玉米秸皮粘胶纤维浆粕仿生预处理工艺和蠕动发酵罐研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究工作选取玉米秸秆皮为原料,以制备纤维浆粕为研究目标。运用工程仿生学的仿生耦合设计思想,以反刍动物瘤胃及其微生态环境为生物原型,进行了玉米秸皮粘胶纤维浆粕瘤胃微生物共培养预处理工艺研究和蠕动式耦合发酵罐的设计。以瘤胃微生物降解秸秆的机理为生物原型设计了仿生预处理工艺。以瘤胃为生物原型进行了蠕动式耦合发酵罐的仿生耦合设计。设计蠕动性能试验装置,进行了蠕动对抽滤的效果影响试验装置,对蠕动式耦合发酵罐的关键性能及实现技术进行了试验研究。对玉米秸皮预水解硫酸盐法制浆和通过瘤胃直接降解的秸秆制浆进行了对比试验研究,设计了瘤胃微生物共培养预处理玉米秸皮粘胶纤维浆粕工艺。
With the gradual decrease in the oil resources in the world, the petroleum-based industry will necessarily shift to a renewable-based one. Now, the lignocellulose resource is one of the important parts for the biomass resources. Transforming the cellulose, hemicellulose and lignin into the renewable energy sources and renewable materials is one of the main development directions in biomass industry in the future, and how it comes true is known as the world-wide problem. The mechanical method is simple but the added value of productions is low. The chemical method is of high energy consumption and serious pollution. The biodegradation method is being paid to attention owing to its normal pressure, low energy consumption and low pollution. The biodegradation method coupled with mechanical and chemical method may be the solution for the use of lignocellulose. The oil industry spent 100 years in forming the more perfect oil industry chain. In contrast, the industrial application and research of straw are still in its early stages, and grafted on the oil industry, paper-making industry, chemical fiber industry and industrial ethanol industry, the straw processing will soon become a new one.
     In this study, taking the skins of corn stalks as raw materials and taking the rumen of ruminants and micro-ecological environment as biological prototype, the bionic pretreatment process of viscose fiber pulp for cornstalks skins and peristaltic fermentor design was made.
     Based on the mechanism study of straw degradation using the rumen microorganisms, the bionic pretreatment process was presented. That is, taking the skinss of corn straw as solid substrate, the semi-continuous co-culture of rumen fungi and bacterium used during the metabolites of rumen fungi was made to expect relatively high hemicellulose degradation rate and relatively low cellulose degradation rate. The study on rumen microorganisms demonstrated the feasibility of the process, and the process was conducted in the laboratory.
     Degradation of straw using extremely anaerobic rumen microorganisms is partly because of synergies of the internal microorganisms, and another major reason lies in the symbiosis between the rumen microorganisms and ruminant. Rumen provides rumen microbial growth with a stable environment and rumen microorganisms provides the necessary nutrients for ruminants.
     In this study, taking the rumen as biological prototype, the peristaltic fermentor design was made. Based on the control system of modern fermentor, the flexible balloon, instead of the conventional cylindrical quartz glass tank, was adopted. The combination of component vibrations, instead of mechanical agitations, imitates the peristalsis of rumen. The filter membrane was installed at the balloon wall so as to achieve the coupling design of the in-situ fermentation and separation, and because of peristaltic actions the filter cake on the filter membrane, concentration polarization and pollution were reduced. The removal of blind spot in fermentor is fully achieved by the installation of sensor.
     The peristaltic performance testing apparatus was designed and through the studies on the impact of electromagnet position, autooscillation and vibration combination on the fermentation performance, the primary and secondary factors were obtained. The testing apparatus to test the peristaltic impact on the pumping filtration was designed and it was shown that the peristalsis had the clear impact on the pumping filtration.
     Finally, the co-culture pretreatment process on viscose fiber pulps for cornstalks skins and rumen microorganisms was studied, which included the laboratory research on pulping by sulphate process and the validation research on pulping by rumen for the skins of cornstalks.
引文
[1] 曲音波. 开发生物质资源 实现可持续发展[J]. 国际技术经济研究. 1999(02): 30-35.
    [2] 韩鲁佳, 闫巧娟, 刘向阳, 胡金有. 中国农作物秸秆资源及其利用现状[J]. 农业工程学报. 2002(03): 87-91.
    [3] Lin Qiaoyuan. Evaluation of treatment techniques for black liquor and waste water of wheat straw pulping[J]. Chung-kuo Tsao Chih/China Pulp and Paper. 1999, 18(1): 50-55.
    [4] Herpoel I., Jeller H.,Fang G., Petit-conil M., Bourbonnais R., Robert J., Asther M., Sigoillot J.. Efficient enzymatic delignification of wheat straw pulp by a sequential xylanase-laccase mediator treatment[J]. Journal of Pulp and Paper Science. 2002, 28(3): 67-71.
    [5] 石元春. 凝炼全局性战略性重大课题开展自主创新[DB/CD].http://www.cas.ac.cn/html/Dir/2005/07/17/13/14/56.htm.
    [6] 庞新民, 程博文. 粘胶纤维的产品与应用[J]. 天津纺织科技. 1999(02): 15-20.
    [7] 冀星陈, 冠益, 李丽, 王璇, 郗小林. 我国大型石油公司如何应对生物乙醇与生物柴油发展潮流[J]. 国际石油经济. 2008(02): 50-55.
    [8] 孙竹莹, 郭升民. 玉米秸杆皮穰分离及其制浆试验[J]. 中华纸业. 2001(05): 41-42.
    [9] 吴养育. 利用植物秸秆生产高强瓦楞原纸技术研究[J]. 黑龙江造纸. 2004(01): 6-7.
    [10] 王久臣, 戴林, 田宜水, 秦世平. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报. 2007(09): 276-282.
    [11] 吉林省玉米秸秆综合开发利用与市场现状情况[DB/CD].http://www.jlagri.gov.cn/nykjn/xxkd-4.htm.
    [12] 宋德武, 顾宇鹭. 天竹纤维的性能及其鉴别方法[J]. 针织工业. 2005(09): 9-12.
    [13] Chen Hongzhang, Liu Liying, Yang Xuexia, Li Zuohu. New process of maize stalk amination treatment by steam explosion[J]. Biomass and Bioenergy. 2005, 28(4): 411-417.
    [14] Zhu Shengdong, Yu Ziniu, Wu Yuanxin, Zhang Xia, Li Hui, Gao Ming. Enhancing enzymatic hydrolysis of rice straw by microwave pretreatment[J]. Chemical Engineering Communications. 2005, 192(10-12): 1559-1566.
    [15] Zhu Shengdong, Wu Yuanxin,Yu Ziniu, Zhang Xuan, Wang Cunwen, Yu Faquan, Jin Siwei, Zhao Yufeng, Tu Shaoyong, Xue Yongping. Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol[J]. Biosystems Engineering. 2005, 92(2): 229-235.
    [16] Sun X. F.,Sun R. C.,Tomkinson J.,Baird M. S. Isolation and characterization of lignins, hemicelluloses, and celluloses from wheat straw by alkaline peroxide treatment[J]. Cellulose Chemistry and Technology. 2003, 37(3-4): 283-304.
    [17] 陈洪章. 秸秆资源生态高值化理论与应用[M]. 北京: 化学工业出版社, 2006.
    [18] 陈洪章. 纤维素生物技术[M]. 北京: 化学工业出版社, 2005.
    [19] 韩学风. 农作物秸秆的综合利用[D]. 2003.
    [20] 张伏. 淀粉/玉米秸秆纤维复合材料的制备及仿生层构板材[D]. 吉林大学, 2007.
    [21] 霍夫里特. 木质素、腐殖质和煤[M]. 北京: 化学工业出版社, 2004.
    [22] 颜季琼. 高等植物细胞壁的结构和功能(二)[J]. 生物学通报. 1999(02): 11-13.
    [23] 朱跃钊, 卢定强, 万红贵, 贾红华. 木质纤维素预处理技术研究进展[J]. 生物加工过程. 2004, 2(04): 10-15.
    [24] 张莉. 粘胶行业走势趋好[J]. 纺织服装周刊. 2006(44): 11.
    [25] 戴红梅. 粘胶纤维为什么这样火?[J]. 纺织服装周刊. 2008(08): 8-9.
    [26] 杨之礼. 纤维素与粘胶纤维 中册[M]. 北京: 纺织工业出版社, 1981.
    [27] 赵华, 丁涓. 白腐菌预处理对丙酸蒸解玉米芯制备纤维素的影响[J]. 林产化学与工业. 2007(06): 71-77.
    [28] 赵建, 李雪芝, 曲音波, 高培基. 麦草的酶法化学制浆(Ⅱ)——酶法浆漂白性能的研究[J]. 中国造纸学报. 2003(02): 98-100.
    [29] 葛培锦, 赵建, 李雪芝, 曲音波. 木聚糖酶在麦草碱法化机浆中的应用研究[J]. 纤维素科学与技术. 2005(01): 5-11.
    [30] 李雪芝, 赵建, 曲音波. 木聚糖酶处理对麦草化学组成及其纸浆纤维长度的影响[J]. 林产化学与工业. 2006(02): 127-131.
    [31] 李春鸣, 赵建, 陈嘉川, 陈建宏. 青霉产木聚糖酶处理对麦草化学制浆和漂白性能的影响[J]. 上海造纸. 2006(03): 12-17.
    [32] 葛培锦, 赵建, 许静, 曲音波, 尤纪雪. 麦草在木聚糖酶―碱法机械制浆过程中化学成分与化学元素的变化[J]. 纤维素科学与技术. 2005(02): 1-7.
    [33] 赵建, 李雪芝, 曲音波, 高培基, 李昭成, 杨桂花. 麦草的酶法化学制浆(Ⅰ)不同种类酶液处理对麦草化学制浆性能的影响[J]. 中国造纸学报. 2002(02): 1-6.
    [34] 黄峰, 高培基, 杨桂花, 傅英娟, 陈嘉翔. 木聚糖酶、木素酶预处理制备硫酸盐浆的研究[J]. 中国造纸学报. 2001(02): 11-17.
    [35] 任露泉, 刘燕, 李建桥, 丛茜, 韩志武. 仿生学交叉学科高层次人才教育[C]. 江苏,镇江: 2006.
    [36] 陈秉聪. 车辆行走机构形态学及仿生减粘脱土理论[M]. 北京: 机械工业出版社, 2001.
    [37] 路甬祥. 仿生学的意义与发展[C]. 北京:2003.
    [38] Vincent J F, Bogatyreva O A, Bogatyrev N R, Bowyer A, Pahl A K. Biomimetics: its practice and theory[J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE. 2006, 3(9): 471-482.
    [39] N R. Bogatyrev. A “Living” Machine[J]. Journal of Bionics Engineering. 2004(02): 79-87.
    [40] 叶凝芳, 何品晶, 吕凡, 邵立明. 厌氧发酵过程pH对微生物多样性和产物分布的影响[J]. 应用与环境生物学报. 2007, 13(2): 238-242.
    [41] Munyard K. A., Baker S. K. Size fractionation of a rumen microbial population by counter-flow centrifugal elutriation[J]. Journal of Microbiological Methods. 2006, 67(3): 566-573.
    [42] Wright Andr Denis, Tajima Kiyoshi,Aminov Rustam. 16S/18S ribosomal DNA clone library analysis of rumen microbial diversity[J]. Methods in Gut Microbial Ecology for Ruminants. 2005: 163-174.
    [43] 张迪, 刘大程, 卢德勋, 高明. 瘤胃内3种主要纤维分解菌的研究进展[J]. 中国畜牧兽医. 2008(01): 16-19.
    [44] 李莉, 侯先志. 瘤胃纤维分解菌的研究进展[J]. 黄牛杂志. 2002(02):24-26.
    [45] 朱伟云, 毛胜勇, 王全军, 姚文, M K. Theodorou. 厌氧真菌体外发酵筛选技术的研究[J]. 南京农业大学学报. 2001(03): 44-48.
    [46] Tripathi Vimal Kumar, Sehgal Jatinder Paul, Puniya Anil Kumar, Singh Kishan. Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus)[J]. Anaerobe. 2007, 13(1): 36-39.
    [47] 霍鲜鲜. 瘤胃厌氧真菌在纤维降解中的作用及其与细菌、原虫的关系[D]. 内蒙古农业大学, 2004.
    [48] 成艳芬, 毛胜勇, 裴彩霞, 刘建新, 朱伟云. 共存于厌氧真菌分离培养液中瘤胃甲烷菌的检测及其多样性分析[J]. 微生物学报. 2006(06): 879-885.
    [49] 毛胜勇, 陈洁, 姚文, 朱伟云. 体外共培养法研究瘤胃真菌对瘤胃细菌发酵的影响[J]. 华中农业大学学报. 2005(06): 610-613.
    [50] 欧阳平凯. 发酵工程关键技术及其应用[M]. 北京: 化学工业出版社, 2005.
    [51] 廖春燕, 郑裕国. 固态发酵生物反应器[J]. 微生物学通报. 2005(01): 99-103.
    [52] 韩北忠. 滚筒式生物反应器固态发酵的应用研究[J]. 中国农业大学学报. 2001(02): 96-100.
    [53] 黄鑫泉. 压力脉动生物反应器与固态发酵[J]. 化工科技市场. 2000(03): 5-7.
    [54] 陈洪章, 李佐虎. 微生物固态发酵反应器[J]. 化工科技市场. 2001(02):10-16.
    [55] 侯哲生, 佟金. 蠕动发酵罐的仿生耦合设计[J]. 农业机械学报.24-26.
    [45] 朱伟云, 毛胜勇, 王全军, 姚文, M K. Theodorou. 厌氧真菌体外发酵筛选技术的研究[J]. 南京农业大学学报. 2001(03): 44-48.
    [46] Tripathi Vimal Kumar, Sehgal Jatinder Paul, Puniya Anil Kumar, Singh Kishan. Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus)[J]. Anaerobe. 2007, 13(1): 36-39.
    [47] 霍鲜鲜. 瘤胃厌氧真菌在纤维降解中的作用及其与细菌、原虫的关系[D]. 内蒙古农业大学, 2004.
    [48] 成艳芬, 毛胜勇, 裴彩霞, 刘建新, 朱伟云. 共存于厌氧真菌分离培养液中瘤胃甲烷菌的检测及其多样性分析[J]. 微生物学报. 2006(06): 879-885.
    [49] 毛胜勇, 陈洁, 姚文, 朱伟云. 体外共培养法研究瘤胃真菌对瘤胃细菌发酵的影响[J]. 华中农业大学学报. 2005(06): 610-613.
    [50] 欧阳平凯. 发酵工程关键技术及其应用[M]. 北京: 化学工业出版社, 2005.
    [51] 廖春燕, 郑裕国. 固态发酵生物反应器[J]. 微生物学通报. 2005(01): 99-103.
    [52] 韩北忠. 滚筒式生物反应器固态发酵的应用研究[J]. 中国农业大学学报. 2001(02): 96-100.
    [53] 黄鑫泉. 压力脉动生物反应器与固态发酵[J]. 化工科技市场. 2000(03): 5-7.
    [54] 陈洪章, 李佐虎. 微生物固态发酵反应器[J]. 化工科技市场. 2001(02):10-16.
    [55] 侯哲生, 佟金. 蠕动发酵罐的仿生耦合设计[J]. 农业机械学报.
    [67] 司振书. 反刍动物对纤维素的消化机制[J]. 动物科学与动物医学. 2004(03): 46-48.
    [68] 李大彪, 侯先志. 体外驱除瘤胃厌氧真菌对绵羊和山羊细菌、原虫及稻草干物质降解率的影响[J]. 动物营养学报. 2005(02): 43-48.
    [69] Ho Y. W., Abdullah N., Jalaludin S. Fungal colonization of rice straw and palm press fibre in the rumen of cattle and buffalo[J]. Animal Feed Science and Technology. 1991, 34(3-4): 311-321.
    [70] RezaeianMohammad, beakesGordonW, chaudhryAbdulS. Relative fibrolytic activities of anaerobic rumen fungi on untreated and sodium hydroxide treated barley straw in in vitro culture[J]. Anaerobe. 2005, 11: 163-175.
    [71] Flint Harry J. The rumen microbial ecosystem--some recent developments[J]. Trends in Microbiology. 1997, 5(12): 483-488.
    [72] Zahedifar M., Castro F. B., Orskov E. R. Effect of hydrolytic lignin on formation of protein-lignin complexes and protein degradation by rumen microbes[J]. Animal Feed Science and Technology. 2002, 95(1-2): 83-92.
    [73] 张元庆, 王栋, 孟庆翔. 瘤胃微生物纤维体研究进展[J]. 中国饲料. 2005(12): 2-4.
    [74] Bayer Edward A., Shimon Linda J., Shoham Yuval, Lamed Raphael. Cellulosomes--Structure and Ultrastructure[J]. Journal of Structural Biology. 1998, 124(2-3): 221-234.
    [75] 侯配斌. 粘细菌纤维堆囊菌降解纤维素多酶复合体的确证和性质分析[D]. 济南:山东大学, 2006.
    [76] 李鉴轩. 家畜生理学[M]. 2版. 西宁: 青海人民出版社, 1992.
    [77] 韩正康, 陈杰. 反刍动物瘤胃的消化和代谢[M]. 北京: 科学出版社, 1988: 150-165.
    [78] Hu Zhen- Hu, Yu Han- Qing, Zhu Ren- Fa. Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes[J]. International Biodeterioration and Biodegradation. 2005, 55(3): 233-238.
    [79] Hu Zhen- Hu, Yu Han- Qing. Anaerobic digestion of cattail by rumen cultures[J]. Waste Management. 2006, 26(11): 1222-1228.
    [80] 孙云章, 毛胜勇, 陈洁, 周利芬, 朱伟云. 瘤胃厌氧真菌对木质素含量不同底物附着及发酵特性研究[J]. 草业学报. 2005(03): 56-61.
    [81] Mountfort Douglas O. The rumen anaerobic fungi[J]. FEMS Microbiology Letters. 1987, 46(4): 401-408.
    [82] Zhu Wei- Yun, Theodorou Michael K., Nielsen Bettina Bonde, Trinci Anthony P. Dilution Rate Increases Production of Plant Cell-wall Degrading Enzymes by Anaerobic Fungi in Continuous-flow Culture[J]. Anaerobe. 1997, 3(1): 49-59.
    [83] 阎伯旭, 马林, 左汉田, 孟庆繁, 阎岗林, 黄仲立, 于靖, 程玉华. 用亲和层析技术分离纯化天冬氨酸酶[J]. 中国生物化学与分子生物学报. 1992(06):24-29.
    [84] Yu Hongqin, Yu Chongwen. Study on microbe retting of kenaf fiber[J]. Enzyme and Microbial Technology. 2007, 40(7): 1806-1809.
    [85] B Schink. Energetics of syntrophic cooperation in methanogenic degradation[J]. 1997, 61(2): 262-280.
    [86] 裴华, 张永玲. 瘤胃真菌在纤维降解中的作用[J]. 吉林畜牧兽医.2005(08): 23-25.
    [87] 孙云章, 毛胜勇, 姚文, 朱伟云. 不同精粗比底物下瘤胃真菌和纤维降解细菌共培养发酵特性及菌群变化[J]. 微生物学报. 2006, 46(03): 422-426.
    [89] 逢晓阳. 反刍月形单胞菌及其基因缺失工程菌对瘤胃微生物发酵的影响[D]. 长春: 吉林大学, 2006.
    [89] Zhu Wei- Yun,Theodorou Michael K.,Longland Annette C.,Nielsen Bettina B.,Dijkstra Jan,Trinci Anthony P. Growth and Survival of Anaerobic Fungi in Batch and Continuous-Flow Cultures: ECOLOGY[J]. Anaerobe. 1996, 2(1): 29-37.
    [90] Tsai Chang Ting, Huang Ching- Tsan. Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica[J]. Enzyme and Microbial Technology. 2008, 42(6): 459-465.
    [91] Chen X. L.,Wang J. K.,Wu Y. M.,Liu J. X. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid- and solid-associated ruminal microbes in vitro[J]. ANIMAL FEED SCIENCE AND TECHNOLOGY. 2008, 141(1-2): 1-14.
    [92] Ljungdahl L G. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use[M]. OXFORD:BLACKWELL PUBLISHING, 2008: 1125, 308-321.
    [93] Deng Weidong,Xi Dongmei,Mao Huaming,Wanapat Metha. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review[J]. Molecular BiologyReports. 2008, 35(2): 265-274.
    [94] Fonty G.,Joblin K.,Chavarot M.,Roux R.,Naylor G.,Michallon F. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2007, 73: 6391-6403.
    [95] Gonzalez N.,Galindo J.,Gonzalez R.,Sosa A.,Moreira O.,Delgado D.,Martin E.,Sanabria C. Utilization of the real time PCR and in vitro gas production technique for determining the effect of bromoethanesulfonic acid on the methanogenesis and rumen microbial population[J]. CUBAN JOURNAL OF AGRICULTURAL SCIENCE. 2006, 40(2): 171-177.
    [96] Sun Yun-zhang,Mao Sheng-yong,Yao Wen,Zhu Wei-yun. The dynamics of microorganism populations and fermentation characters of co-cultures of rumen fungi and cellulolytic bacteria on different substrates[J]. Weishengwu Xuebao. 2006, 46(3): 422-426.
    [97] Ha J. K.,Lee S. S.,Kim S. W.,Han I. K.,Ushida K.,Cheng K. J. Degradation of rice straw by rumen fungi and cellulotytic bacteria through mono-, co- or sequential- cultures[J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES. 2001, 14(6): 797-802.
    [98] Krause D. O.,Bunch R. J.,Dalrymple B. D.,Gobius K. S.,Smith W. Jm,Xue G. P.,Mcsweeney C. S. Expression of a modified Neocallimastix patriciarum xylanase in Butyrivibrio fibrisolvens digests more fibre but cannot effectively compete with highly fibrolytic bacteria in the rumen[J]. JOURNAL OFAPPLIED MICROBIOLOGY. 2001, 90(3): 388-396.
    [99] Fondevila M.,Dehority B. A. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages[J]. JOURNAL OF ANIMAL SCIENCE. 1996, 74(3): 678-684.
    [100] Kopecny J.,Hodrova B.,Stewart C. S. The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi[J]. LETTERS IN APPLIED MICROBIOLOGY. 1996, 23(3): 199-202.
    [101] 朱崇淼. 产纤维降解酶厌氧真菌菌株的筛选及其粗酶性质的研究[D]. 南京: 南京农业大学, 2003.
    [102] 冯仰廉. 反刍动物营养学[M]. 北京: 科学出版社, 2004.
    [103] 刘敏雄. 反刍动物消化生理学[M]. 北京: 北京农业大学出版社, 1991.
    [104] 瘤胃结构图[DB/CD].http://cms.daegu.ac.kr/sgpark/microbiology/rumen. jpg.
    [105] 反刍动物瘤胃壁[DB/CD].http://education.vetmed.vt.edu/Curriculum/VM8054/Labs/Lab21/IMAGES/rumen%20copy.jpg.
    [106] 华中农业大学·动物生理学课程组. 瘤胃平滑肌电位与收缩关系[DB/CD].http://nhjy.hzau.edu.cn/kech/dwsl/htm/ppt.asp.
    [107] 华中农业大学·动物生理学课程组. 瘤胃蠕动[DB/CD].http://nhjy.hzau.edu.cn/kech/dwsl/htm/ppt.asp.
    [108] 刘茉娥, 朱自强. 生物工程中的膜技术[J]. 化工进展. 1987(05):35-39.
    [109] 姚红娟, 王晓琳. 压力驱动膜分离过程的操作模式及其优化[J]. 膜科学与技术. 2003(06):28-32.
    [110] 徐菡. 外旋流微滤膜器环隙内流场的数值模拟及膜器分离性能研究[D]. 成都:四川大学, 2003.
    [111] 众恒电气. 电磁铁产品的选择: 电磁铁产品的选择[DB/CD].http://www.zonhen.com/solenoid_selection.htm.
    [112] 上海市机电设计院. 振动输送机[M]. 北京: 机械工业出版社出版, 19823.
    [113] 孙旭霞, 李生民, 张维娜. 工业自动化通用组态软件──“组态王”的功能分析及应用[J]. 仪器仪表用户. 2001(04): 29-31.
    [114] 赵英. 膜生物反应器中膜污染控制方法的研究[D]. 天津: 天津大学, 2005.
    [115] 任露泉. 试验优化设计与分析[M]. 长春: 吉林科学技术出版社, 2001.
    [116] 杨之礼. 纤维素与粘胶纤维 下册[M]. 北京: 纺织工业出版社, 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700