华南冬半年降水对ENSO循环的不对称响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析多种观测资料和再分析资料的基础上,利用多种分析诊断方法,对华南冬半年(11~04月)降水对ENSO循环不对称响应的机理进行了研究和探讨,最后引用数值模式的结果对观测资料的分析结果进行了深入分析。得到以下研究结论:
     (1)降水观测资料的分析结果表明,华南冬半年降水对ElNi(?)o和LaNi(?)a的响应是不对称的。ElNi(?)o冬半年,华南地区降水明显偏多;但是在LaNi(?)a冬半年,华南地区降水偏少不明显,并且在统计上不显著。对ENSO指数与华南冬半年降水显著相关的贡献,主要来自于ElNi(?)o冬半年期间两者之间的正相关性,而LaNi(?)a冬半年的贡献很弱。
     (2)华南冬半年降水对ElNi(?)o和LaNi(?)a不对称性响应的一个重要原因是南海和西太平洋低层大气环流对ENSO的不对称性响应。在ElNi(?)o和LaNi(?)a期间,850hPa西太平洋到南海分别形成反气旋性和气旋性环流异常,因此造成反气旋性和气旋性水汽输送异常。在ElNi(?)o冬半年期间的显著特征是在反气旋性环流异常的西北边缘,南海到华南地区明显的西南风异常,为华南地区输送的水汽异常偏多,水汽辐合较强,造成大气可降水量和比湿的增大,并且这些正异常在统计上都是显著的,造成华南地区ElNi(?)o冬半年降水明显偏多。而在LaNi(?)a冬半年期间,华南处于气旋性环流异常的西北边缘,南海北部到华南地区为东北风异常,减弱了来自南方的水汽输送,出现较弱的水汽辐散,由于水汽输送减弱以及较弱的水汽辐散,华南地区上空大气可降水量和比湿都呈现出较弱的负异常,且在统计上不显著,导致华南降水出现较小的降水负异常。
     (3)对于在ENSO循环的不同阶段华南气候不对称的原因,从季节内振荡的角度出发,分析了ElNi(?)o和LaNi(?)a冬半年期间季节内振荡的特点。在ElNi(?)o冬半年,西太平洋和南海海域的海表温度偏低,不利于这个区域对流的发展,对流活动的不活跃导致了动能和对流在季节内时间尺度上的变化很弱。而在LaNi(?)a冬半年,菲律宾附近南海和西太平洋区域偏高的海温分布则有利于对流的发展,对流活动很活跃,造成动能和对流在季节内时间尺度上的振荡也很强。
     (4)从ElNi(?)o和LaNi(?)a冬半年期间季节内振荡的角度出发,给出一种华南冬半年降水对ENSO信号不对称响应的物理解释。ElNi(?)o期间,热带西太平洋到南海地区的季节内振荡不活跃,导致西北太平洋反气旋性环流异常造成的水汽输送以及水汽辐合在华南能稳定维持,造成华南降水明显偏多。但在LaNi(?)a冬半年期间,季节内振荡很活跃,LaNi(?)a冬半年期间的西北太平洋气旋性环流异常受到季节内时间尺度扰动的影响,ENSO的年际变化信号与季节内振荡信号相比明显偏弱,使得西北太平洋和华南的年际异常信号不能够得到明显反应,导致与ENSO信号相联系的年际变化在统计上不显著。位相合成结果表明,LaNi(?)a冬半年,南海到西太平洋的季节内振荡异常的活跃导致了850hPa南海到西太平洋的环流异常在季节内时间尺度上不断变化,气旋性和反气旋性环流异常交替出现,使得南海到华南的850hPa上空,南风异常和北风异常在一个季节内振荡的周期内交替出现,ENSO的年际变化信号不能充分显现,气旋性环流异常明显偏弱。因此,热带西太平洋到南海间的季节内振荡强度在ElNi(?)o和LaNi(?)a冬半年期间的差异,是华南冬半年降水对ENSO信号不对称响应的一个主要原因。
     (5)利用CFSv2模式的历史回报资料,对降水、OLR、850hPa风场等要素的气候平均态、季节循环及大气季节内振荡的特点进行了分析,对比分析了模拟输出结果与观测结果,讨论了模式对华南降水和季节内振荡的预报技巧。结果表明,CFSv2模拟的降水、OLR、850hPa风场基本上能够抓住气候态的主要特征,模拟和观测的分布型较为一致。CFSv2对季节内振荡的几个主要的活动中心均能够较好地模拟,模拟方差的空间分布和强度也较吻合。对ElNi(?)o和LaNi(?)a冬半年期间的降水、850hPa环流异常和季节振荡的模拟结果亦与观测较为吻合,从数值模式的结果进一步证实了资料分析的结果。
In this paper, the asymmetric impacts of ENSO cycles on the rainfall over southern Chinain winter half year (November–April) are investigated based on observed and reanalysisdatasets by using various analysis and diagnostic methods. And the main results in this paperare examined with numerical simulation. The main conclusions are derived as follows:
     (1) The analysis results of observed rainfall data show that the impacts of El Ni(?) o andNi(?)a on the rainfall over southern China are asymmetric in winter half year. It’s found thatpositive rainfall anomalies with statistical significance appear over southern China in the ElNi o episodes. But in the La Ni(?)a episodes, no reverse rainfall anomalies with statisticalsignificance appear over southern China. The statistical significance of positive correlationsbetween ENSO and rainfall over Southern China are mainly contributed by their correlationsin El Ni(?) o episodes, and the relationships are weak in La Ni(?)a episodes.
     (2) The asymmetric responses of atmospheric circulations in lower troposphere to ElNi o and La Ni(?)a are the main mechanisms of asymmetric impacts of rainfall over southernChina, possibly. The anticyclone and cyclone anomalies over western North Pacific (WNP)and South China Sea (SCS) give rise to the anomalies of anticyclonic and cyclonic watervapor transport during El Ni(?) o and La Ni(?)a episodes, respectively. In the El Ni(?) o episodes,the important feathers are the obvious southwesterly anomalies along the northwestern marginof anticyclone anomaly over SCS and southern China. The enchanced southwesterliestransport more water vapor to southern China, and the convergence of water vapor oversouthern China increase the precipitable water and specific humidity in the atmosphere. Atsame time, these positive anomalies are statistical significance. It’s one of the main reasons ofpositive rainfall over southern China during El Ni(?) o episodes. But in the La Ni(?)a episodes, the important feathers are the weaker norhteasterlies anomalies along the northwestern marginof cyclonic anomaly over SCS and southern China. The northeasterlies weaken the watervapor transport to southern China, and the divergence of water vapor over southern Chinadecrease the precipitable water and specific humidity in the atmosphere. No reverse rainfallanomalies with statistical significance appear over southern China. Although these physicalelements are changed in opposite direction, its negative anomalies aren’t as obvious as thosein El Ni(?) o period. Above mentioned results are verified by using different methods withvarious datasets.
     (3) The possible physical mechanism of the asymmetric impacts of ENSO cycles on therainfall over southern China are investigated by analyzing the differences of IntraseasonalOscillation (ISO) between El Ni(?) o and La Ni(?)a in winter half year. In the El Ni(?) o episodes,the colder SSTs suppress the growth of convective activities over WNP and SCS. Theperturbation kinetic energy and ISOs over WNP and SCS are weak because of the inactiveconvective activities during the El Ni(?) o episodes. But in the La Ni(?)a episodes, the warmerSSTs benefit the development of convective activities over WNP and SCS. So the activeconvective activiites motivate the strong oscillation kinetic energy and ISOs. These results aretested and verified by the results of computing the OLR10~20d and20~50d oscillationvariances and perturbation kinetic energy in850hPa. The correlation relationships amongvarious indices also have similar conclusions.
     (4) A physical mechanism is proposed to explain the asymmetric responses to ENSOsignals of the rainfall over southern China in winter half year. In the El Ni(?) o episodes, theISOs activities over WNP and SCS are inactive, which exert little effect on the stronganticyclone anomaly over WNP and SCS in the lower troposphere in the winter half year.Therefore the transportation and convergence of water vapor could be maintained steadilybecause of the existing of anticyclone anomaly, inducing the positive rainfall anomalies withstatistical significance over southern China in the El Ni(?) o episodes. However in the La Ni(?)aepisodes, the active ISOs activities weaken cyclone anomalies over WNP and SCS atintraseasonal time scale. The interannual variation signals of ENSO are disturbed byintraseasonal variation signals over WNP and southern China. The interannual signals related to ENSO are weaker than the signals of intraseasonal variation. Consequently, the interannualsignals over WNP and SCS cann’t be responsed by the atmosphere, the statistical significancerelated to interannual signals of ENSO cann’t be tested. The results of phase composites showthat the active and strong ISOs lead to the emergences of anticyclone and cyclone anomaliesby turns in the La Ni(?)a episode. So the cyclone anomalies cann’t been maintained steadilybecause the interannual variation signals of ENSO are weakened by the signals of ISOs greatly.At the same time, the southerly and northerly anomalies periodically appear over SCS andsouthern China during the period of oscillation. Finally, the asymmetries impacts of rainfall onENSO cycles over southern China are possibly caused by the differences of ISOs over WNPand SCS between El Ni(?) o and La Ni(?)a in winter half year.
     (5) Using the retrospective forecasts dataset of CFSv2model, the climatic modes andseasonal cycles of rainfall, OLR and wind in850hPa are analyzed. And their characteristics ofISOs are diagnosed in this study. The simulation output of CFSv2show that the simulatedrainfall, OLR and wind fields match the main feathers with observed dataset. Theirdistribution patterns of simulated and observed coincide in climatic modes and seasonal cycles.The distribution and intensity of ISOs could be simulated in CFSv2. The modeling capabilitiesweaken gradually with longer lead times. The simulated rainfall, circulation anomalies andISOs in CFSv2coincide with observed dataset during El Ni(?) o and La Ni(?)a episodes. Somedeficiencies existing in model need be improved in the future update. The analyzed results inthis paper are verified by the model simulated output further.
引文
[01] Adler, R.F., G.J. Huffman, et al.The Version2Global Precipitation Climatology Project (GPCP)Monthly Precipitation Analysis (1979-Present).2003. J. Hydrometeor.,4:1147-1167.
    [02] Chang, J. C., Y. Zhang, and T. Li,. Interannual and interdecadal variation of the East Asian summermonsoon and tropical Pacific SSTs: Part II. Meridional structure of the monsoon. J. Climate.,2000,13,4326-4340.
    [03] Chen, X.Y, H.J. Wang, F. Xue and Q.C. ZengIntraseasonal oscillation: the global coincidence and itsrelationship with ENSO cycle. Adv. Atmos. Sci.,2001,18(3):445-453.
    [04] Chen, W., H.F. Graf and R.H. Huang. The interannual variability of East Asian winter monsoon and itsrelation to the summer monsoon.Adv. Atmos. Sci.,2000:17(01):48-60.
    [05] Dommenget, D. M. Latif. A cautionary note on the interpretation of EOFs. J. Climate,2002,15:216-225.
    [06] Duchon C. E.Lanczos filtering in one and two dimensions.Journal of Applied Meteorology,1979:18:1016-1022.
    [07] Fukutomi, Y., T. Yasunari. Tropical-extratropical interaction associated with the10-25-day oscillationover the western pacific during the northern summer.J. Meteor. Soc. Japan,2002,80(2):311-331.
    [08] Gill, AE. Some simple solutions for heat-induced tropical circulation. S. Quart. J.R.Meteor. Soc.,1980,106:447-4621.
    [09] Grinsted, A., S. Jevrejeva, J. Moore. Application of the cross wavelet transform and wavelet coherenceto geophysical time series. Nonlinear Proc. Geophys.,2004,11:561-566.
    [10] Horel, J.D.: Complex principal component analysis: theory and examples. Journal of AppliedMeteorology,1984,23:1660-1673.
    [11] Huang, RH, Li weijing. Influence of the heat source anomaly over the tropical weaterm Pacific on thesubtropical high over East Asia, Proceedings of the International Conference on the GeneralCirculation of East Asia, Chengdu, April10-15,1987,40-51.
    [12] Huang,RH,Y. F. Wu. The influence of ENSO on the summer climate change in China and itsmechanisms. Adv.Atmos.Sci.,1989,6(1):21-32.
    [13] Huang, RH, Lu Li. Numerical simulation of the relationship between the anomaly of the subtropicalhigh over East Asia and the convective activities in the western tropical Pacific. Adv.Atmos.Sci.,1989,6:202-214.
    [14] Huang, RH. Interaction between the30-60day oscillation, the walker circulation and the convectiveactivities in the tropical western pacific and their relations to the interannual oscillation. Adv. Atmos.Sci.,1994,11:367-384.
    [15] Huang, RH, R., H., Zhang and Q., Y., Zhang.The1997/98ENSO cycle and its impact on summerclimate anomalies in East Asia.Adv. Atmos. Sci.,2000,17(3):348-362.
    [16] Huang,R H., Huang Gang, Wei Zhigang. Climate variations of the summer monsoon over China.EastAsian Monsoon, Chang C P, Ed., World Scientific Publishing Co. Pte. Ltd.,2004,213-270.
    [17] Huffman, G. J., R. F. Adler, P. Arkin, et al,1997: The global precipitation climatology project (GPCP)combined precipitation dataset, Bull. Amer. Meteor. Soc.,78,5-20.
    [18] Jiang, X.A., T. Li and B. Wang,2004: Structures and mechanisms of the northward propagating borealsummer intraseasonal oscillation.J. Climate,17,1022–1039.
    [19] Jiang, X. N., and T. LI. Reinitiation of the Boreal summer intraseasonal oscillation in the tropicalIndian Ocean. J. Clim.,2005,18:3777-3795.
    [20] JU Jianhua, Slingo Julia. The Asian summer monsoon and ENSO. Q. J. Meteor Soc.,1995,121(525):1133-1168.
    [21] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR40-year reanalysis project.Bull. Amer.Meteor. Soc.,1991,72:133-138.
    [22] Lau KM, P H. Chan. Aspects of the40–50Day Oscillation during the Northern Winter as Inferredfrom Outgoing Longwave Radiation.Mon. Wea. Rev.,1985,113:1889–1909.
    [23] Lau KM, P. H. Chan. Aspects of the40–50Day Oscillation during the Northern Summer as Inferredfrom Outgoing Longwave Radiation. Mon. Wea. Rev.,1986,114:1354–1367.
    [24] Lau K.M, and C. P. Chang. Planetary scale aspects of the winter monsoon and atmosphericteleconnections.Monsoon Meteorology. C.-P. Chang and T. N. Krishnamurti, Eds., Oxford UniversityPress.,1987,161-201
    [25] Lau, K. M., L. Peng. Original of low frequency oscillation in the tropical atmosphere, Part I: the basictheory. J. Atmos. Sci.,1987,44:951-972.
    [26] Lau, N. C., and M. J. Nath. Impact of ENSO on the variability of the Asian-Australian monsoons assimulated in GCM experiments, J. Climate,2000,13:4287-4309.
    [27] Li,C. Y. Interaction between anomalous winter monsoon in East Asia and El Ni o events.Adv.Atmos.Sci.,1990,7:36-46.
    [28] Li, C.Y., S.Q. Sun, M.Q. MU.Original of the TBO–interaction between anomalous East Asian wintermonsoon and ENSO cycle.Adv. Atmos. Sci.,2001,18:554-566.
    [29] Li, C.Y., Z.X. Long and Q.Y. Zhang. Strong/weak summer monsoon activity over the South ChinaSea and atmospheric intraseasonal oscillation. Adv. Atmos. Sci.,2001:18(6),1146-1160.
    [30] Liebmanm, B., and C. A. SmithDescription of a complete (interpolated) outgoing longwave radiationdataset. Bull. Amer. Soc.,1996,77:1275-1277.
    [31] Liu, X.W., Yang, S., Kumar, A. et al. Diagnostics of subseasonal prediction biases of the Asian summermonsoon by the NCEP climate forecast system. Clim. Dyn.2012, DOI10.1007/s00382-012-1553-3.
    [32] Madden R A, Julian P R. Detection of a40-50day oscillation in the zonal wind in the tropical Pacific.Journal of Atmospheric Science,1971,28:702~708
    [33] Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a40—50dayperiods. Journal of Atmospheric Science,1972,29:1109~1123
    [34] Matsuno T. Quasi geostrophic motion in the equatorial area. J Meteor Soc Japan,1966,44:25-43.
    [35] Morrissey, M.L. A statistical analysis of the relationship among rainfall, outgoing longwave radiationand the moisture budget during January–March1979. Mon. Wea. Rev.,1986,114:931-982.
    [36] Murakami, T., T. Nakazawa and J.H. He.On the40-50day oscillation during the1979northernhemisphere summer.J. Meteor. Soc. Japan,1984,62:440-468.
    [37] Muthuvel C., and G. D. Bell.Tropical multidecadal and interannual climate variability in theNCEP-NCAR reanalysis.J. Climate,2004,17:1777-1803.
    [38] Philander, S. G. H. El Ni o, La Ni a and the Southern Oscillation, Academic Press, San Diego, CA,1990,289pp.
    [39] Prohaska J. A technique for analyzing the linear relationships between two meteorological fields.Mon.Wea. Rew.,1976,104:1345-1353.
    [40] Rasmusson, E.M., and J.M. Wallace. Meteorologic aspect of El Ni o/southern oscillation.Science,1983,222,1195-1202.
    [41] Ren, Baohua, R.H. Huang10-25-day tntraseasonal variation of convection and circulation associatedwith the thermal state of the western pacific warm pool during boreal summer. Adv. atmos.Sci,2002,19:321-336.
    [42] Ren, Baohua, R.H. Huang.30-60-day oscillations of convection and circulation associated with thethermal state of the western pacific warm pool during boreal summer. Adv.Atmos.Sci.,2003,20:781-793.
    [43] Smith T M, Reynolds R W.Improved extended reconstruction of SST(1854-1997).J Climate,2004,17(12):2466-2477.
    [44] Saha, S., S. Nadaga, C. THIAW, et al. The NCEP Climate Forecast System.J. Clim.,2006,19:3483-3517.
    [45] Saha, Suranjana, and Coauthors,2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer.Meteor. Soc.,91,1015–1057.
    [46] Saha, S. et al.,2011: The NCEP Climate Forecast System Version2. J. Clim., Submitted
    [47] Tao S Y,Chen L X. A review of recent research on the East Asian summer monsoon in China.Monsoon Meteorology, C. P. Cheng and T. N. Krishnamurti, Eds., Oxford University Press,1987,60-92.
    [48] Tomita, T., and T. Yasunari Role of the northeast winter monsoon on the biennial oscillation of theENSO/monsoon system. J. Meteor. Soc. Japan,1996,74,399-413.
    [49] Torrence, C., and G.P. Compo. A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc.,1998,79,61-78.
    [50] Van den Dool, Saha S. Frequency dependence in forecast skill. Mon. Wea. Rev.1990,118:128-137.
    [51] Wang, B., R. Wu and X. Fu. Pacifc–East Asian teleconnection: How does ENSO affect East Asianclimate. J. Climate,2000,13,1517–1536.
    [52] Wang, B., Q. Zhang. Pacifc–East Asian teleconnection. Part II: How the Philippine sea anomalousanticyclone is established during El Ni o development. J. Climate,2002,15:3252–3265.
    [53] Wang, L., W. Chen, and R.H. Huang,2008: Interdecadal modulation of PDO on the impact of ENSO onthe East Asian winter monsoon. Geophys. Res. Lett.,35, L2702.doi:10.1029/2008GL035287.
    [54] Wang,W.,Q., Kyong-Hwan Seo. The Madden-Julian Oscillation in NCEP Coupled Model Simulation.Terr. Atmos. Ocean. Sci.,2009,20(5):713-725.
    [55] Weaver, Scott J., Wanqiu Wang, Mingyue Chen, Arun Kumar.Representation of MJO Variability inthe NCEP Climate Forecast System.J. Climate,2011,24,4676–4694.
    [56] Webster, P.J. and S. Yang. Monsoon and ENSO: selectively interactive systems.Q.J.R. meteorol. Soc.,1992,118,877-926.
    [57] Wen, M., R.H. Zhang.Quasi-Biweekly oscillation of the convection around Sumatra and low-leveltropical circulation in boreal spring.Mon. Wea. Rev.,2008,136:189-205.
    [58] Wen Min, Song Yang, Augustin Vintzileos, Wayne Higgins, Renhe Zhang. Impacts of ModelResolutions and Initial Conditions on Predictions of the Asian Summer Monsoon by the NCEP ClimateForecast System.Weather and Forecasting,2012,27:629-646
    [60] Wheeler, M.C. and H.H. Hendon. An all-season real-time multivariate MJO index: Development of anindex for monitoring and prediction. Mon. Wea. Rev.,2004,132:1917-1932.
    [61] Wu B., T. Li, Zhou T. J. Asymmetry of Atmospheric Circulation Anomalies over the Western NorthPacific between El Nino and La Nina.J. Climate,2010,23:4807-4822.
    [62] Wu, R.G., Z, Zh. Hu. Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate,2003,16,3742–3758.
    [63] Slingo J.M. et al. Intraseasonal oscillation in15atmospheric general circulation models: Results froman AMIP diagnostic subproject. Climate Dyn,1996,12:325-357.
    [64] Yang, H., C.Y. Li,2003: The relation between atmospheric intraseasonal oscillation and summer severeflood and drought in the Changjiang-Huaihe river basin. Adv.Atmos.Sci,20(4),540-553.
    [65] Yang Hui, Ch.Y, Li. The relation between atmospheric intraseasonal oscillation and sumer severe floodand drought in the Changjiang-Huaihe River basin. Adv. Atmos. Sci.,2003,20(4):540-553.
    [66] Yang, J., B. Wang, B. Wang, Q. BaoBiweekly and21-30day variations of the subtropical summermonsoon rainfall over the lower reach of Yangtze river basin. J. Climate,2010,23:1146–1159.
    [67] Zhang, Q., and Huug van den Dool. Relative Merit of Model Improvement versus Availability ofRetrospective Forecasts: The Case of Climate Forecast System MJO Prediction. Wea. Forecasting,2012,7,1045–1051.
    [68] Zhang, R. H, A. Sumi and M. Kimoto. Impact of El Ni o on the East Asian monsoon: A diagnosticstudy of the’86/87and’91/92events. J. Meteor. Soc. Japan,1996,74(1):49-62.
    [69] Zhang, Renhe, A. Sumi and M. Kimoto. A diagnostic study of the impact of El Ni o on theprecipitation in China.Adv.Atmos.Sci,1999,16(2):229-241.
    [70] Zhang, Renhe. Relations of water vapor transport from Indian monsoon with that over East Asia andthe summer rainfall in China. Adv.Atmos.Sci,2001,18:1005-1017.
    [71] Zhang, Renhe, A. Sumi. Moisture circulation over East Asian during El Ni o episode in northernwinter, spring, and autumn. J. Meteor. Soc. Japan,2002,80,213-227.
    [72] Zhang Y, Sperber K R, Boyle J S. Climatology and interannual variation of the East Asian wintermonsoon: Results from the1979–1995NCEP/NCAR reanalysis. Mon Weather Rev,1997,125:2605–2619
    [73] Zhou Lian-Tong, Chi-Yung Tam, Wen Zhou and Johnny C.L. Chan: Influence of South China Sea SSTand ENSO on winter Rainfall over South China,Advances in Atmospheric Sciences,2010,27(4),832-844, Doi:10.1007/s00376-009-9102-7.
    [74] Zhou Lian-Tong and Renguang Wu. Respective Impacts of the East Asian Winter Monsoon and ENSOon Winter Rainfall in China,Journal of Geophysical Research (Atmosphere),2010,115(D02107), Doi:10.1029/2009JD012502.
    [75] Zhou, L., T.,2010: Impact of East Asian winter monsoon on rainfall over southeastern China and itsdynamical process. Int. J. Climatol,31(5),633–790. International Journal of Climatology
    [76] Zhou, L.T., C.Y. Tam, W. Zhou and J. C. L. CHAN.Influence of South China Sea SST and the ENSOon Winter Rainfall over South China. Adv.Atmos.Sci.,2010:27(4),832-844.
    [77]陈隽,孙淑清.东亚冬季风异常与全球大气环流变化,I:强弱冬季风影响的对比研究.大气科学,1999,23(1):101-111.
    [78]陈官军,魏凤英,巩远发.NCEP/CFS模式对东亚夏季延伸预报的检验评估.应用气象学报,2010,21(6):659-670.
    [79]陈隆勋,朱乾根,罗会邦,等.东亚季风[M].北京:气象出版社,1991:108-128.
    [80]陈月娟,周任君,简俊.东亚夏季风环流与ENSO循环的关系.高原气象,2002,21(6):536-545.
    [81]陈文.El Ni o和La Ni a事件对东亚冬、夏季风循环的影响.大气科学,2002,26(5):595-610.
    [82]丁一汇,春上胜人.亚洲季风[M].北京:气象出版社,1994:
    [83]董敏,张兴强,何金海,2004:热带季节内振荡时空特征的诊断分析.气象学报,62(6),821-830.
    [84]董敏,李崇银.热带季节内振荡模拟研究的若干进展.大气科学,2007,31(6):1113-1122.
    [85]房巧敏,龚道溢,毛睿.中国近46年来冬半年日降水变化特征分析.地理科学,2007,27(5):711-717.
    [86]符淙斌,滕星林.我国夏季的气候异常与埃尔尼诺/南方涛动现象的关系.大气科学(特刊),1988,133-141.
    [87]符淙斌,王强.气候突变的定义和检测方法.大气科学,1992,16(1):111-119.
    [88]阙志萍,李崇银.亚洲两个季风区大气季节内振荡的比较分析.大气科学,2011,35(5):791-800.
    [89]高辉,王永光.ENSO对中国夏季降水可预测性变化的研究.气象学报,2007,65(1):131-137.
    [90]何溪澄,丁一汇,何金海,李巧萍.中国南方地区冬季风降水异常的分析.气象学报,2006,64(5):595-604.
    [91]何溪澄,李巧萍,丁一汇,何金海. ENSO暖冷事件下东亚冬季风的区域气候模拟.气象学报,2007,65(1):18-28.
    [92]黄嘉佑.气象统计分析与预报方法[M].气象出版社,2004:3-27
    [93]黄荣辉.ENSO及热带海气相互作用动力学研究的新进展.大气科学,1990,14(2):234-242.
    [94]黄荣辉,傅云飞,臧晓云.亚洲季风与ENSO循环的相互作用.气候与环境研究,1996,1(1):38-54.
    [95]黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势.高原气象,1999,18(4):465-476.
    [96]黄荣辉.我国气候灾害的特征、成因和预测研究进展.中国科学院院刊,1999,(3):188-192.
    [97]黄荣辉,张振洲,黄刚,等.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别.大气科学,1998,22:460-469.
    [98]黄荣辉,张人禾,严邦良.关于东亚气候系统年际变化研究进展及其需进一步研究的问题.中国基础研究,1999,(2):66-75.
    [99]黄荣辉,黄刚,任保华.东亚夏季风的研究进展及其需要进一步研究的问题[J].大气科学,1999,23(2):129-141.
    [100]黄荣辉,陈文,丁一汇,李崇银.关于季风动力学以及季风与ENSO循环相互作用的研究[J].大气科学,2003,27(4):484-502.
    [101]黄荣辉,陈际龙,周连童,张庆云.关于中国重大气候灾害与东亚气候系统之间关系的研究[J].大气科学,2003,27(4):770-787.
    [102]黄荣辉,李崇银,王绍武,等.我国旱涝重大气候灾害及其形成机理研究[M].北京:气象出版社,2003:483.
    [103]黄荣辉.我国重大气候灾害的形成机理和预测理论研究研究.地球科学进展,2006,21(6):564-575.
    [104]黄荣辉,顾雷,陈际龙,黄刚.东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展.大气科学,2008,32(4):691-719.
    [105]黄晚华,杨晓光,李茂松,等.基于标准化降水指数的中国南方季节性干旱近58a演变特征.农业工程学报,2010,26(7):50-59.
    [106]纪忠萍,温晶,方一川,等.近50年广东冬半年降水的变化及连旱成因.热带气象学报,2009,25(1):29-36.
    [107]贾小龙,李崇银,2007:热带大气季节内振荡的季节性特征及其在SAMIL-R42L9中的表现.热带气象学报,23(3),219-228.
    [108]贾小龙,李崇银,2007:热带大气季节内振荡数值模拟对积云对流参数化方案的敏感性.气象学报,65(6),837-855.
    [109]蒋尚城.我国OLR应用研究的进展.气象科技,1994,137,1-9.
    [110]简裕庚,周文,陈创买.近一个半世纪来香港降水的变化特征.(自然科学版),2001,40(2):116-119.
    [111]金祖辉,陶诗言.ENSO循环与中国东部地区夏季和冬季降水关系的研究[J].大气科学,1999,23(6):663-672.
    [112]李崇银,1990:大气中的低频振荡.大气科学,14(1),32-45.
    [113]李崇银,周亚萍.热带大气季节内振荡和ENSO的相互关系.地球物理学报,1994,37(1):17-23.
    [114]李崇银.热带大气季节内振荡的几个基本问题.热带气象学报,1995,11(3):276-288.
    [115]李崇银,李桂龙. El Ni o影响热带大气季节内振荡的动力学研究.自然科学进展(国家重点实验室通讯),1996,6(1):27-33.
    [116]李崇银. El Ni o对热带大气季节内振荡的影响.自然科学进展(国家重点实验室通讯),1996,6(1):27-33.
    [117]李崇银.气候动力学引论[M].气象出版社,2000:233-298.
    [118]李崇银,穆明权.东亚冬季风-暖池状况-ENSO循环的关系.科学通报,2000,45(7):678-685.
    [119]李崇银,龙振夏.热带大气季节内振荡的异常与1997年El Ni o事件的发生.大气科学,2001,25(5):589-595.
    [120]李崇银,龙振夏,穆明权.大气季节内振荡及其重要作用.大气科学,2003,27(4):518-535.
    [121]李崇银.大气季节内振荡研究的新进展.自然科学进展,2004,14(7):734-741.
    [122]李崇银,贾小龙,董敏.大气季节内振荡的数值模拟比较研究.气象学报,2006,64(4):412-419.
    [123]李丽平,王盘兴,管兆勇,杨松.热带对流季节内振荡强度异常特征及其与海表温度的关系.应用气象学报,2008,19(2):145-152.
    [124]李巧萍,丁一汇.区域气候模式对东亚季风和中国降水的多年模拟与性能检验.气象学报,2004,62(2):140-153.
    [125]李薇,俞永强.大气季节内振荡耦合模式模拟研究大气科学.2001,25(1):118-131.
    [126]梁建茵,林爱兰,李春晖.南海及周边地区TBB季节内振荡及其与ENSO的联系.气象学报,2005,63(3):265-277.
    [127]刘舸,孙淑清,张庆云,应明.热带辐合带的季节内振荡及其与热带气旋发生阶段的关系.大气科学,2009,33(4),879-889.
    [128]刘黎明,许纬,赵志军.广东近四十年来气候跃变特征分析.中山大学学报(自然科学版),1994,33(5):40-44.
    [129]刘锦銮,黎迪庆.广东80年代以来的气候变化特点.广东气象,1999(1):2-5.
    [130]琚建华,孙丹,吕俊梅.东亚季风区大气季节内振荡经向与纬向传播特征分析.大气科学,2008,32(3),523-529.
    [131]刘芸芸,俞永强,何金海,张振国.全球变暖背景下热带大气季节内振荡的变化特征及数值模拟.气象学报,2009,64(6),723-733.
    [132]刘一伶,琚建华,吕俊梅.热带低频振荡与南海夏季风季节内振荡的关系.科学创新导报,2009,14:230-231.
    [133]穆明权,李崇银.东亚冬季风年际变化的ENSO信息Ⅰ.观测资料分析.大气科学,1999,23(3):276-285.
    [134]穆明权,李崇银.东亚冬季风年际变化的ENSO信息Ⅰ.模拟资料分析.气候与环境研究,1999,4(2):276-285.
    [135]倪允琪,邹力,刘颖. ENSO和西太平洋暖池对我国气候影响的诊断分析研究.气象科学,1995,15(4):118-133.
    [136]倪允琪,邹力,张向东,等.ENSO及其对亚洲季风和我国气候变化影响的研究.气象科学,1995,15(4):30-45.
    [137]齐艳军,张人禾,Tim Li,温敏,2008:大气季节内振荡在印度夏季风建立和年际变化中的作用.科学通报,53(23),2972-2975.
    [138]屈述军,张铭. IAP9L AGCM中大气季节内振荡的时空特征.气候与环境研究,2004,9(4):567-574.
    [139]孙安健,黄荣辉.1983与1985年夏季北半球500hPa高度场大气低频波的振荡特征.大气科学,1994,18(5):576-585.
    [140]孙柏民,李崇银.冬季东亚大槽的扰动与热带对流活动的关系.科学通报,1997,42:500-503.
    [141]孙丹,琚建华,吕俊梅.2003年东亚季风季节内振荡对我国东部地区降水的影响.热带气象学报,2008,24(6):641-648.
    [142]涂长望,黄仕松.中国夏季风之进退.气象学报,1944,(1):01-27.
    [143]陶诗言.中国之暴雨[M].北京:科学出版社,1980:08-38.
    [144]陶诗言,张庆云.亚洲冬夏季风对ENSO事件的响应.大气科学,1998,22(4),399-407.
    [145]王允,张庆云,彭京备.东亚冬季环流季节内振荡与2008年初南方大雪关系.气候与环境研究,2008,13(4):459-467.
    [146]魏凤英.现代气候统计诊断与预测技术[M].气象出版社,2007:57-66.
    [147]温敏,张人禾.苏门答腊附近大气准双周振荡的可能维持机制.科学通报,2005,50:938-940.
    [148]伍红雨,杜尧东,陈桢华,等.华南雨日、雨强的气候变化.热带气象学报,2011,27(6):877-888.
    [149]徐国强,朱乾根.大气低频振荡研究回顾与概述.气象科技,2003,31(4):193-200.
    [150]薛峰,梁信忠,王万秋等.大气低频振荡的数值模拟.大气科学,1996,20(6):654-661.
    [151]徐建军,朱乾根,周铁汉.近百年东亚冬季风的突变性和周期性.应用气象学报,1999,10(1):01-08.
    [152]杨辉,李崇银.热带大气季节内振荡的传播及影响因子研究.气候与环境研究,2005,10(2):145-156.
    [153]张蓬勃,管兆勇,孙密娜,曹舒娅.SVD分析揭示的澳大利亚高压年际变化对中国夏季降水的可能影响.气象学报,2010,68(6):908-917.
    [154]朱乾根,林锦瑞,寿绍文,唐东昇.天气学原理[M].气象出版社,2000,600-643.
    [155]朱铁才,林文实,叶坤辉,徐良韬.珠三角地区近38年冬半年降水量变化特征及干旱成因分析.中山大学学报(自然科学版),2011,50(4):144-150.
    [156]宗海锋,陈烈庭,张庆云. ENSO与中国夏季降水年际变化关系的不稳定性特征.大气科学,2010,34(1):184-192.
    [157]邹力,倪允琪.ENSO对亚洲夏季风异常和我国夏季降水的影响[J].热带气象学报,1997,13(4):306-314.
    [158]邹力,倪允琪,1998:ENSO期热带太平洋和印度洋海温异常对亚洲夏季风变异影响的数值研究.海洋预报,15(1),19-31.
    [159]竺可桢.东南季风与中国之雨量.地理学报,1934,1(1):01-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700