoter seuqence was cloned from pBE3 and inserted into a shuttle vector pHT43 to construct the expression vector pHK11. The mDFE3 encoding sequence was cloned into pHK11 and expressed in B. subtilis WB800. The recombinant strain was grown in LB to the mid-log phase,cells were induced by additional IPTG (1 mmol/L final concentration). Growth was continued at 37℃for up to 5 h. Its maximum fibrinolytic activity of the supernatant in LB medium was 1164 IU/mL. The results of SDS-PAGE analysis showed that there were indeed recombinant proteins with a molecular mass of 28 kDa in supernants. Plasmid stability was also measured. The recombinant plasmid didn't appear obvious gene deletion, showed structural stability after 50 generations. However, the plasmid showed some segregational instability, the plasmid-free cells appeared under no Kanamycin selection pressure.This result indicates that cells carrying certain recombinant pHK-mDFE3 plasmids should be grown in the presence of Kanamycin to avoid loss of the plasmids.
     In order to further enhance production of recombinant Douchi fibrinolytic enzyme,the optimal fermentation conditions of pHK-mDFE3/WB800 were determined. The compositions of fermentation medium are 2% glucose;2% soybean peptone;0.6% K2HPO4,0.2% KH_2PO_4, 0.04% CaCl2,0.075% MgSO_4;pH7.0; Initial growth of the cells at 37℃to the mid-log phase and subsequent induction with IPTG(1mmol/L final concentration) at 30℃;40 mL of media are in 250 mL flask. Under these conditions the fibrinolytic activity of the supernatant can reach 1948 IU/mL.
引文
[1] Hirsh, Guyatt G, Albers G W, Harrington R, et al.Antithrombotic and Thrombolytic Therapy [J].CHEST,2008,133(6)suppl : 1105-1125
    [2] Spronk H M H, Govers-Riemslag J W P, Cate H T. The blood coagulation system as a molecular machine[J].Bio Essays, 2003, 25(12):1220-1228
    [3] Longstaff C , Thelwell C.Understanding the enzymology of fibrinolysis and improving thrombolytic therapy[J].FEBS Letters,2005,579(15):3303-3309
    [4] Srivastava S, Goswami L N, Dikshit D K. Progress in the Design of Low Molecular Weight Thrombin Inhibitors[J].Med Res Rev,2005,25(1): 66-92
    [5] Khana I A, Gowda R M. Clinical perspectives and therapeutics of thrombolysis[J]. Int J Cardiol,2003,91(2-3):115-127
    [6] Kunamneni A, Abdelghani T T A, Ellaiah P .Streptokinase-the drug of choice for thrombolytic therapy[J]. J Thromb Thrombolys,2007, 23(1):9-23
    [7] Nordt T K, Bode C. Thrombolysis: newer thrombolytic agents and their role in clinical medicine[J].Heart,2003,89(11):1358-1362
    [8] Collen D,Lijnen H R.Tissue-type plasminogen activator:a historical perspective and personal account[J].J Thromb Haemost,2004, 2(4): 541-546
    [9] Collen D,LijnenH R.Thrombolytic agents[J].Thromb Haemost,2005, 93(4): 627-630
    [10] Moons L,Vanlinthout I,Roelants I, et al.Toxicology studies with recombinant Staphylo- Kinase and with SY 161-P5,a polyethylene glycol-derivatized cysteine substitution mutant[J].Toxicol Pathol,2001,29(3):285-291
    [11] Bokarewa M I, Jin T, Tarkowski A. Staphylococcus aureus: Staphylokinase[J]. Inter J Biochem Cell Biol,2006,38(4):504-509
    [12]陈连锋,田明,郭洪文等.溶栓剂的研究进展,中国生物制品学杂[J]. 2006,19(4):426-429
    [13] Wan H,Liu Z,Xia X,et al.A recombinant antibody-targeted plasminogen activator with high affinity for activated platelets increases thrombolytic potency in vitro and in vivo[J].Thromb Res, 2000,97(3):133-141
    [14] Perler B.Thrombolytic therapies:the current state of affairs[J].J Endovasc Ther,2005,12(2):224-232
    [15] Inoue T,Yaguchi I,Takayanagi K,et al.A new thrombolytic agent, monteplase,is in dependent of the plasminogen activator inhibitor in patients with acute myocardial infarction:initial results of the Combining Monteplase with Angioplasty(COMA) trial [J].Am Heart J, 2002,144(4):673-675
    [16] Tough J.Thrombolytic therapy in acute myocardial infarction[J]. Nurs Stand, 2005, 19(37):55-64
    [17] Nordt TK,Bode C.Thrombolysis:newer thrombolytic agents and their role in clinical medicine[J]. Heart, 2003,89(11):1358-1362
    [18] Melandri G, Vagnarelli F, Calabrese D. Review of tenecteplase (TNKase) in the treatment of acute myocardial infarction[J].Vasc Health Risk Manag, 2009, 5(1): 249-256
    [19] Collen D, Lijnen H R. The Tissue-Type Plasminogen Activator Story, Arterioscler Thromb Vasc Biol,2009,29:1151-1155
    [20] Collen D, Nelles L, De Cock F,et al.K1K2Pu, a recombinant t-PA/u-PA chimera with increased thrombolytic potency[J].Thromb Res,1992,5(3):421-438
    [21] Bode C,Peter K,Runge MS,et al.Construction and characterization of a recombinant plasminogen activator composed of an anti-fibrin single-chain antibody and low molecular weight urokinase[J].Thromb Haemost,2004,2(5):797-803
    [22] Hagemeyer C E, Schwarz M, Peter K. Single-Chain Antibodies as New Antithrombotic Drugs,Semin Thromb Hemost,2007,33(2): 185-195
    [23] Swenson S,Markland F S.Snake venom fibrin(ogen)olytic enzyme. Toxicon, 2005, 45:1021-1039.
    [24]罗晓清,杨化新,金少鸿.降纤酶研究进展[J].中国药事,2008,22(11):1008-1013
    [25]李金荣.蛇毒酶治疗心脑血管病的概述[J].2005,17(2):104-10.7
    [26]张箴波,张学荣,舒雨雁.蛇毒纤溶酶的性质及应用研究[J].蛇志,2005,17(3):174-176
    [27] Braud S,Le Bonniec BF,Bon C,et al.The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins [J] Biochem, 2002,41(26):8478-8484
    [28] Nakajima N, Sugimoto M, Ishihara K.Earthworm-serine protease: characterization, molecular cloning, and application of the catalytic functions [J].J Mol Catal B:Enzym, 2003,23(2-6):191-212
    [29] Cho I H, Choi E S, Lim H G,et al. Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus[J]. Biochem Mol Biol, 2004; 37(2): 199-205
    [30] Fan Q,Wu C,Li L,et al.Some features of intestinal absorption of intact fibrinolytic enzyme III-1 from Lumbricus rubellus[J].Biochim Biophys Acta, 2001, 1526(3):286-292
    [31]闫峻,汤立达.蚓激酶的研究与临床应用[J].中草药,2006,37(2):295-298
    [32] Paciaroni M, Medeiros E, Bogousslavsky J,et al.Desmoteplase[J].Biol Ther, 2009, 9(6):773-778
    [33] Tebbe U,Bramlage P,Graf A, et al.Desmoteplase in acute massive pulmonary thrombo embolism[J].Expert Opinion Biol Ther,2009,9 (6):773-778
    [34] You W K ,Sohn Y D,Kima K Y,et al.Purification and molecular cloning of a novel serine protease from the centipede,Scolopendra subspinipes mutilans[J]. Insect Biochem Mol Biol,2004,34(3):239-250
    [35] Hahn B S ,Cho S Y ,Ahn M Y,et al.Purification and characterization of a plasmin-like protease from Tenodera sinensis(Chinese mantis)[J].Insect Biochem Mol Biol, 2001, 31(6/7): 573-581
    [36] Ahn M Y, Hahn B S, Ryu K S, et al. Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles,Catharsius molossus[J]. Thromb Res,2003,112(5-6):339-347
    [37] Pinto A F M ,Dobrovolski R,Veiga A B G,et al.Lonofibrase, a novel fibrinogenase from Lonomia oblique caterpillars[J].Thrombosis Research, 2004, 113: 147-154
    [38] Deng Z ,Wang S ,Li Q,et al.Purification and characterization of a novel fibrinolytic enzyme from the polychaete,Neanthes japonica[J].Bioresour Technol, 2010, 101:1954-60
    [39] Liu X L, Du L X, Lu F P, et al. Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis12[J].Appl Microbiol Biotechnol,2005,67(2): 209-214
    [40] Cui L, Dong M S,Chen Xiao Hong, et al. A novel fibrinolytic enzyme from Cordyceps militaris , a Chinese traditional medicinal mushroom [J].World J of Micro Biotechnol, 2009,24(4):483-489
    [41]刘晨光,王鹏,刘成圣等.海洋假单胞菌纤溶酶的体外溶栓试验研究[J].中国生化药物杂志,2002,23(1):34~35.
    [42] Sumi H.Hamada H.Tsushima H,et al.A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto:a typical and popular soybean food in the Japanese diet[J]. Experientia, 1987,43(10):1110-1111.
    [43] Nakamura T,YouherY,Eiji I. Nucleotide sepuence of the Subtilisin NAT,aprN,of Bacillus Subtilis(natto)[J].Biosci Biotech Biochem ,1992,56(11):1869-1871
    [44] Sumi H,Hamada H,Nakanishi K,et al. Enhancement of the fibrinolytic activity in plasma by orala dministration of nattokinase[J]. Acta Haematol, 1990,84:139-143.
    [45] Sumi H,Yanagisawa Y,Yatagai C,et al.Natto bacillus as an oral fibrinolytic agent:nattokinase activity and the ingestion effect of Bacillus subtilis natto[J].Food Science and Technology Research, 2004,10(1):17-20.
    [46] Hua Ying, Jiang Bo, Yoshinori M, et al. Purification and Characterization of a Novel Fibrinolytic Enzyme from Bacillus sp SK006 Isolated from an Asian Traditional Fermented Shrimp Paste,J Agric Food Chem, 2008,56(4):145-1457
    [47] Ko J A, Koo S Y, Park H J. Effects of alginate microencapsulation on the fibrinolytic activity of fermented soybean paste (Cheonggukjang) extract[J]. Food Chem, 2008, 111( 4): 921-924
    [48] Peng Y, Huang Q, Zhang R H, et al. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food [J].Comp Biochem Phys Part B,2003,134(1):45-52
    [49] Kim S B, Lee D W, Cheigh C I, et al. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh [J]. J Ind Microbiol Biotechnol, 2006, 33(6): 436-444
    [50]汪光远,周艳芬,何叶喧.中药蒲黄纤溶蛋白的分离纯化及部分性质[J].河北农业大学学报, 2007,30 (4): 56-60
    [51]李海燕,柳陈坚,龚福明.豆豉纤溶酶的研究现状[J].生物技术通报, 2009, 11: 34-38
    [52]阎家麟,童岩,臧莹安.豆豉纤溶酶的纯化及其性质研究[J].药物生物技术,2000,7(3): 149-152
    [53]吴思方,向梅,陶琳,等.豆豉纤溶酶产生菌发酵条件研究[J].中国医药工业杂志,2004, 35(6):332-335
    [54] Ko J H, Yan J P, Zhu L,et al. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02 [J]. Comp Biochem Phys Part C, 2004,137(1):65-74.
    [55] Wang C T, Ji B P, Li B, et al. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi[J]. J Ind Microbiol Biotechnol,2006,33(9):750-758
    [56]王成涛,郑杰,籍保平等.豆豉纤溶酶Subtilisin FS33的溶栓作用及其机制的研究[J].营养学报,2007,29(6):600-604
    [57]牟光庆,贾楠,霍贵成.豆豉纤溶酶分离及其特性的研究[J].食品工业科技, 2007, 28(7):90-93
    [58]张自强,张云开,陈桂光.豆豉纤溶酶高产菌株的筛选研究[J].工业微生物,2007,37(1):67-70
    [59]陈晔,陈跃,张文等.枯草芽孢杆菌(Bacillus subtilis ZY21)溶栓酶的分离纯化及其酶学性质[J].福建医科大学学报,2008, 42(2):143-146
    [60] Wang S H, Zhang C, Yang Y L, et al. Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547[J].World J Microb Biot ,2008,24( 4): 475-482
    [61]魏静,徐耀波,陈怀辉.产纤溶活性酶凝结芽抱杆菌的分离鉴定及其酶活性质初探[J].西南大学学报(自然科学版),2009,31(3):90-93
    [62]彭勇,张义正.解淀粉芽孢杆菌DC-4豆豉溶栓酶成熟肽编码序列的克隆及表达[J].应用与环境生物学报, 2002, 8(3):285-289
    [63] Astrup T, Mullertz S,The fibrin plate method for estimating fbrinolytic activity,Arch Biochem Biophys,1952, 40:346-351
    [64] Friberger P , Knos M , Gustavsson S. Methods for determination of plasmin antiplasmin and plasminogen by means of substrate S-2251[J]. Haemostasis, 1978, 7: 138-145
    [65]谢秋玲,郭勇,林剑.纳豆激酶活性测定方法[J].广东医学,2000,10(6):8-10
    [66] Hara T,TadokoroY,Satoyama T. A simple,easy and routine assay of fibrinolytic enzyme activity[J]. Jpn Soi Food Sci Tech ,1996,43(2): 172-175
    [67] Yuki Y,Nakagawa T,Fujita M, et al.A gaudwieh enzynle-linked immunosorbent assay for nattokinase[J].Biosei Biotech Biochem, 994,58(2):366-370
    [68]王金英,刘宇峰,王占斌.豆豉抗栓作用的研究[J].生物技术,1997,7(5):18-20
    [69]刘晓婷,蔺新英.豆豉激酶对实验性小鼠体内血栓形成的影响[J].食品与药品,2006,8 (06A):39-41
    [70]李江伟,冉国侠,陈新梅.豆豉溶栓酶的分离纯化及其体外溶栓作用[J].中国生化药物杂志,1999,20(3):148-150
    [71]刘宇峰,王金英,王占斌.豆豉纤溶酶保健功能食品的研制[J].大豆通报,2000,8(2):252-253
    [72] Zhang R H Peng Y, Yang X J,et al.Gene expression and characteristics of a novel fibrinolytic enzyme (subiilisin DFE) in Escherichia coli[J]. Appl Microbiol, 2005, 41(2):190-195
    [73] Peng Y, Yang X J, Xiao L, et al. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis, Res Microbiol, 2004,155:167–173
    [74] Xiao L, Zhang RH, Peng Y,et al. Highly efficient gene expression of a fibrinolytic enzyme (subtilisin DFE) in Bacillus subtilis mediated by the promoter of an amylase gene from Bacillus amyloliyuefaciens[J].Biotechnol Lett,2004,26(17):1365-1369
    [75]罗文华,郭勇,韩双艳.豆豉纤溶酶在枯草杆菌WB800中的高水平表达[J].应用与环境生物学报,2007,35(11):565-569
    [76]张仁怀,王海燕,谈宁馨,等.豆豉溶栓酶基因在毕赤酵母中的表达及其产物的纯化,应用与环境生物学报[J]2005,11(5):623-626
    [77]王开敏,赵敏.产纤溶酶菌株的分离和鉴定及纤溶酶基因在酿酒酵母中的表达[J].中国食品学报,2009,9(2);23-28
    [78]崔堂兵,郭勇,罗文华,等.定点突变提高豆豉纤溶酶的酶活力和底物特异性的研究[J].自然科学进展,2008, 18(17): 826-832
    [79] Bershtein S, Tawfik D S. Advances in laboratory evolution of enzymes [J].Curr Opin Chem Biol,2008,24(4):151-158
    [80] Cirino P C, Mayer K M, Umeno D. Generating mutant libraries using error-prone PCR[J]. Methods Mol Biol, 2003,231:3-9
    [81] Pritchard L, Corne D, Kell D,A general model of error-prone PCR[J].J Theo Biol,2005,234(4):497--509
    [82] Lingen B, Grotzinger J, Kolter D, et al. Improving the carboligase activity of benzoyl formate decarboxylase from Pseudomonas putida by a combination of directed evolution and site-directed mutagenesis[J].Protein Eng Des,Sel, 2002,15(7):585-593
    [83] Shim J H, Kim Y W, Kim T J, et al. Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR[J].Protein Eng Des Sel,2004,17(3):205-211
    [84] Komeda H, Ishikawa N, Asano Y. Enhancement of the thermostability and catalytic activity of D-stereospecific amino acid amidase from Ochrobactrum anthropi SV3 by directed evolution[J]. J Mol Catal B:Enzym, 2003, 21(4-6):283-290
    [85] Tetsuko N, Toshiji T, Makoto T, An in vitro evaluation of a thermostable pectatelyase by using error-prone PCR[J]. J Mol Catal B:Enzym, 2004, 27(2-3) :127-131
    [86] Yu H, Li J, Zhang D L, et al. Improving the thermostability of N-carbamyl-d-amino acid amidohydrolase by error-prone PCR,Appl Microbiol Biotechnol,2009,82(2): 279-285
    [87] Dai W , Zhao C , Rong C.Estimation of the Mutation Rate During Error-prone Polymerase Chain Reaction[J].J comput biol, 2000, 7(1/2):143-158
    [88] Bichet A , Bureik M, Lenz N, et al. The“bringer strategy”A very fast and highly efficient method for construction of mutant libraries by error-prone polymerase chain reaction of ring-closed plasmids[J].Appl Biochem Biotechnol, 2004, 117(2):115-122
    [89] Stemmer W P C.Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature, 1994, 370(4):389-391
    [90] Joern J M. DNA shuffling Methods[J].Mol Biol,2003,231:85-89
    [91] Ryu K , Kang JH, Wang L, et al. Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling[J]. J Biotechnol, 2008,135(3):241-246
    [92] Whalen R G , Kaiwar R , Soong N W.DNA shuffling and vaccines[J].Curr Opin Mol Ther, 2001,3:31-36
    [93] Ryu K , Kang J H , Wang L , et al. Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degrade ability by DNA shuffling[J]. J Biotechnol, 2008,135(3):241~246
    [94] Williams G J , Domann S , Nelson A , et al. Modifying the stereochemistry of an enzyme catalyzed reaction by directed evolution [J]. Proc Natl Acad Sci USA, 2003, 100(6):3143~3148
    [95] Binay B, Shoemark D K, Sessions R B. Increasing the substrate specificity of Bacillus stearothermophillus lactate dehydrogenase by DNA shuffling [J]. Biochem Eng J, 2009, 48(1):118-123
    [96] Fan Y H, Fang W G, Xiao Y H, et al. Directed evolution for increased chitinase activity [J]. Appl Microbiol Biotechnol,2007,76(1):135-139
    [97] Kotzia GA,Labrou NE. Engineering thermal stability of L-asparaginase by in vitro directed evolution [J]. FEBS J,2009,276(6):1750-1761
    [98] Shao Z, Zhao H, Giver L, et al.Random-priming in vitro recombination: an effective tool for directed evolution[J]. Nucleic Acids Res, 1998, 26(2):681-683
    [99] Crameri A, Raillard SA, Bermudez E,et al. DNA shuffling of a family of genes from diverse species accelerates directed evolution[J].Nature,1998, 391:288-291
    [100] Sen S, Dasu V V, Mandal B. Developments in Directed Evolution for Improving Enzyme Functions[J]. Appl Biochem Biotechnol,2007,143(3): 212-223
    [101] Lutz S,Ostermeier M,Benkovic S J.Rapid generation of incremental truncation libraries for protein engineering usingα-phosphothioate nucleotides[J].Nucleic Acids Res,2001, 29(4):e16
    [102] Abecassis V,Pompon D,Truan G. High efficiency family shuffling based on multi-step PCR andin vivo DNA recombination in yeast:Statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2[J].Nucleic Acids Res,2000,28(20):e88
    [103] Lee S H, Ryu E J, Kang M J, et al. A new approach to directed gene evolution by recombined extension on truncated templates (RETT)[J].J Mol Catal B:Enzym, 2003,26(3-6):119-129
    [104] Harayama S. Artificial evolution by DNA shuffling[J].Trends Biotechnol, 1998,16(2):76-82
    [105] Froy O , Gurevitz M.Arthropod and mollusk defensins -evolution by exon-shuffling [J]. Trends Genet,2003,19(12):684-687
    [106] Vibranovski M D , Sakabe N J , Oliveira de R S , et al. Signs of ancient and modern exon-shuffling are correlated to the distribution of ancient and modern domains along proteins[J].J Mol Evol, 2005, 61(3):341-350
    [107] Kolkman J A,Stemmer W P C.Directed evolution of proteins by exon shuffling[J].Nat Biotechnol,2001,19(5):423~428
    [108] Ejima Y , Yang L.Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling[J]. Hum Mol Genet, 2003, 12(11):1321-1328
    [109] Babushok D V , Ohshima K , Ostertag EM , et al. A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids[J]. Genome res,2007, 17(8): 1129-1138
    [110] Vibranovski M D, Sakabe N J, Souza de S J. A possible role of exon-shuffling in the evolution of signal peptides of human proteins[J].FEBS Lett, 2006,580(6):1621-1624
    [111] Sieber V,Martinez CA,Arnold F H.Libraries of hybrid proteins fromdistantly related sequence[J].Nat Biotechnol,2001,9:456-460
    [112] Gibbs M D Nevalainen K M, Bergquist P L, et al. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling[J].Gene,2001,271(1):13-20
    [113] Cesaro TS,Lagos D,Honegger A,et al. Turn over-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library[J].Nat Biotechnol,2003,21(6): 679-685·
    [114] Strobel H,Ladant D,Jestin JL.In vitro selection for enzymatic activity:a model study using adenylate cyclase[J].J Mol Biol,2003,332(1):1-7·
    [115] Takahashi T T,Austin R J,Roberts R W. mRNA display:ligand discovery, interaction analysis and beyond[J]. Trends Biochem Sci,2003,28(3): 159-165
    [116] Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target[J].Nat Methods. 2007, 4(3):269-279
    [117] Amir A,Andrew D G,Dan S T.High-throughput screens and selections of enzymeencoding genes[J]. Curr Opin Chem Biol,2005, 9(2):210-214
    [118] Hayes F, HalletB, Pentapeptide scanning mutagenesis: encouraging old proteins to execute unusual tricks[J].Trends Microbiol,2000,8(12): 571-577
    [119] Castle L A, D L Siehl, Gorton R, et al. Discovery and directed evolution of a glyphosate tolerance gene[J].2004,Science,304:1151-1154.
    [120] Siehl D L, Castle L A, Gorton R, et al. Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy[J]. Pest Manag Sci,2005,61(3):. 235-240
    [121] Batt S B, Lee C C,Robertson G H, High-activity barleyα-amylase by directed evolution[J].Protein J,2004,23(7):453-460.
    [122] Suen W C, Zhang N,Xiao L. Improved activity and thermostability of Candida Antarctica B by DNA family shuffling[J].Protein Eng Des Sel,2004,17(2): 133-140
    [123] Shibamoto H, Matsumoto T,Fukuda H,Molecular engineering of Rhizopus oryzae lipase using a combinatorial protein library constructed on the yeast cell surface[J].J Mol Catal B:Enzym,2004,28 (4/6):235-239
    [124] Acharya P,Rajakurnara E,Sankaranarayanan R, Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase[J].J Mol Biol,2004, 341(5):1271-1281
    [125] Flores H, Ellington A D. Increasing the thermal stability of an oligomeric protein, beta-glucuronidase[J].J Mol Biol,2002,315(3):325-337
    [126] Jonesa A, Lamsaa M, Torben P,et al. Directed evolution of a maltogenicα-amylase from Bacillus sp TS-25 [J].J Biotechnol,134( 3-4):325-333
    [127] Johannes T W,Woodyer R D, Zhao H.Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration[J].Appl Environ Microbiol,2005,71(10): 5728-5734
    [128] Cho C M H, Mulchandani A, Chen W.Altering the substrate specificity of organophos-phorus hydrolase for enhanced hydrolysis of chlorpyrifos[J].Appl Environ Microbiol 2004,70(8):4681-4685
    [129] Fong S,Machajewski T D,Mak C C,et al.Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the deeicientsynthesis of D- and L-sugars[J].Chem Biol,2000,7(11):873-88
    [130] Gould S M, Tawfik D S, Directed evolution of the promiscuous esterase activity of carbonic anhydrase II [J].Biochemistry,2005,44(14):5444-5452
    [131] Meinhold M W, Peters M MY, Chen K, et al. Direct conversion of ethane to ethanol by engineered cytochrome P450BM3[J].Chem Bio Chem 2005, 6(10):1765-1768
    [132] Fishman A, Tao Y, Rui L Y, et al. Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1[J]. J Biol Chem, 2005,280(1):506-514
    [133] Van Kampen M,Egmond M.Directed evolution:from a staphylococcal lipase to a phospholipase[J].Eur J Lipid Sci Technol,2001,102:717-726
    [134] Vardar G, Wood T K, Protein engineering of toluene-o-xylene monooxygenase from pseudomonas stutzeri OX1 for enhanced chlorinated ethene degradation and o-xylene oxidation[J].Appl Microbiol Biotechnol ,2005,68(4):510-517
    [135] Vardar G, Wood T K, Protein engineering of toluene-o-xylene monooxygenase from pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol[J].Appl Environ Microbiol, 2004, 70(6): 3253-3262
    [136] Vardar G, Ryu K, Wood T K, Protein engineering of toluene-o-xylene monooxygenase from pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone[J].J Biotechnol, 2005, 115(2): 145-156.
    [137] Feng H Y, Drone J, Hoffmann L, et al. Converting aβ-glycosidase into aβ- transgly-cosidase by directed evolution[J]. J Biol Chem,2005,280(44):37088-37097
    [138] Leungsakul T, Keenan B G, Yin H, et al. Saturation mutagenesis of 2,4-DNT dioxyge- nase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation [J]. Biotechnol Bioeng, 2005, 92(4):416-426.
    [139] Manu R M, Groeve D, Baere M D, et al. Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylase[J]. Protein Eng Des Sel, 2009 22(7):393-399;
    [140] Reetz M T, Torre C, Eipper A, et al.Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution[J].Org Lett ,2004,6(2),177-180
    [141] Loo B, Spelberg J H L, Kingma J, et al.Directed evolution of epoxide hydrolase fromA. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling[J]. Chem Biol,2004,11(7):981-990
    [142]江侧燕,赵树进,郭勇.富含纤溶酶豆豉冻干粉体外溶栓作用及急性毒性[J].现代食品科技, 2009, 25(10):1154-1155
    [143] Phan T T P, Nguyen H D,SchumannW. Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis[J]. Protein Expr Purif, 2006,46(2):189-95
    [144] Peng Y, Yang X J,ZhangY Z.Microbial fibrinolytic enzymes:an overview of source, production, properties,and thrombolytic activity in vivo[J].Appl Microbiol Biotechnol, 2005,69(2):126-132
    [145]奥斯伯F ,布伦特R,金斯顿R,等.精编分子生物学实验指南(第五版)[M].北京:科学出版社,2008
    [146] Saito H, Miura K. Preparation of transforming deoxyribonucleic acid by phenol treatment [J]. Biochem Biophys Acta,1963,72: 619-629.
    [147]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南(精编版) [M].北京:化学工业出版社,2008
    [148] Kobayashi T, M Inouye.Functional analysis of the intramolecular chaperone Mutational hot spots in the subtilisin pro-peptide and a second site suppressor mutation within the subtilisin molecule[J]. J Mol Biol 1992,226(4):931-933
    [149] Li Y, Hu Z, Jordan F, et al. Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding[J]. J Biol Chem, 1995,270:25127-25132.
    [150] Volkov A, Jordan F.Evidence for Intramolecular Processing of Prosubtilisin Sequestered on a Solid Support [J]. J Mol Biol,1996,262:595-599
    [151] Tanaka S , Takeuchi Y , Matsumura H , et al. Crystal structure of Tk-subtilisin folded without propeptide: Requirement of propeptide for acceleration of folding. FEBS Lett,2008,582(28): 3875-3878
    [152] Yabuta Y, Takagi H , Inouye M.Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin [J]. J Biolog Chem,2001,276(48):44427-44434
    [153] Liang X B , Jia S F, Sun Y F, Secretory Expression of Nattokinase from Bacillussubtilis YF38 in Escherichia coli [J]. Mol Biotechnol, 2007, 37(3): 187-194
    [154]许芳,冯建成,李洁.纳豆激酶基因在大肠杆菌中活性表达的比较研究[J].微生物学杂志,2004,24(2):10-14
    [155]汪江波,许芳,张睛芳等.纳豆激酶原基因在毕赤酵母中的分泌表达,中国酿造,2008,196 (19):40-42
    [156] Panda A K, Khan R H, Appa Rao K B C.Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone[J].J Biotechnol,1999,75(2-3):161-172.
    [157] Xu Z , Zhong Z X , Huang L,et al. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression [J]. Appl Microbiol Biotechnol, 2007,72(3):471-479
    [158] Jana S, Deb J K. Strategies for efficient production of heterologous proteins in Escherichia coli[J].Appl Microbiol Biotechnol,2005,67(3):289-298
    [159] Kataeva I, Chang J, Xu H, et al. Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Esherichia coli [J].J Proteome Res,2005,4(6):1942-1951
    [160] Martinez A M , Garcia F E , Villaverde A .Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli [J].Biotechnol Bioeng,2008,101(6):1353-1358
    [161] Kern R,Malki A, Holmgren A,et al.Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase[J].J Biochem,2003,371:965-972
    [162] Farinas E T, Bulter T,Frances H A.Directed enzyme evolution[J].Curr Opinion Biotechnol,2001,12(6):545-551
    [163] Turner N J,Directed evolution drives the next generation of biocatalysts[J]. Nat Chem Biol,2009 5:567-573
    [164] Cherry J R, Fidantsef A L. Directed evolution of industrial enzymes: an update,Curr Opinion Biotechnol,2003,14(4):438-443
    [165] Bryan P N.Protein engineering of subtilisin[J].Biochimica et Biophysica Acta,2000, 1543:203-222.
    [166] Pogson M, Georgiou G, Iverson B L.Engineering next generation proteases[J].Curr Opinion Biotechnol,2009, 20(4): 390-397
    [167] Wu S M ,Feng C ,Zhong J ,et al.Roles of S3 site residues of nattokinase on its activity and substrate specificity[J]. Jpn Biochemical Soc,2007,142(3):357-364
    [168] Jeong Y K , Kim J H , Gal S W,et al. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain AI[J]. World J Microbiol Biotechnol,2004,20:711-717
    [169] Schwede T, Kopp J,Guex N,et al.SWISS-MODEL:an automated protein homology -modeling server[J].Nucleic Acids Research,2003,31(13):3381-3385
    [170] Cirino P C, Mayer K M, Umeno D. Generating mutant libraries using error-prone[J]. Methods Mol Biol,2003,231(1):3-9
    [171] PeronaJ J, Craik C S. Structural basis of substrate specificity in the serine proteases [J]. Protein Sc,1995,4:337-360
    [172] Ruan B,London V, Fisher K E.Engineering Substrate preference in subtilisin structural and kinetic analysis of a specificity mutants [J].Biochemistry,2008, 47(25): 6628-6636
    [173] Shim J H, Kim Y W, Kim T J, et al. Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR [J].Protein Eng Des Sel,2004,17(3):205-211
    [174] Yano T, Oue S, Kagamiyama H.Directed evolution of an aspartate aminotransferase with new substrate specificities[J]. Biochemistry,1998, 95: 5511-5515
    [175] You L, Arnold F H,Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethyl formamide[J]. Protein Eng Des Sel,1994,9(l):77-83
    [176] Sroga G E,Dordick J S, Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression[J]. Protein Eng Des Sel,2001,14(11): 929-937
    [177] Nijland R, Kuipers OP. Optimization of protein secretion by Bacillus subtilis[J]. Recent Pat Biotechnol. 2008;2(2):79-87
    [178] Harwood, C R, Bacillus subtilis and its relatives: molecular biological and industrial workhorses[J]. Trends Biotechnol, 1992, 10,247-256
    [179] Kobayashi K,Ehrlich S D,Albertini A,Essential Bacillus subtilis genes[J].Proc Natl Acad Sci U S A, 2003,100,4678-4683
    [180] Li W, Zhou X, Lu P. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis[J].Res Microbiol, 2004, 155(8): 605-610
    [181] Schmidt F R. Recombinant expression systems in the pharmaceutical industry [J].Applied Microbiol Biotechnol,2004,65(4):363-372
    [182] Durban M A , Silbersack J , Schweder T, et al. High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis[J]. Appl Microbiol Biotechnol,2007,74(3):634-639
    [183] Zhang X Z, Cui Z L, Hong Q, Li S P. High-Level Expression and Secretion of Methyl Parathion Hydrolase in Bacillus subtilis WB800 [J].Appl Environ Microbiol,2005,71: 4101-4103
    [184] Westers L, Westers H, Quax W J. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism [J]. Biochim Biophys Acta, 2004,1694:299-310
    [185] Wu X C, Lee W, Tran L. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases[J].J Bacteriol,1991,173(16): 4952-4958
    [186] Lee S J, Kim D M, Bae K H et al. Enhancement of secretion and extracellular stability of staphylokinase in Bacillus subtilis by wprA gene disruption [J].Appl Enviro Microbiol ,2000,66:476-480
    [187] Wu S C, Yeung J C,Wong S L. Functional production and characterization of a fibrin- specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production[J].Appl Environ Microbiol,2002,68:3261-3269
    [188] Zhao Q X, Ding R R , Kang Y J, Expression of pectatelyase A from Aspergillus nidulans in Bacillus subtilis[J]. World J Microbiol Biotechnol, 2008, 24(11):2607-2612
    [189] Anagnostopoulos C, Spizizen J.Requirements for transformation in Bacillus subtilis[J]. J Bacteriol,1961,81:741-746
    [190] Nguyen D H,Nguyen Q A, Ferreira R C,et al.Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability[J].Plasmid,2005,54(3): 241-248
    [191]梁晶晶,陆开宏,凌红丽.斑马鱼干扰素基因工程菌发酵条件及稳定性研究[J].生物技术通报,2009,2:107-111
    [192] Schumann W. Production of recombinant proteins in Bacillus subtilis[J].Adv Appl Microbiol,2007,62:137-189
    [193] Aleshin V V,Tarakanov BV,Livshits VA.A family of shuttle vectors for lactic acid bacteria and other gram-positive bacteria based on the plasmid pLF1311 replicon[J].Microbiol,2000,69(1):63-67
    [194] Widdowson CA , Adrian PV .Acquisition of chloramphenicol resistance by the linearization and integration of the entire staphylococcal plasmid pC194 into the chromosome of Streptococcus pneumoniae[J].Antimicrobial Agents and Chemotherapy, 2000,44(2):393-395
    [195] Paccez J D , Luiz W B , Sbrogio-Almeida M E , et al.Stable episomal expression system under control of a stress inducible promoter enhances the immunogenicity of Bacillus subtilis as a vector for antigen delivery[J].. Vaccine,2006,24(15):2935-2943
    [196] Titok M A , Chapuis J, Selezneva Y V, et al. Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector[J]. Plasmid, 2003, 49: 53-62
    [197] Schallmey M , Singh A , Ward O P.Developments in the use of Bacillus species for industrial production[J]. Can J Microbiol,2004,50(10):1-17
    [198] Wu QL , Chen T , Gan Y , et al.Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs[J]. Appl Microbiol Biotechnol,2007,76(4):783-794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700