用户名: 密码: 验证码:
雷暴中的起电放电物理过程在WRF模式中的耦合及检验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将雷暴云的起电、放电物理过程引入中尺度的WRF (Weather Research andForecasting)模式,并对超级单体、飑线和台风过程进行了模拟研究。起电过程在Milbrandt双参数微物理方案中写入,包含霰、雹与冰晶、雪之间的非感应起电机制,以及霰、雹与云滴之间的感应起电机制。放电参数化方案考虑了闪电的整体效应。
     对一次超级单体的模拟结果表明,电荷结构呈现正、负、正的三极性结构,主正电荷区在-40oC到-60oC之间,主负电荷区在-10oC到-30oC之间,下部正电荷区在零度层附近,总电荷浓度最大值接近2nc/m3。这种电荷结构的垂直分布同以往在强对流天气系统中观测到的典型电荷结构一致。
     对飑线过程的模拟结果表明,部分单体电荷结构呈现出反的偶极性且飑线中最大电荷浓度小于超级单体。分析发现粒子间相互碰撞的起电位置主要在反转温度层以下,使得霰粒子荷正电,而冰晶粒子荷负电,导致了电荷结构极性的反转。在飑线成熟阶段,模拟得到的闪电分布与观测的地闪活动在分布型上相似。同化雷达资料后模拟的累积降水量和闪电活动都同实际观测更加接近。
     对台风的模拟结果表明,在台风外雨带中,模拟出的闪电活动分布同实际观测的地闪活动在位置上相接近,在台风内雨带中,地闪定位系统没有探测到地闪,但是模式模拟出了部分闪电活动,台风内雨带中可能存在云闪活动。
The processes of cloud electrification and lightning parameterization are introduced intothe Weather Research and Forecasting (WRF) model, in which the supercell, squall line andtyphoon are simulated. The numerical formulation of the electrical processes includes thenoninductive graupel-ice, hail-ice, hail-snow and inductive graupel-cloud, hail-cloud chargeseparation mechanisms coupled with the Milbrandt two-moment microphysical scheme. Inthe mean time, a bulk lightning parameterization is considered in the model.
     On the one hand, the simulation of supercell produced a normal tripolar charge structure,consisting of a main negative charge region (-10oC to-30oC) with an upper main positivecharge region (-40oC to-60oC) and a lower positive charge region (near0oC). The maximumtotal charge density is approximately2nc/m3. The simulated vertical profile of chargestructure is in accordance with the previous classical structure observed in the severeconvective weather.
     On the other hand, the simulation of the squall line showed the inverted dipolar chargestructure in some cells and the maximum total charge density is smaller than that of thesupercell. The result also showed that the charge separation process take place mainly belowthe level of charge reversal, hence the graupel particles charged positively and the iceparticles charged negatively, leading to the reverse of the charge structure. Moreover, thesimulated distribution of lightning density is similar with observed cloud-to-ground (CG)lightning density in the mature stage of the squall line. While the predicted distribution of theaccumulative rainfall and lightning activity with assimilation of radar data are more similarwith the observation.
     The simulation of typhoon indicated that the simulative distribution of the CG lightningactivity is close to the observation in outer rain band. In the inner rain band, No CG lightningwas detected by the CG lightning location system, whereas the simulation showed somelightning activity which suggested that the intra-cloud lightning activity may exist in innerrain band.
引文
Altaratz O, Reisin T, Levin Z.2005. Simulation of the electrification of winter thunderclouds using thethree dimensional Regional Atmospheric Modeling System (RAMS) model: Single cloud simulations. J.Geophys. Res.,110, D20205.
    Alberts S C, McGinley J A, Birkenhuer D A, et al.1996. The Local Analysis and Prediction System(LAPS): Analysis of clouds, precipitation and temperature. Wea. and Forecasting,11:273-287.
    Barthe C, Molinie G, Pinty J P.2005. Description and first results of an explicit electrical scheme in a3Dcloud resolving model. Atmos. Res.,76:95-113.
    Bratseth A.M1986. A. Statistical interpolation by means of successive corrections. Tellus,38A (4):439-447.
    Brooks I M, Saunders C P R, Mitzeva R P, Peck S L.1997. The effect on thunderstorm charging of the rateof rime accretion by graupel. Atmos. Res.,43:277-95.
    Chen S H, Sun W Y.2002. A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan,80:99-118.
    Church C R.1966. The electrification of hail. Ph. D. dissertation, University of Durham.55-57.
    Elster J, Geitel H,Zur.1913. Influenzetheorie der nieders chlagsele ktziritat. Phys Z,14:1287-1292.
    冯桂力.2008.强对流天气的闪电特征及其与动力过程和降水结构关系的研究.中国科学院研究生院博士学位论文.
    Fierro A O, Reisner J M.2011. High-resolution simulation of the electrification and lightning of hurricaneRita during the period of rapid intensification. J. Atmos. Sci.,67:477-494.
    Frenkel I I.1994. A theory of the fundamental phenomena of atmospheric electricity. Izv. Akad. NaukSSSR, Ser.8:295-304.
    Gardiner B, Lamb D, Hallett J, et al.1985. Measurements of initial potential gradient and particle chargesin a Montana summer thunderstorm. J. Geophys. Res.,90(D4):6079-6086.
    Gaskell W, Illingworth A J I.1980. Charge transfer accompanying individual collision between ice particlesits role in thunderstorm electrification. Quart. J. R. Meteor. Soc.,106:841-854.
    Goodman S J, Buechler D E, P D Wright.1989. Polarization radar and electrical observations of microburstproducing storms during COHMEX. Preprints,24th Conf on radar Meteorology. Tallahassee, Amer.Meteor. Soc.,109-112.
    Gunn R.1954. Electric field regeneration in thunderstorms. J. Meteor.,11:130-138.
    Gunn R.1956. The hyper electrification of raindrops by atmosphere electric field. J. Meter.,13:283-291.
    郭凤霞,张义军,言穆弘.2007.青藏高原那曲地区雷暴云电荷结构特征数值模拟研究.大气科学,31(1):28-36.
    郭凤霞,张义军,言穆弘.2010.雷暴云首次放电前两种非感应起电参数化方案的比较.大气科学,34(2):361-373.
    Hayashi S.2006. Numerical simulation of electrical space charge density and lightning by using a3-dimensional cloud-resolving model. Sola,2:124-127.
    Helsdon J H, Wu G, Farley R D.1992. An intracloud lightning parameterization scheme for a stormelectrification model. J. Geophys. Res.,97:5865-5884.
    Hong S Y, Dudhia J, Chen S H.2004. A revised approach to ice microphysical processes for the bulkparameterization of clouds and precipitation. Mon. Wea. Rev.,132:103-120.
    Hong S Y, Lim J O J.2006. The WRF Single-Moment6-Class Microphysics Scheme (WSM6), J. KoreanMeteor. Soc.,42:129-151.
    黄丽萍,管兆勇,陈德辉,等.2008.基于高分辨率中尺度气象模式的实际雷暴过程的数值模拟试验.大气科学,32(6):1341-1351.
    Illingworth A J, Caranti J M.1985. Ice conductivity restraints on the inductive theory of thunderstormelectrification. J. Geophys. Res.,90:6033-6039.
    Jennings S G.1975. Charge separation due to water droplet and cloud droplet interactions in an electricfield. Quart. J. Roy. Meteor. Soc.,101:227-234.
    Jayaratne S, Saunders C P R.1983. Laboratory studies of the charging of soft-hail during crystalinteractions. Quart. J. Roy. Meteor. Soc.,109:609-630.
    Kasemir H W.1960. A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res.,65:1873-1878.
    Keith W D, Saunders C P R.1990. Further laboratory studies of the charging of graupel during ice crystalinteractions. Atmos. Res.,25:445-464.
    Kessler E,1969. On the distribution and continuity of water substance in atmospheric circulation, Meteor.Monogr.,32, Amer. Meteor. Soc.,84pp.
    Krehbiel P R.1986. The electrical structure of thunderstorms. The earth’s electrical Environment, studiesin Geophysics. National Academy Press.
    Lin Y L, Farley R D, Orville H D.1983. Bulk parameterization of the snow field in a cloud model. J.Climate Appl. Meteor.,22:1065-1092.
    刘冬霞.2010.强雷暴系统中的闪电活动特征及其电荷结构的数值模拟研究.中国科学院研究生院博士学位论文.
    李万莉,刘冬霞,郄秀书等.2012.基于RAMS V6.0的非感应起电机制评估和雷暴初期电荷结构模拟.物理学报,61(5):059202.
    MacGorman D R, Few A A, Teer T L.1981. Layered lightning activity. J. Geophys. Res.,86:9900-9910.
    MacGorman D R, Staka J M, Ziegler C L.2001. A Lightning Parameterization for Numerical CloudModels. J. Appl. Meteor.,40:459-478.
    Mansell E R, MacGorman D R, Ziegler C L, et al.2002. Simulated three-dimensional branched lightning ina numerical thunderstorm model. J. Geophys. Res.,107: D9.
    Mansell E R, MacGorman D R, Ziegler C L, et al.2005. Charge structure and lightning sensitivity in asimulated multicell thunderstorm. J. Geophys. Res.,110: D12101.
    Mansell R M, Ziegler C L.2010. Simulated electrification of a small thunderstorm with two-moment bulkmicrophysics. J. Atmos. Sci.,67:171-194.
    Marshall B J P, Latham J, Saunders C P R.1978. A laboratory study of charge transfer accompanying thecollision of ice crytals with a simulated hailstone. Quart. J. R. Meteor. Soc.,104:163-178.
    Marshall T C, McCarthy M P, Rust W D.1995. Electric field magnitudes and lightning initiation inthunderstorms. J. Geophys. Res.,100(D4),7097-7103.
    Mason B J.1971. The Physics of Clouds. Clarendon. Oxford, U.K.,670pp.
    Mazur V, Ruhnke L H.1998. Model of electric charges in thunderstorms and associated lightning. J.Geophys. Res.,103:23299-23308.
    Milbrandt J A, Yau M K.2005. A Multimoment bulk microphysics parameterization. Part I: Analysis of therole of the spectral shape parameter. J. Atmos. Sci.,62:3051-3064.
    Milbrandt J A, Yau M K.2005. A multimoment bulk microphysics parameterization. Part II: A proposedthree-moment closure and scheme description. J. Atmos. Sci.,62:3065-3081.
    Morrison H, Thompson G, Tatarskii V.2008. Impact of cloud microphysics on the development of trailingstratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon.Wea. Rev.,137:991-1007.
    Moore C B, Vonnegut B, Holden D N.1991. Anomalous electric field associated with clouds growing overa source of negative space charge. J. Geophys. Res.,94:13127-13134.
    马明.2004.雷电与气候变化相互关系的一些研究.中国科学技术大学博士学位论文.
    Pasko V, Inan U S, Bell T F.2000. Fractal structure of sprites. Geophys. Res. Lett.,27:497-500.
    Petrov N I, Petrova G N.1993. Physical mechanisims for intracloud lightning discharge. Tech. Phys.,38:287-290.
    Petrov N I, Petrova G N.1999. Physical mechanisims for the development of lightning discharge between athundercloud and ionosphere. Tech. Phys.,44:472-475.
    Pereyra R G, Avila E E, Catellano N E, et al.2000. A laboratory study of graupel charging. J. Geophys. Res.,105:20803-20812.
    Pringle J E.1973. Numerical simulation of atmosphere electricity effects in a cloud model. J. Geophys.Res.,78:4508-4516.
    Rawlins F.1982. A numerical study of thunderstorm electrification using a three dimensional modelincorporating the ice phase. Quart. J. Roy. Meteor. Soc.,108:779-800.
    Reynolds S E, Brook M.1956. Correlation of the initial electric field and the radar echo in thunderstorms. J.Meteor.,13:376-380.
    Saunders C P R, Keith W D, Mitzeva R P.1991. The effect of liquid water on thunderstorm charging, J.Geophys. Res.,96(D6):11007-11017.
    Saunders C P R.1993. A review of thunderstorm electrification processes. J. Appl. Meteor.,32:642-655.
    Saunders C P R, Peck S L.1998. Laboratory studies of the influence of the rime accretion rateonchargetransfer during crystal/graupel collisions. J. Geophys. Res.,103:13949-13956.
    Saunders C P R, Avila E E, Peck S L, et al.1999. A laboratory study of the effects of rime ice accretion andheating on charge transfer during ice crystal/graupel collisions, Atmos. Res.,51(2):99-117.
    盛春岩,薛德强,雷霆,等.2006.雷达资料同化与提高模式水平分辨率对短时预报影响的数值对比试验.气象学报,64(3):293-308.
    Skamarock W C, Klemp J B, Dudhia J, et al.2008. A Description of the Advanced Research WRF Version3. NCAR Technical Note, NCAR/TN-475+STR,113pp, National Center for Atmospheric Research,Boulder, Colorado, USA, available at: http://wrf-model.org/wrfadmin/publications.php.
    Sun Anping, Yan Muhong, Zhang Yijun, et al.2002. Numerical study of thunderstorm electrification with athree-dimensional dynamics and electrification coupled model-model description and parameterizationof electrical processes. Acta Meteor. Sinica,16(1):107-122.
    Solomon R, Baker M B.1996. A one-dimensional lightning parameterization. J. Geophys. Re.,101:14983-14990.
    Solomon R, Schroeder V, Baker M B.2001. Lightning initiation-conventional and runaway-breakdownhypotheses. Quart. J. R. Meteor. Soc.,127:2683-2704.
    Stolzenburg M, Rust W D, Smull B F, et al.1998. Electrical structure in thunderstorm convective regions1.Mesoscale convective systems. J. Geophys. Res.,103(D12):14059-14078.
    谭涌波.2006.闪电放电与雷暴云电荷_电位分布相互关系的数值模拟.中国科学技术大学博士学位论文.
    Takahashi T.1973. Electrification of condensing and evaporating liquid drops. J. Atmos. Sci.,30:249-255.
    Takahashi T.1974. Numerical simulation of warm cloud electricity. J. Atmos. Sci.,31:2160-2181.
    Takahashi T.1978. Riming electrification as a charge generation mechanism in thunderstorms. J. Atm. Sci.,35:1536-1548.
    Takahashi T.1979. Warm Cloud Electricity in a Shallow Axisyminetric Cloud Model. J. Atmos. Sci.,36:2236-2258.
    Takahashi T.1983. A numerical simulation of winter cumulus electrification. Part I: Shallow cloud. J.Atmos. Sci.,40:1257-1280.
    Takahashi T.1987. Determination of lightning origins in a thunderstorm model. J. Meteor. Soc. Japan.,65(5):777-794.
    Tao W K, Simpson J, McCumber M.1989. An ice-water saturation adjustment. Mon. Wea. Rew.,117:231-235.
    Tao W K, Simpson J.1993. The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos.Oceanic Sci.,4:35-72.
    Thompson G, Rasmussen R M, Manning K.2004. Explicit forecasts of winter precipitation using animproved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev.,132:519-542.
    王飞.2010. GRAPES中尺度模式对闪电活动的数值模拟研究.中国科学院研究生院博士学位论文.
    王瑾.2008.基于强对流数值模拟的贵州冰雹识别及临近预报方法研究.中国科学院研究生院博士学位论文.
    Weisman M L, Klemp J B.1982. The dependence of numerically simulated convective storms on verticalwind shear and buoyancy. Mon. Wea. Rev.,110:504-520.
    Wicker L J, Wilhelmson R B.1995. Simulation and analysis of tornado development and decay within athree-dimensional supercell thunderstorm. J. Atmos. Sci.,52:2675-2703.
    Wiesmann H J, Zeller H R.1986. A fractal model of dielectric breakdown and prebreakdown in soliddielectric. J. Appl. Phys.,60:1770-1773.
    Williams E R.1985. Large-scale charge separation in thundercloud. J. Geophys. Res.,90:6013-6025.
    Wilson C T R.1929. Some thundercloud problems. J. Franklin Inst.,208:1-12.
    Wormell T W.1953. Atmospheric electricity:Some recent trends and problems. Quart. J. R. Meteor. Soc.,79:3-38.
    Xue M, Droegemeier K K, Wong V.2000. The Advanced Regional Prediction System (ARPS)-Amulti-scale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics andverification. Meteor. Atmos. Phys.,75:161-193.
    Xue M, Droegemeier K K, Wong V, et al.2001. The Advanced Regional Prediction System (ARPS)-Amulti-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics andapplications. Meteor. Atmos. Phys.,76:143-166.
    Xue M, Wang Donghai, Gao Jidong, et al.2002. The Advanced Regional Prediction System (ARPS)Storm-scale numerical weather prediction. Meteor. Atmos. Phys.,82:139-170.
    徐广阔,孙建华,赵思雄.2009.基于雷达资料同化的2003年7月一次暴雨过程的数值模拟及分析.热带气象学报,25(4):427-434.
    言穆弘,郭昌明,葛正谟.1996.积云动力和电过程二维模式研究I.理论和模式.地球物理学报,39(1):52-64.
    言穆弘,郭昌明,葛正谟.1996.积云动力和电过程二维模式研究II.结果分析.地球物理学报,39(1):65-74.
    Ziegler C L, MacGorman D R, Dye G E, et al.1991. A model evaluation of noninductive graupel-icecharging in the early electrification of a mountain thunderstorm. J. Geophys. Res.,96(D6):12833-12855.
    Ziegler C L, MacGorman D R.1994. Observed lightning morphology relative to modeled space charge andelectric field distributions in a tornadic storm. J. Atmos. Sci.,51:833-851.
    张义军,言穆弘,刘欣生.1999.雷暴中放电过程的模式研究.科学通报,44(12):1322-1325.
    周志敏,郭学良.2009.强雷暴云中电荷多层分布与形成过程的三维数值模拟研究.大气科学,33(3):600-620.
    周志敏,郭学良.2009.强雷暴个例云内闪电与上升气流及液水含量关系的三维数值模拟.气候与环境研究,14(1):31-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700