基于三维/一维耦合技术的汽车进气谐振器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的快速发展,汽车发动机进气噪声已成为影响汽车噪声的主要噪声源之一。交通车辆数量的日益增多而带来的环境污染问题已成为影响居民生活、威胁公众健康的一大公害。目前,人们对排气噪声的控制研究比较多,对进气噪声的研究还不够深入,进气噪声已成为汽车噪声控制的重点对象。因此,深入地研究进气消声系统已经成为当前亟待解决的问题。根据长安杰勋JL486Q1型汽车进气噪声大的特点,应用三维/一维耦合技术设计合理的进气消声器,可为今后消声器的设计与改进提供参考,同时,可以在产品的设计阶段预测消声器的性能和传递损失,检验安装谐振器后对发动机的动力性、经济性的影响,可大大缩短产品的研发周期,降低产品成本。
     本文以网格生成软件GAMBIT.发动机仿真软件GT-POWER、专业声学软件SYSNOISE和流体动力学软件FLUENT为平台,综合运用有限元法、边界元法、有限体积法等方法对基本消声单元的声学性能、流场进行了数值仿真分析。在分析进气噪声产生的机理和Helmholts肖声原理的基础上,应用声学有限元法分析了Helmholts皆振腔的形状、体积,连接管的喉口尺寸,主管尺寸等不同结构参数对消声器性能的影响,得出了谐振频率和消声量的关系式;应用GT-POWER、FLUENT软件,结合有限体积法,根据该型车汽油机的相关参数,建立了发动机模型以及发动机与进气谐振器的联合模型,描述了在发动机工作状态下消声器的流场分布,分析了安装谐振器以后,发动机动力性、经济性、进气量以及进气效率等变化情况;基于有限元和边界元(BEM/FEM)理论,利用GAMBIT. FLUENT中的NASTRAN和SYSNOISE软件建立谐振器的声一固耦合模型,研究了谐振器的表面位移响应及辐射声场的变化,分析了谐振器壳体厚度、结构阻尼(材料)等因素变化对声场的影响;应用上述研究成果,利用塑料成型技术加工了长安杰勋轿车进气谐振器,针对设计的消声器进行实验研究,分别进行了发动机性能测试实验、汽车底盘测功机噪声实验和道路噪声实验。
     仿真分析和实验研究结果表明:谐振腔的结构参数对其共振频率有直接的影响。谐振腔的消声峰值主要集中在400Hz以内的低频区域,随着谐振腔体积增大,消声峰值向低频移动,体积相同时,谐振频率不变,和腔体的高度或面积的变化无关,谐振器消声量不随体积的增大而增大,呈现无规律的变化;喉口直径、长度不同,谐振频率不同,直径越大,谐振频率越大,长度越大,谐振频率向低频移动;发动机进气噪声主要集中在138Hz、276Hz、366Hz的三个频率点处,安装消声器后,三个频率点处的进气噪声都有不同程度的下降,最大降幅达7.5dB,车外行驶加速噪声实验表明,整车噪声由89.1dB下降到83.6dB,降幅达5.5dB,为下一步继续降噪奠定了基础;发动机的功率、燃油消耗量、进气量以及进气效率与原车相比没有明显变化,平均误差在5%以内。说明所建立的仿真模型能够很好地预测消声器和发动机的性能指标。
     本文通过理论分析和试验验证,创造性提出了谐振腔—喉管体积比与谐振频率、消声量的关系特性,谐振频率与谐振器体积的换算关系、主管直径的变化与消声量的关系;找到了最大噪声的频率范围;利用发动机软件、CFD软件及声学软件,应用三维/一维耦合技术,解决了流场、声场和谐振器之间的耦合匹配问题。
With the car industry developing rapidly, the intake noise of car's engine has become one of major noise sources on the impact automobiles noise. Environmental pollution problems brought by more and more traffic vehicles have become a large hazards affecting residents living,threatening to public health. At present,the study about exhaust noise control for more,else,the intake noise not enough,the intake noise has become the focus of noise control. Thus,studying into the intake noise reduction system deeply has become a burning question.
     According to the characteristic of the larger intake noise for Chang-an Jiexun JL486Q1type car,that applying to three-dimensional/one-dimensional coupling technology and designing reasonable intake muffler may supply the reference for the design and improvement to the muffler in the future. At the same time,It may predict performance and transmission loss of the muffler at the product design stage,inspect the influence to dynamics and economy of engine after the resonator installation,it can greatly shorten the product development cycle and reduce the product cost.
     This paper bases on the mesh generation software GAMBIT,engine simulation software GT-POWER,professional acoustic software SYSNOISE and fluid dynamics software FLUENT as platform,through comprehensively using finite element method,boundary element method,finite volume method and so on,to simulate and analyze the acoustic performance for the basic noise reduction unit and flow field.on the basis of analyzing about the mechanism by intake noise generating and Helmholts noise reduction principle, applying to acoustic finite element method to analyze different structure parameters,which include the shape,volume, throat size,mian tube of the resonator on the influence of the muffler performance, concluding the mathematical expressions for resonant frequency;Applying to the softwares for GT-POWER,FLUENT,combined with finite volume method,according to the related parameters of the gasoline engine for JL486Q1type,the engine model together with the joint model of the engine and the intake resonator is established,and describing the muffler flow field distribution under the condition of engine working,analyzing the changing circumstances to the engine power,engine economy,air inflow and air intake efficiency after the resonator installation.Based on the finite element and boundary element (BEM/FEM)theory,using GAMBIT,NASTRAN for FLUENT and SYSNOISE software to establish the sound-solid coupling model for (?)esonator,studying the surface displacement response for the resonator and the change for (?)ound field radiation,analyzing the influence on the acoustic field because of the change factors of the resonator shell thickness and structure damping (material);with the application of the research results,using the plastic molding technology,processing the intake resonator of chang- an Jiexun car,and doing the experimental research for the designed muffler. The engine performance test,the vehicle chassis dynamometer noise experiments and road noise experiment had been done.
     Simulation analysis and experimental results show that the resonant structure parameters have a direct effect on its resonant frequency.Resonant cavity peak for noise reduction mainly concentrates within400Hz in the low frequency region,the resonant cavity increases in volume,the noise reduction peak moves to the lower frequency,if the volume is the sameness,the resonant frequency, which has nothing to do with the change for the height and area of the cavity,is not changed. Noise reduction amount of resonant cavity is not enlarged as the volume increases, which is no rule.As the throat diameter and its length varies,the resonant frequency is different, and the greater the diameter, the greater the resonant frequency,the greater the length,the resonant frequency moves to the lower frequency; Engine intake noise mainly focuses on the three frequency points,138Hz,276Hz,and366Hz.The intake noise of which has different degree in the fall after the muffler installation, the largest decline for7.5dB(A),the experiment of acceleration driving indicates that the vehicle noise outside declines from89.1dB(A) to83.6dB(A), the largest decline for5.5dB(A),which lays the foundation for the noise reduction in next step. Engine power, fuel consumption,air inflow and air intake efficiency do not change obviously compared with the original car,the mean error is less than5%.This illustrats that the model can predict the performance index of muffler and engine well.
     In this paper,through theoretical analysis and experimental verification,the relationship characteristic between the volume ratio for the cavity with neck tube and noise reduction amount,the resonant frequency, the conversion relationship between the resonant frequency and the resonator volume, main tube diameter and the noise reduction, and so on,have been put forward creatively;The frequency range for the greatest noise has been found;Using the engine, CFD and acoustic softwares, as well as three-dimensional/one-dimensional coupling technology,the coupling and matching problem among the flow field,the acoustic field and the resonator have been solved.
引文
[1]冷传刚.消声器消声性能分析及计算机辅助设计[D].天津大学硕士学位论文.2007.7:1-3
    [2]毕嵘.汽车进排气消声器性能的数值仿真研究[D].合肥工业大学硕士学位论文.2007.5:1
    [3]朱廉洁.汽车发动机空气滤清器消声特性研究[D].哈尔滨工程大学硕士学位论文.2007.3:1
    [4]Y.Nishio,T.Kohama,O.Kuroda.New approach to low-noise air intake system development.SAE Transactions,1991,100(2):1388-1400
    [5]GB1495-2002.汽车加速行驶车外噪声限值及测量方法[S]
    [6]黎志勤,黎苏.汽车排气系统噪声与消声器设计[M].北京:中国环境出版社.1991
    [7]葛蕴珊,谭建伟,姜磊,宋艳冗.汽油车进排气系统降低噪声研究[J].设计.计算.研究,2006(11):9-10
    [8]张振良,王树荣,腾勇,郑见灵.某微型车的噪声分析及进气消声器的应用[J].军械工程学院学报,2004.8(4):45-48
    [9]刘军,何铁平,秦洪武,李衍德,郭晨海.汽车加速过程噪声分析与控制[J].农业机械学报,2006,12(12):25-28
    [10]Selamet A,Lee I-J,Huffc N T.Acoustic attenuation of hybrid silencers [J].Journal of Sound and Vibration,2003,262:509-527
    [11]Tsuji T,Tsuchiya T,Kagawa Y. Finite element and boundary element modeling for the acoustic wave transmission in mean flow medium [J].Journal of Sound and Vibration,2002,255(5):509-527
    [12]Davies P O A L,Harrison M F,Collins H J.Acoustic modeling of multiple path silencers with experimental validations[J] Journal of Sound and Vibration.1997,200(2):195-225
    [13]王孚懋等.机械振动与噪声分析基础[M].国防工业出版社,2009:188
    [14]Fyhr C,Dahberg O.Complete Enginge Modeling Using CFD.SAE Paper.2004
    [15]R. Kirby.Simplified techniques for predicting the transmission loss of a circular dissipative silencer[J].Journal of Sound and Vibration,2001,243(3):403-426
    [16]Kirby R,Cummings A.Prediction of the bulk acoustic properties of fibrous materials at low frequencies[J].Applied Acoustics.1999,56:101-125
    [17]Wang Chao-Nan,Yug-Nan Chen etal.The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient[J].Applied Acoustic,2001,62:707-716
    [18]Beltman W M,van der Hoogt P J M,Spiering R M E J,Tijdeman H. Implementation and experimental validation of a new viscothermal acoustic finite element for acoustic-elastic problems[J].Journal of Sound and Vibration,1998,216(1):159-185
    [19]W.W.Kraft.The Reduction of Air-Rush Noise in Plastic Engine Intake Manifolds. SAE 2000,1:44
    [20]Glenn Sievewright,Dupont Denemours.Air Flow Noise of Plastic Air Intake Manifolds.SAE 2000.1-28
    [21]Sullivan J W and Crocker M J.Analysis of concentric tube resonators having unpartitioned cavities[J].J.Acoust.Soc.Am,1978 (64):207-215
    [22]Anders brandt,Thomas lago,Kjell Ahlin. Using Matlab for Advanced Noise and Vibration Analysis. SAE 2004.1:3139
    [23]Silvestri John J,Thomas Morel, Michael Costello.Study of intake system wave dynamics and acoustics by simulation and experiment.SAE Paper 940206
    [24]Petrak P,Poloni M.Exhaust System Noise Optimization using Mathematical Modelling.Proc IMechE Conf,on Computers in Engine Technology,C430/010,1991:111-117
    [25]MorelT,Morel J,Blaser D A.Fluid dynamic and acoustic modeling of concentric-tube resonators/silencers.SAE Paper 910072
    [26]赵明.汽车排气消声器声学特性的研究[D].华中科技大学硕士学位论文.2005.3:4-5
    [27]A.Selamet a,V. Kothamasu b,J.M.Novak cInsertion loss of a Helmholtz resonator in the intake system of internal combustion engines:an experimental.and computational investigation [J].AppliedAcoustics,2001 (62):380-409
    [28]Selameta A,Ji Z L.Circular asymmetric Helmholtz resonators[J].Acoustical Society of America,2000,107(5):2360-2359
    [29]D R Ross.A finite element analysis of perforated component acoustic system [J] Journal of Sound and Vibration,1981,79(1):133-143
    [30]吴子牛.计算流体力学基本原理[M].北京:科学出版社.2001
    [31]Seybert A F,Seman R A,and Lattuca M D.Boundary element prediction of sound propagation in ducts containing bulk absorbing materials[J].J.Vib.Acous,1998,120:976-981
    [32]Antonio J,Torregrosa,Alberto Broatch and Raul Payri. The use of transfer matrix for the design of interferencial systems in exhaust mufflers.SAE 2000.1:0728
    [33]杨诚,邓兆祥,阮登芳等.进气噪声产生机理分析及其降噪[J].汽车工程,2005,27(1):68-71
    [34]Deming Wan and Dirk Tomas Soedel. Two Degree of Freedom Helmholtz Resonator Analysis. SAE 2004(1):0387
    [35]Ho-Won Lee,Do-Hyun Park and Suk-Yoon Hong. Development of Noise and Vibration Prediction Software in Medium-to-High Frequency Ranges Using Power Flow Boundary Element Method. SAE 2003(1):1458
    [36]J.W.Sullivan and M.JCrock.Analysis of concentric tube resonators having unpartitioned cavities[J] Journal of the Acousticals Society of America.1978,64:207-215
    [37]李继锋,陈剑文,智明.复杂穿孔管结构消声器消声性能研究[J].设计.计算.研究,2010(1):17-18
    [38]Wang C N,Tse C C,Chen Y N.A.boundary element analysis of concentric tube resonator[J].Engineering analysis with boundary elements,1993,12:21-27
    [39]Edinilson Alves Costa and Marcio Goncalves Pinto. Cooling and Airflow Management Development for Trucks Considering Pass-by-Noise[J].SAE 2002(1):2226
    [40]RossD F.A finite element analysis of perforated componenta-coustic systems [J].Journal of Sound and Vibration,1981,79:133-143
    [41]Cheng C Y R,Seybert A F and Wu T W.A multidomain element solution for silencer and muffler performance prediction. Journal of sound and vibration.1991,151(1):119-129
    [42]Marc Marroquin.A Comparison of Seven Different Noise Identification Techniques[J].SAE 2003,1:1690
    [43]杜功焕.声学基础[M].南京:南京大学出版社.2001:182-188
    [44]岳贵平等.发动机进气系统声学元件设计方法研究[J].设计.计算.研究,2009:11-12
    [45]潘仲麟,翟国庆.噪声控制技术[M].化学工业出版社,2006:142-143
    [46]Selamet.A, Easwaran V,FalkowskiA G. Three-pass mufflers with uniform perforations[J]. Journal of the Acoustical Society of America,1999,105:1548-1562
    [47]朱廉洁,季振林.汽车空气滤清器声学性能数值计算及分析.噪声与振动控制.2007,27(2)
    [48]阮登芳等.内燃机消声器特性试验装置的研制及应用[J].内燃机工程.2004,25(4):39-41
    [49]C.I. Chu,H.T. Hua.I.C. Lao.Effects of three-dimensional Modes on Acoustic Performance of Reversal Flow Mufflers with Rectangular Cross-section, Computers and Structures, 2001,79(8)
    [50]Avinash R. Patil and P. R. Sajanpawar,Acoustic Three Dimensional Finite Element Analysis of a Muffler,SAE 960189
    [51]Michael G. Hueser and Kiran Govindswamy etc. Sound Quality and Engine Performance Optimization Development Ultilizing Air-to Air Simulation and Interior Noise Synthesis. SAE 2003,1:1652
    [52]Ziada S.A flow visualization study of flow-acoustic coupling at the mouth of a resonant sidebranch.Flow-Induced Vibration and Fluid-Structure Interaction,ASME 1993,258:35-59
    [53]Yoshihiro Isshiki,Yuzuru Shimamoto,Tomoyuki Wakisaka.Simultaneous prediction of pressure losses and acoustic characteristics in silencers by numerical simulation.SAE Paper 960637
    [54]Ericson D.Shear layer coupling with side-branch resonators[J].Forum on Unsteady Flow,ASME Publication 1986,39:43-45
    [55]Kim M H.Three-Dimensional Numerical Study on the Pulsating Flow Inside Automotive Muffler with ComplicatedFlow Path. SAE Paper,2001
    [56]唐永琪.汽车消声器性能计算中的气流与温度因素[J].合肥工业大学学报,2002(6):327-331
    [57]张向成,肖卫国.汽车整车噪声控制技术研究[J].环境保护,2005(9):41-43
    [58]Tsuji T,Tsuchiya T,Kagawa Y.Finite element and boundary element modeling for the acoustic wave transmission in mean flow medium[J].Journal of Sound and Vibration, 2002,255(5):509-527
    [59]范理,王本仁,金滔等.谐振管谐振频率计算方法的研究[J].声学学报,2005
    [60]Davies P O A L,Harrison M F,Collins H J.Acoustic modeling of multiple path silencers with experimental validations[J].Journal of Sound and Vibration,1997,200(2):195-225
    [61]陈南,汽车振动与噪声控制[M].人民交通出版社,2008,5
    [62]赵骞.信息化应用与调查[J].信息化,2010,3
    [63]杨诚,邓兆祥,阮登芳,梁锡昌.进气噪声产生机理分析及其降噪[J].汽车工程,2005
    [64]张国强,吴家鸣.机械工业出版社[M].流体力学,2006,1
    [65]GT-POWER User's manual and Tutorial,2003,3
    [66]Tong zou,Zissioms P.Mourlatos,Sankaran Mahadevan. Simulation-Based Reliability Analysis of Automotive Wind Noise Quality.SAE 2004,1:0238
    [67]蒋德明.高等内燃机学[M].西安:西安交通大学出版社,2002
    [68]朱访君.内燃机工作过程数值计算及其优化[M].北京:国防科技出版社,1997
    [69]Hardin.J.C and Pope.D.S.Sound generated by flow over a two-dimensional cavity[J].AIAA J 1995,33(3):407-412
    [70]Benson R S,Whitehouse N D.Internal Combustion Engine.Oxford,1982
    [71]周新祥.噪声控制技术及其新进展[J].冶金工业出版社,2007,7
    [72]倪敏化.消声器原理及其工程应用[J].噪声控制,2006:3-55
    [73]李增刚SYSNOISE Rev 5.6详解.北京:国防工作出版社,2005
    [74]葛蕴珊,张宏波,宋艳冗,谭建伟,张学敏,韩秀坤.汽车排气消声器的三维声学性能分析[J].汽车工程,2006(1):52-53
    [75]袁昌明.噪声与振动控制技术[M].冶金工业出版社,2007
    [76]Wang C.N. Numerical decoupling analysis of a resonator with absorbent material[J]. Applied Acoustics,1999,58:529-545
    [77]杜功焕.声学基础[M].南京:南京大学出版社,2001
    [78]祝何林.汽车排气消声器声学性能分析及应用研究[D].合肥:合肥工业大学,2008
    [79]邓兆祥,张振良,杨诚.微型轿车的降噪实验[J].重庆大学学报,2003,26(5):18-21
    [80]M.L,Munjal.Acoustics of ducts and mufflers.M.NEWYORK:A WILEY-INTERSCIENCE PUBLACATION.1987
    [81]苏胜利,季振林.三通穿孔管消声器声学性能的有限元分析[J].船舶工程,2007,29(2):179
    [82]徐贝贝,季振林.穿孔管消声器声学特性的有限元分析[J].振动与冲击,2009,28(9):113
    [83]康钟绪,季振林.穿孔管消声器消声性能的有限元计算及分析[J].噪声与振动控制,2005(5)
    [84]张宏波.车用排气消声器的设计研究[D].北京:北京理工大学机械与车辆工程学院,2005
    [85]殷勇.整车车外及发动机降噪技术.东风汽车股份公司商品研发院,2011,7
    [86]冯慧华,左正兴,廖日东等.基于BEM/FEM耦合技术的柴油机外声场模拟技术研究[J].内燃机学报,2004,22(2):155-161
    [87]盛美萍.噪声与振动控制技术基础[M].北京:科学出版社,2007
    [88]Ziada.S,A flow visualization study of flow-acoustic coupling at the mouth of a resonant sidebranch[J].PVP-Vol.258 Flow-induced Vibration and Fluid-Structure Interaction, ASME 1993:35-59
    [89]褚志刚.SC7080A车外加速噪声源分离实验报告[J].重庆大学机械工程学院,2000,10:22-30
    [90]顾尔祚.流体力学有限差分法基础[M].上海:上海交通大学出版社,1988
    [91]费祥麟.高等流体力学[M].西安:西安交通大学出版社,1989
    [92]刘伯潭,李洪亮,潘书杰.复杂消声器内部流场模拟[J].天津汽车,2006,118(2)
    [93]袁翔,刘正十,毕嵘.简单扩张式消声器与穿孔管消声器对比研究[J].汽车科技,2009,7(4):18-19
    [94]朱义坤.基于GT-POWER的发动机特性与消声器设计匹配研究[D].重庆理工大学硕士学位论文.2009,5
    [95]蒋炎坤.CFD辅助发动机工程的理论与应用[M].北京:科学出版社,2004
    [96]Waston N,Janota M S. Turbocharging the Internal Combustion Engine,London,1982.
    [97]Selamet A,Ji Z L.Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet:I.Analytical approach[J] Journal of Sound and Vibration,1998, 213(4):601-617
    [98]Paul M.Radavich.A computational approach for flow-acoustic coupling in closed side branches[J] J.Acoustic Soc.Am.2001109(4),
    [99]侯献军,王天田,田翠翠,王洪健,刘志恩.基于GT-Power的乘用车消声器设计[J].北京理工大学学报,2010,30(2):161-164
    [100]葛蕴珊,张宏波,宋艳冗等.基于发动机热力过程的排气消声器设计[J].汽车工程,2004,26(3):275-278
    [101]鲁卡宁.B H.汽车噪声控制[M].北京:机械工业出版社,1988
    [102]杨登峰.排气消声器计算机辅助优化设计的研究与应用[D].北京:北京理工大学机械与车辆工程学院,2000
    [103]侯献军,刘庆,刘志恩.基于GT——Power的汽车排气消声器性能分析及改进[J].汽车技 术,2009(1):38-40
    [104]朱孟华.内燃机振动与噪声控制[M].北京:国防工业出版社,1992
    [105]李赫,胡志龙.排气消声器声学性能计算[J].船舶,2009,8(4):59-60
    [106]林杰伦.内燃机工作过程数值计算[M],西安:西安交通大学出版社,1986
    [107]陈弦,李雪梅,邓明香等PVC/ABS共混合金的热性能研究[J].塑料工业,2003,31(4):22-24
    [108]王士财,李宝霞.聚氯乙烯/丙烯腈—丁二烯—苯乙烯共聚物共混体系的研究[J].塑料科技,2004,12:1-4
    [109]韩永生.工程材料性能与选用[M].北京:化学工业出版社,2004
    [110]谭建伟.车用进气谐振消声器设计研究[D].北京:北京理工大学,2007
    [111]许红国.汽车运用工程[M].人民交通出版社,2008,7
    [112]王丰元.汽车试验测试技术[M].北京大学出版社,2008:5-15
    [113]谭沧海.动态燃油消耗模拟分析与设计[J].计算机与现代化,2011,(7):146
    [114]Onorati A.Numerical simulation of exhaust flows and tailpipe noise of a small single cylinder diesel engine.SAE Paper,2004(95):1755

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700