复合式消声器声学特性的分析方法和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机的进排气噪声是车辆的主要噪声源之一,对进排气噪声的有效控制对于改善整车噪声控制水平具有重要的影响。消声器是降低进排气噪声的主要装置之一,随着发动机技术的不断发展,发动机进排气噪声在不同工况下覆盖从低频到高频的整个频段,并且受到空间和重量等因素的限制,单一类型的简单消声器已经不能使车辆进排气噪声控制在合理的水平。高性能复合式消声器的设计、开发和应用已经成为提高进排气噪声控制水平和改善整车NVH性能的主要方向。本文以复合式消声器为研究对象,针对复合式消声器声学特性的分析方法进行了系统的研究。
     复合式消声器通常由管道将不同类型的基本消声结构连接成多个腔体的复杂消声结构,复合式消声器的设计首先需要确定基本消声结构的声学特性。本文从基本消声结构出发,采用理论计算、数值仿真和实验测试相结合的研究方法,对基本消声结构的声学特性及分析方法进行详尽的研究。在此基础上,对不同类型复合式消声器的声学特性进行分析,总结复合式消声器声学性能分析和设计步骤,为复合式消声器的设计和开发提供参考。本文的研究工作包括以下内容。
     基于声学理论,研究抗性消声器声学性能的分析方法,以抗性消声器常用的扩张式消声器为对象,利用传递矩阵法、一维平面波理论和二维解析法对消声器的声学特性进行分析,并与三维有限元分析结果相比较,总结了分析方法的计算精度。阐述了三维有限元法的基本理论,以某客车排气消声器为例,通过实体建模、网格划分、材料属性和边界条件的设定和选择传递损失的计算方法,建立消声器数值仿真的计算流程。利用三维解析法和有限元法计算多入口多出口消声器的声学性能,分析进出口管道相对角度、偏置距离、进出口管道数量及穿孔管等消声器结构参数对消声器声学性能的影响,总结消声器的改进措施,改善了多入口多出口消声器的消声性能。
     以多穿孔管/板阻性消声器为研究对象,讨论了阻性消声器的分析方法。将吸声材料看做具有复声速和复密度的流体,推导了包含吸声材料声学参数和穿孔管/板声阻抗的阻性消声器声传播模型,阐述阻性消声器传递损失的计算过程。对消声器及穿孔管/板的结构参数(消声器长度、穿孔管的厚度、孔径和穿孔率)和吸声材料对阻性消声器声学性能的影响进行系统的研究。进一步分析了横流阻性消声器和通过流阻性消声器的声学特性,通过对三种阻性消声器的对比分析,总结出三种阻性消声器的特点及适用场合。
     基于集中参数法、一维解析法和二维解析法及有限元法预测了共振消声器的消声性能,讨论各种方法对共振消声器共振频率预测结果的精度。采用两种连接管末端修正公式提高了集中参数法和一维解析法的预测精度。讨论了连接管内插长度的变化对共振消声器传递损失和共振频率的影响。研究共振腔内部填充吸声材料的声学特性的变化,分析了吸声材料的填充方式与吸声材料的属性对共振消声器传递损失和共振频率的影响。针对共振消声器消声频带窄、消声频率单一的缺点,提出了串联式和并联式多腔共振消声器的概念,探讨共振腔结构参数的变化和不同腔体之间的耦合作用对多腔共振消声器传递损失和共振频率的影响规律。
     设计和搭建了消声器传递损失和插入损失实验台架,研究消声器的实验测量方法。应用两负载法在阻抗管上测量和计算了消声器的传递损失,验证了本文所采用的分析方法预测消声器声学性能的有效性和准确性。在发动机台架上对三种复合式消声器的传递损失和压力损失进行测试,通过对实验结果的分析对比,对复合式消声器的综合性能做出评价,为消声器的改进设计提供参考。
     探讨不同复合式消声器结构和组合方式对声学性能的影响,提出了消声器内部设置不同穿孔管/板参数或吸声材料的复合式结构,分析了混合阻抗式消声器的声学特性。提出了可调谐式多腔串并联共振消声结构与调节方式。根据本文采用的消声器分析方法和结论,总结了复合式消声器的分析流程,为复合式消声器的设计提供参考和思路。
The primary noise source of automotive is intake and exhaust noise. The noise level ofautomotives will be controlled significantly by taking effective noise control measures of intake andexhaust system. Muffler is one of the main devices to reduce intake and exhaust noise of engine.With the development of engine technology, the noise characteristic changes from low frequency tohigh frequency at different working conditions. Space and weight restrictions on automotive canmake it difficult to attenuate inanke and exhaust noise to a desirable level only using simple types ofmuffler. Hybrid muffler with high performances can offer the opportunity to achieve good exhaustnoise attenuation. Consequently, Mehods for calculating and designing hybrid muffler are studied inthis dissertation.
     Hybrid mufflers commonly have multiple chambers and different types of muffler connected toeach other by ducts. Thus, the design of hybrid muffler requires understanding of acousticcharacteristics of individual basic acoustic elements. In present study, the investigation of acousticbehavior of hybrid muffler is carried out theoretically, computationally and experimentally. First,acoustic performances of basic elements are explored in detail. Acoustic behavior of different typesof hybrid muffler is then discussed. Finnaly the common approaches for desiging hybrid muffler areconcluded for reference.The detailed work in this dissertation can be summarized as follows.
     The acoustic behavior of reactive mufflers is detailed discussed. The acoustic performance ofexpantion chamber is predictied by transfer matrix method, one-dimentional and two-dimentionalanalytical methods and the three-dimentional finite element method (FEM). A bus muffler ismodeled as an example and important aspects of modeling process for designer are discussed likesolid modeling, grid meshing, material properties and boundary condition setting, the methods forpredictiong transmission loss and so on. Three-dimensional analytical approaches are developed topredict the transmission loss of multi-inlet and multi-outlet muffer. The effect of the azimuthalangles, the offset distance, the quantity of inet and outlet and structural parameters of perforated tubeon acoustic performance of muffler is discussed. The improvement measures are taken to enhancethe overall performance of muffler. All disscutions above will be proved useful to the design ofhybrid muffler.
     The methods for prediction of acoustic characteristic of dissipative muffler are investigated.The sound absorbing material like fibrous material in muffler is treated as the fluid with complexsound speed and complex density. The relation between fiber acoustic properties and the perforationimpedance and sound proparation in muffler are developed for predictions of transmission loss ofdissipative muffler. The effect of length of muffler, thickness, hole diameter and porosity ofperforated tube and plate and acoustical properties of fibrous material on acoustic performance of dissipative muffler are then discussed. The acoustic performance of cross flow disspative mufflerand pass through flow dissipative muffler are analyzed. The sound attuention performance of threetypes of dissipative muffler is compared and the shortcomings and advantages are concluded.
     The acoustic behavior of Helmholtz resonator is investigated based on lumped parameter theory,one-dimentional and two-dimentional analytical method and FEM. The results obtained byapproaches mentioned above are compared with experimental result to check the validity of thesemethods. The predictions from lumped parameter theory and one-dimentional analytical methodafter end corrections are then compared with two-dimentional analytical result to check the accuracy.The impact of extended neck on resonant frequency and transmission loss of Helmholtz resonatorare discussed. Acoustic performance of Helmholtz resonator with absorbing material and is theninvestigated. The effect of filling positon and acoustic property of absorbing material ontransmission loss is examined. Since Helmholtz resonator is only suitable for narrow band noisecontrol, the serial and parallel multiple chamber Helmholtz resonators are proposed to extend itsapplication to broader band noise control. The effect of varying structural parameters and interactionbetween resonators on acoustic characteristic of Helmholtz resonators is investigated.
     In order to check the efficiency and validity on acoustic performance of muffler predicted byapproaches employed in this dissertation and make evaluation of overall performance of hybridmuffler, the experiment setup is built to measure the transmission loss and insertation loss of muffler.Transsmission loss of various protypes of muffler is measured on impedance tube by applingtwo-load method. Three hybrid mufflers are connected to engine experiment setup. Inesrtion lossand back pressure of mufflers are then measured to evaluate the overall performance of mufflers.The results obtained from the experiments can provide information for improvement design ofmuffler.
     Based on the theory and methods ultilized in presnt study, acoustic characteristic of variousmodels of hybrid muffler are investigated. The acoustic performance of mixed impedance hyrbridmuffler which consists of various perforated tubes and plates or various fibrous materials withdifferent property are studied. The acoustic attenuation characteristic of hybrid Helmholtz resonatorincorparoated serial and parallel Helmholtz resonators are explored. The analysis procedure amddesign approach for hybrid muffler is concluded. The concepts and conclusions may provideguidance for pratical hybrid muffler design.
引文
[1] Uno Ingard.降噪分析[M].北京:国防工业出版社,2010.
    [2]黎志勤,黎苏.汽车排气系统噪声与消声器设计[M].北京:中国环境出版社,1991.
    [3]庞剑,湛刚,何华.汽车噪声与振动-理论与应用[M].北京:高等教育出版社,2002.
    [4]孙林.国内外汽车噪声法规和标准的发展[J].汽车工程,2000,22(3):154~158.
    [5]苏青瑞,黄中荣.国内外汽车噪声测试方法的对比研究[J].中国汽车市场,2008,11:88-92.
    [6] ISO362-1:2007.Measurement of noise Emitted by Accelerating RoadVehicles-Engineering Method-Part1: M and N Categories[S],2007.
    [7] ECE Regulation No.51.Uniform Provisions Concerning the Approval of MotorVehicles Having at Least Four Wheels with Regard to Their NoiseEmissions[S],2007.
    [8] SAE J986:1998. Sound Level for Passenger Cars and Light Trucks[S],1998
    [9]国家技术监督局.GB1495-2002.汽车加速行驶车外噪声限值及测量方法[S],2002.
    [10]何渝生,邓兆祥,陈朝阳.汽车噪声控制[M].北京:机械工业出版社,1995.
    [11] Michael M ser. Engineering Acoustics-An Introduction to Noise Control [M].Berlin: Springer Verlag,2009.
    [12]毕嵘,刘正士,王敏等.排气消声器声学及阻力特性数值仿真研究[J].噪声与振动控制,2008,1:111-114.
    [13] M. L. Munjal. Auto motive noise-The Indian Scene in2004[C]. Acoustics2004, the Australian Acoustics Society National Conference Gold Coast,Queensland, Nov.3-5,2004.
    [14]洪宗辉,潘仲麟.环境噪声控制工程[M].北京:高等教育出版社,2002.
    [15] Rong Bi, Kai Ming Li, Jun Chen and Zheng Shi Liu. Silencing your car with ahybrid muffler [S].161st Meeting lay language papers of the AcousticalSociety of America. Seattle, WA,23-27May2011.
    [16]何琳,朱海潮,邱小军等.声学理论与工程应用[M].北京:科学出版社,2006.
    [17]胡效东.基于CFD仿真和实验的抗性消声器研究[D].济南:山东大学博士学位论文,2007
    [18] Iljae Lee. Acoustic Characteristics of Perforated dissipative and HybridSilencers [D]. The Ohio State University, USA,2005.
    [19] D. D.Davis, G. M. Stokes, D. Moore and G. L. Stevens. Theoretical andexperimental investigations of mufflers with co mme nts on engine exhaustmuffler design [J]. NACA TN1192,1954.
    [20] Munjal ML. Velocity ratio-cu m-transfer matrix method for the evaluation of amuffler with mean flow [J]. J Sound Vib1975,39:105–19.
    [21]福田基一,奥田襄介.噪声控制与消声设计[M].北京:国防工业出版社,1982.
    [22] Munjal ML. Acoustics of ducts and mufflers [M]. New York: Wiley,1987.
    [23] J. Miles. The reflection of sound due to a change in cross section of a circulartube [J]. J. Acoust. Soc. Am1944,16:14-19.
    [24] A. I. El-Sharkawy, A. H. Nayfeh. Effect of the expansion chamb er on thepropagation of sound in circular ducts [J]. J. Acoust. Soc. Am1978,16:14-19.
    [25] M. Abo m. Derivation of four-pole para meters including higher order modeeffects for expansion cha mber mufflers with extended inlet and outlet [J]. JSound Vib1990,134:403-418.
    [26] J. G. Ih, B. H. Lee. Analysis of higher-order mode effects in the circularexpansion chamber with mean flow [J]. J. Acoust. Soc. Am198577:1377-1388.
    [27] S. I. Yi, B. H. Lee. Three-di mensional acoustic analysis of circular expansioncha mbers with a side inlet and a side outlet [J]. J. Acoust. Soc. Am1986,79:1299-1306.
    [28] S. I. Yi, B. H. Lee. Three-dimensional acoustic analysis of a circularexpansion chamber with side inlet and end outlet [J]. J. Acoust. Soc. Am1987,81:1279-1287.
    [29] Sela met A, Radavich PM. The effect of length on the acoustic concentricexpansion cha mbers: an analytical, computational and experi mentalinvestigation [J]. J Sound Vib1997,201:407–26.
    [30] Sela met A, Ji ZL. Acoustic attenuation performance of circular expansionchambers with offset inlet/outlet: I. Analytical approach [J]. J Sound Vib1998,213:601–17.
    [31] Sela met A, Ji ZL. Acoustic attenuation performance of circular expansionchambers with extended inlet/outlet [J]. J Sound Vib1999,223:197–212.
    [32] Sela met A, Ji ZL. Acoustic attenuation performance of circular expansionchambers with single inlet and double outlet [J]. J Sound Vib2000,229:3-19.
    [33] Y K Ki m, K M Li. The acoustic performance of a multiple-inlet and multiple-outlet muffler [C] Proceedings15th International Congress on Sound andVibration,6-10July2008. Daejeon, Koera.
    [34] C.J. Wu, X.J. Wang, H.B. Tang. Transmission loss prediction on asingle-inlet/double-outlet cylindrical expansion-cha mber muffler by usingthe modal meshing approach [J]. Applied Acoustics2008,69:173–178.
    [35] C.J. Wu, X.J. Wang, H.B. Tang. Transmission loss prediction on SIDO andDISO expansion-chamber mufflers with rectangular section by using thecollocation approach [J]. International Journal of Mechanical Sciences2007,49:872–877.
    [36]赵松龄.噪声的的降低与隔离(下)[M].上海:同济大学出版社,1989.
    [37]盛胜我.传递矩阵法分析抗性消声器消声性能的程序设计.同济大学科技情报站,1983
    [38]蔡超,宫镇,赵剑等.拖拉机抗性消声器声学子结构声传递矩阵研究[J].农业机械学报,1994,25(2):65-71.
    [39]季振林,宋希庚.内燃机排气消声系统声学特性的数值预测[J].内燃机工程,1998,19(3):7-12
    [40]黄其柏.考虑非均匀流场的管道声学理论及消声器研究[J].华中理工大学学报,1999.26(8):46-48.
    [41]张永波,黄其柏,周明刚等.并联内插管双室扩张式消声器的插入损失[J].农业机械学报,2007,38(8):49-52.
    [42]宫建国,马宇山,崔巍升等.汽车消声器声学特性的声传递矩阵分析[J].振动工程学报,2010,23(6):636-641
    [43] Ingard, U. On the theory and design of acoustic resonators [J]. J.Acoust. Soc.Am.1953,25:1037–1061.
    [44] Alster, M. Improved calculation of resonant frequencies of Hel mholtzresonators [J]. J. Sound Vib.1972,24(1):63–85.
    [45] Tang, P. K., and Sirignano, W. A. Theory of a generalized Hel mholtzresonator [J]. J. Sound Vib.1973,26(2):247–262.
    [46] Monkewitz, P. A., and Nguyen-Vo, N. M. The response of Hel mholtzresonators to external excitation. Part1. Single resonato rs [J]. J. FluidMech.1985,151:477–497.
    [47] Chanaud, R. C. Effects of geo metry on the resonance frequency of Hel mholtzresonators [J]. J. Sound Vib.1994,178(3):337–348.
    [48] Swati M. Athavale and P. R. Sajanpawar. Analysis and Develop ment of InlineHel mholtz Resonator through Computer Si mulation for Eli mination of LowFrequency Intake Noise Character[C]. SAE Noise&Vibration Conferenceand Exhibition May17-20,1999. Traverse City, Michigan. SAE Paper No.1999-01-1662
    [49] N.S. Dickey, A. Selamet, Helmholtz resonators: One dimensional limit forsmall cavity length to diameter ratios [J]. J Sound Vib.195(1996)512-517.
    [50] A. Sela met, P.M. Radavich, N.S. Dickey and J.M. Novak. Circular concentricHel mholtz resonator [J]. J Acoust Soc Am.1997,101:41-51.
    [51] A. Selamet, L. lee. Helmholtz resonator with extended neck [J]. J Acoust SocAm.2003,113:1975-1985.
    [52] A. Selamet, M. B. Xu and I.-J. Lee. Hel mholtz resonator Lined withabsorbing material [J]. J Acoust Soc Am.2005,117:725-733.
    [53] A. Selamet, Z. L. Ji. Circular asymmetric Helmholtz resonator [J]. J AcoustSoc Am2000,107:2360-2368.
    [54] M.B. Xu, A. Sela met, H. Ki m. Dual Helmholtz resonator [J]. AppliedAcoustics2010,71:822–829.
    [55] Asi m Iqbal, Ah met Sela met. Effect of flow on the acoustic attenuationcharacteristics of Helmholtz resonators[C].NOISE-CON2008, July28-30,2008Dearborn, Michigan.
    [56]阮登芳,邓兆祥.共振式消声器腔体形状对共振频率影响的修正[J].重庆大学学报,2005,28(10):13-16.
    [57]阮登芳,邓兆祥,杨诚.共振式消声器声学性能分析[J].内燃机工程,2006,27(1):66-70.
    [58]范钱旺,沈颖刚,翁家庆等.赫姆霍兹共振消声器结构参数对消声性能的影响[J].噪声与振动控制,2007,4:116-119.
    [59]毕嵘,刘正士,王慧等.多腔共振式消声器的声学特性分析[J].农业机械学报,2008,39(10):48-51.
    [60]张振良,阮登芳.矩形共振腔截面纵横比对其共振频率影响研究[J].噪声与振动控制,2005,6:22-24.
    [61]赵海军,邓兆祥,潘甫生.共振式消声器气流再生噪声发生机理研究[J].内燃机工程,2010,31(1):74-77.
    [62] Scott, R. A. The propagation of sound between walls of porous material [J].Proceedings of the Physical Society1946,58:358-368
    [63] Kurze, U. J. and Ver, I. L.Sound attenuation in ducts lined with non-isotropicmaterial [J]. J.Sound Vib.1972,24:177-187
    [64] S. H. Ko. Theoretical analyses of sound attenuation in acoustically lined flowducts separated by porous splitters(rectangular, annular, and circular ducts)[J]. J. Sound Vib.1975,39:471–487.
    [65] A. Cu mmin gs and I. J. Chang. Sound attenuation of a finite length dissipativeflow duct silencer with internal mean flow in the absorbent [J]. J.Sound Vib.1988,127:1–17.
    [66] K. S. Peat. A transfer matrix for an absorption silencer ele ment [J]. J. SoundVib.1991,146:353–360.
    [67] R. Kirby. Si mplified techniques for predicting the transmission loss of acircular dissipative silencer [J]. J. Sound Vib.2001,243:403–426.
    [68] C.N. Wang, Nu merical decoupling analysis of a resonator with absorbentmaterial [J].Applied Acoustics1999,58:109–122.
    [69] Glav, R. The transfer matrix for a dissipative silencer of arbitrarycross-section [J]. J. Sound Vib.2000,236:575-594.
    [70] A. Sela met, I. J. Lee, Z. L. Ji, and N. T. Huff. Acoustic attenuationperformance of perforated absorbing silencers [C]. SAE Noise and VibrationConference and Exposition, Traverse, City, MI,30April–3May2001. SAEPaper No.2001-01-1435
    [71] R. Kirby, J.B. Lawrie. A point collocation approach to modeling largedissipative silencers [J]. J. Sound Vib.2005,286:313–339.
    [72] A. Selamet, M. B. Xu, I. J. Lee, and N. T. Huff. Analytical approach forsound attenuation in perforated dissipative silencers [J]. J. Acoust. Soc. Am.2004,115:2091–2099.
    [73] A. Sela met, M. Xu, I.J. Lee, N.T. Huff. Analytical approach for soundattenuation in perforated dissipative silencers with inlet/outlet extensions.[J].J. Acoust. Soc. Am.2005,117:2078–2089.
    [74] Ray Kirby, Francisco D. Denia. Analytic mode matching for a circulardissipative silencer containing mean flow and a perforated pipe [J]. J. Acoust.Soc. Am.2007,122(6):3471-3482.
    [75] F. D. Denia, A. G. Antebas, A. Selamet and A. M. Pedrosa. Acousticcharacteristics of circular dissipative reversing chamber mufflers [J]. NoiseControl Eng. J.2011,59(3):234-246.
    [76]季振林.穿孔管阻性消声器消声性能计算及分析[J].振动工程学报,2005,18(4):453-457.
    [77]张东焕,陈学星.阻性管道消声器的动态特性测试[J].山东理工大学学报,2004,18(3):62-65.
    [78]赵骞,顾灿松.阻性消声器穿孔率和吸声材料填充密度对发动机性能的影响研究[J].内燃机,2010,3:31-34.
    [79]徐贝贝,季振林.穿孔管阻性消声器声学特性的有限元分析[J].振动与冲击,2010,29(3):58-62.
    [80]崔晓兵,季振林.阻性消声器声学性能预测的快速多极子边界元法[J].哈尔滨工程大学学报,2011,32(4):428-433.
    [81]刘恺.基于VA One的多孔吸声材料的应用仿真研究[D].武汉:武汉理工大学硕士论文,2010.
    [82] Tamer Elnady. Modelling and Characterization of Perforates in Lined Ductsand Mufflers [D]. The Royal Institute of Technology (KTH), Sweden,2004.
    [83] Beranek, L. L.,.Acoustic impedance of porous materials [J]. J. Acoust. Soc.Am.1942,13:248-260.
    [84] Scott, R. A.,.The absorption of sound in a homogeneous porous medium [J].Proceedings of the Physical Society1946,58:165-183.
    [85] Seybert, A. F. and Ross, D. F. Experi mental determination of acousticproperties using a two-microphone rando m-excitation technique [J]. J. Acoust.Soc. Am.1977,61,1362-1370.
    [86] M. E. Delany and E. N. Bazley. Acoustical properties of fibrous absorbentmaterials. Appl. Acoust.,1970,3:105–116.
    [87] Y. Miki. Acoustical properties of porous materials—Modifications ofDelany-Bazley models [J]. J. Acoust. Soc Jpn.(E),1990:11,19-24.
    [88] Takeshi Komatsu. Improvement of the Delany-Bazley and Miki models forfibrous sound-absorbing materials [J]. Acoust. Sci.&Tech.2008,29,2:121-129.
    [89] K. Attenborough. Acoustical i mpedance models for outdoor ground surfaces[J]. J. Sound Vib.1982,82,179–227
    [90] Y. Miki. Acoustical properties of porous materials-Generalizations o fempirical modelss [J]. J. Acoust. Soc Jpn.(E),1990:11,25-28.
    [91] Jang, S.-H. and Ih, J.-G. On the multiple microphone method for measuringinduct acoustic properties in the presence of mean flow [J]. J. Acoust. Soc.Am.1998,103:1520-1526.
    [92] Bryan H. Song and J. Stuart Bolton. A transfer-matrix approach foresti mating the characteristic i mpedance and wave nu mbers of li mp and rigidporous materials [J]. J. Acoust. Soc. Am.2000,107(3),1131-1152.
    [93] Tao, Z., Herrin, D. W., and Seybert A. F. Measuring bulk properties of soundabsorbing materials using the two-source method [C]. SAE Noise andVibration Conference and Ex position, May5-8,2003, Traverse City, MI, SAEPaper2003-01-1586.
    [94] Kirby, R. and Cu mmings, A. The impedance of perforated plates subjected tograzing gas flow and backed by porous media [J]. J. Sound Vib.1998,217:619-636.
    [95] Sela met, A., Lee, I.J., Ji, Z. L., and Huff, N. T. Acoustic attenuationperformance of perforated concentric absorbing silencers [C]. SAE Noise andVibration Conference and Exposition, April30–May3,2001, Traverse City,MI, SAE Paper No.2001-01-1435.
    [96] Iljae Lee and Ahmet Selamet. Acoustic i mpedance of perforations in contactwith fibrous material [J]. J. Acoust. Soc. Am.2006,11(5):2785-2797.
    [97]赵松龄,卢元伟.声波在纤维性吸声材料中的传播[J].声学学报,1979,1:1-11.
    [98]殷业,赵松龄.吸声材料复特性阻抗和复声速的测试技术及应用[J].声学技术,1996,15(1):32.
    [99]汤道敏.无机纤维吸声材料声学基本常数的测定[J].噪声与振动控制,1995,6:23-25.
    [100]李海涛,朱锡,石勇等.多孔性吸声材料的研究进展[J].材料科学与工程学报,2004,22(6):934-938.
    [101]水中和,李跃,彭显莉等.吸声材料构造形式对吸声效果的影响[J].武汉理工大学学报,2003,25(12):89-91.
    [102]孙富贵,陈花玲,吴九汇.多孔金属材料高温吸声性能测试及研究[J].振动工程学报,2010,23(5):502-507.
    [103]汤慧萍,朱纪磊,王建永等.不锈钢纤维多孔材料的吸声性能[J].中国有色金属学报,2007,17(12):1943-1947.
    [104]蔺磊,王佐民,姜在秀.微穿孔共振吸声结构中吸声材料的作用[J].声学学报,2010,35(4):385-392.
    [105]刘鹏辉,杨宜谦,姚京川.多孔吸声材料的吸声特性研究[J].噪声与振动控制,2011,2:123-126.
    [106] Peik, P. G. Muffler[S]. United States Patent,2014666,1935.
    [107] A. Selamet, I.J. Lee, N.T. Huff, Acoustic attenuation of hybrid silencers, J.Sound Vib2003,262:509–527
    [108] I.J. Lee, A. Sela met. N. T. Huff. Acoustic Characteristics of CoupledDissipative and Reactive Silencers [C]. SAE Noise&Vibration Conferenceand Exhibition May5-8,2003, Traverse City, Michigan. SAE Paper No.2003-01-1643
    [109] I.J. Lee, A. Selamet. N. T. Huff. Design of a Hybrid Exhaust SilencingSystem for a Production Engine [C]. SAE Noise&Vibration Conference andExhibition May16-19,2005, Traverse City, Michigan. SAE Paper No.2005-01-2349.
    [110] F. D. Denia, A. Selamet, F. J. Fuenmayor and R. Kirby. Acoustic attenuatio nperformance of perforated dissipative mufflers with e mpty inlet/outletextensions [J]. J. Sound Vib2007,302:1000–1017.
    [111] F. D. Denia, A. Sela met, M. J. Martínez, F. J. Fuen mayor. Sound attenuationof a circular multi-chamber hybrid muffler [J]. Noise Control Eng. J.2008,56(5):356-364.
    [112] Ji ZL. Boundary element analysis of straight-through hybrid silencer [J]. JSound Vib2006,292:415–23.
    [113] Z.L. Ji. Boundary element acoustic analysis of hybrid expansion cha mbersilencers with perforated facing [J]. Engineering Analysis with BoundaryElements2010,34:690–696.
    [114]解用明,于新民,刘灵灵.管道消声中的阻抗复合式消声器的设计[J].劳动保护科学技术,1998,18(6):49-50.
    [115]张志成.阻抗复合式消声器在真空泵中的应用[J].氯碱工业,1997,6:26.
    [116]卜志威.宽频带阻抗复合式消声器的设计和应用[J].声学技术,2001,20(3):140-141.
    [117]王吉荣,王佐民.实用复合消声器的设计[J].噪声与振动控制,1995,4:33-35.
    [118]熊鸿斌,刘永军.阻-共复合消声器在风井噪声控制中的应用研究[J].环境工程学报,2008,2(6):848-851.
    [119]周晋花,左言言,李占成等.复合穿孔板吸声结构的声学特性分析与应用[J].农业机械学报,2007,38(12):156-159.
    [120]周新祥.阻抗复合消声器的动态特性分析[J].环境工程,2002,20(3):46-47.
    [121]张文平,柳贡民,田华安等.一种新型消声器的设计和实验研究[J].哈尔滨工程大学学报,2004,25(5):628-630.
    [122] Young C I J, Crocker M J. Prediction of Transmission Loss in Mufflers bythe Finite Ele ment Method [J]. J. Acoust. Soc. Am.1975,57(1):144-148.
    [123] Craggs, A. A finite element method for modeling dissipative mufflers with alocally reactive lining [J]. J. Sound Vib1977,54:285-296.
    [124] Kagawa, Y., Ya mabuchi, T., and Mori, A. Finite ele ment simulation of anaxisymmetric acoustic transmission syste m with a sound absorbing wall [J]. J.Sound Vib1977,53,357-374.
    [125] Ross D.F. A finite element analysis of perforated compart ment acousticsystems [J]. J. Sound Vib1981,79:133-143.
    [126] Peat. K.S. Evaluation of four-pole parameters for ducts with flow by thefinite ele ment method [J]. J. Sound Vib1982,84(3):389-395.
    [127] Cummings, A. and Astley, R. J. Finite element co mputation of attenuation inbar silencers and co mparison with measured data [J]. J. Sound Vib1996,196,351-369.
    [128] Peat, K. S. and Pathi, K. L. A finite element analysis of the convectedacoustic wave motion in dissipative silencers [J]. J. Sound Vib1995,184,529-545.
    [129] R. Srinivasa, M. L. Munjal. A fully auto matic3D analysis tool for expansioncha mber mufflers [J]. In: Sadhana1998,23(2):195-212.
    [130] Mehdizadeh Omid Z., Paraschivoiu Marius. A three-di mensional finiteelement approach for predicating the transmission loss in mufflers andsilencers with no mean flow [J]. Applied Acoustics,2005,66:902-918.
    [131] Seybert A F., Cheng C. Y. R. Application of the boundary element method toacoustic cavity response and muffler analysis. J. Vibrat. Acoust. StressReliab. Design [J].1987,109(1):15-21.
    [132] Jia Z. H., Mohanty A. R., Seybert A F. Numerical modelling of reactiveperforated mufflers. Proceedings of the second international congress onrecent develop ments in air and st ructure-borne sound and vibration
    [C].Alaba ma,1992:957-964
    [133] Wang, C.N., Tse, C.C., and Chen, Y.N. Analysis of three-dimensionalmuffler with boundary ele ment method [J]. Applied Acoustics1993,40,91-106
    [134] Ji, Z. L., Ma, Q., and Zhang, Z. H. Application of the boundary elementmethod to predicting acoustic performance of expansion cha mber mufflerswith mean flow [J]. J. Sound Vib.1994,173:57-71.
    [135] Ji, Z. L., Ma, Q., and Zhang, Z. H. A boundary element scheme forevaluation of four-pole parameters of ducts and mufflers with low Machnumber non-uniform flow [J]. J. Sound Vib.1995,185:107-117.
    [136] Wu, T. W., Zhang, P., and Cheng, C. Y. R. Boundary element analysis ofmufflers with an i mproved method for deriving the four-pole parameters [J]. J.Sound Vib.1998,217,767-779.
    [137] Wu, T. W., Cheng, C. Y. R., and Zhang, P. A direct mixed-body boundaryelement method for packed silencers [J]. J. Acoust. Soc. Am.2002,111:2566-2572.
    [138] Wu, T. W., Cheng, C. Y. R., and Tao, Z. Boundary element analysis ofpacked silencers with protective cloth and embedded thin surfaces [J]. J.Sound Vib.2003,261:1-15.
    [139] C. Jiang, T.W.Wu, C.Y.R.Cheng. A single-domain boundary element methodfor packed silencers with multiple bulk-reacting sound absorbing material s[J]. Engineering Analysis with Boundary Elements2010,34:971-976.
    [140] Z.L. Ji. Boundary element analysis of a straight-through hybrid silencer [J].J. Sound Vib.2006,292:415-423.
    [141]徐航手.排气消声器声学性能时域仿真与实验测量研究[D].哈尔滨:哈尔滨工程大学硕士论文,2009.
    [142] I.J. Chang and A. Cummings. A time do main solution for the attenuation athigh amplitudes of perforated tube silencers and comparison with experi ment[J]. J. Sound Vib.1988,122(2),243-259.
    [143] A. Selamet, N. S. Dickey, J. M. Novak. A Ti me-Domain Co mp utationalSi mulation of Acoustic Silencers [J]. Journal of Vibration and Acoustics,1995,117:323-331.
    [144] N. S. Dickey, A. Selamet, J. M. Novak. Multi-Pass perforated tube silencers:a co mputational approach [J]. J. Sound Vib.1998,211(3):435-448.
    [145] A. Broatch, X. Margot and A. Gil. A CFD approach to the computation of theacoustic response of exhaust mufflers [J]. Journal of Comp utationalAcoustics,2005,13(2):301–316.
    [146] Middelberg, J.M., Barber, T.J., Leong et al. Co mputational fluid dynamicsanalysis of the acoustic performance of various simple expansion chambermufflers [C]. Proceedings of Acoustics2004.3-5November2004, Gold Coast,Australia.
    [147] A. Broatch, J.R. Serrano, F.J. Arnau, D. Moya. Time-do main co mputation ofmuffler frequency response: Co mparison of different nu merical schemes [J]. J.Sound Vib.2007,305:333-347.
    [148] So mnath Sen. Prediction of Flow and Acoustical Performance of anAuto motive Exhaust Syste m using3-D CFD [J]. SAE Technical Paper2011-01-1068.
    [149]黎志勤,黎苏,周昌林.内燃机排气消声器声学边界元模型的建立及其应用[J].汽车工程,1991,13(2):107-115.
    [150]黎苏,葛蕴珊,黎志勤等.抗性消声器的三维声学边界元模型及其应用[J].内燃机学报,1992,10(2):147-154.
    [151]刘晓玲.边界元法在预测消声器消声特性上的应用[J].四川工业学院学报,1994,13(1):71-80.
    [152]王雪仁,季振林.快速多极子声学边界元法及其研究应用[J].哈尔滨工程大学学报,2007,28(7):752-757.
    [153]王雪仁,季振林.双倒易边界元法应用于预测三维势流管道和消声器声学特性[J].声学学报,2008,33(1):76-83.
    [154]崔晓兵,季振林.消声器声学性能预测的子结构快速多极子边界元法[J].计算物理,2010,27(5):711-716.
    [155]崔晓兵,季振林.阻性消声器声学性能预测的快速多极子边界元法[J].哈尔滨工程大学学报,2011,32(4):428-433.
    [156]袁兆成,丁万龙,方华等.排气消声器的边界元仿真设计方法[J].吉林大学学报,2004,34(3):357-361.
    [157]陈达亮,顾灿松,王务林等.发动机进气消声元件设计与声学数值模拟的研究[J].汽车工程,2011,33(3):246-249.
    [158]陆森林,刘红光.内燃机排气消声器性能的三维有限元计算及分析[J].内燃机学报,2003,21(5):346-350.
    [159]方忠甫.汽车排气消声器的数值分析研究[D].合肥:合肥工业大学硕士论文,2006.
    [160]徐贝贝,季振林.穿孔管消声器声学特性的有限元分析[J].振动与冲击,2009,28(9):112-115.
    [161]徐贝贝,季振林.穿孔管阻性消声器声学特性的有限元分析[J].振动与冲击,2010,29(3):58-62.
    [162]葛蕴珊,张宏波,宋艳冗.汽车排气消声器的三维声学性能分析[J].汽车工程,2006,28(1):51-55.
    [163]宋艳冗,葛蕴珊,张宏波.发动机工作过程和排气消声器耦合研究[J].汽车工程,2005,27(6):719-723.
    [164]张永波,黄其柏,王勇.基于GT_Power的并联内插管双室扩张式消声器插入损失研究[J].噪声与振动控制,2007,1:87-89.
    [165]侯献军,刘庆,刘志恩.基于GT-Power的汽车排气消声器性能分析及改进[J].汽车技术,2009,1:38-40,55.
    [166]方建华,周以齐,胡效东等.扩张式消声器的流体仿真及空气动力性能研究[J].系统仿真学报,2009,21(20):6399-6404.
    [167]康钟绪.消声器及穿孔元件声学特性研究[D].哈尔滨:哈尔滨工程大学博士论文,2009.
    [168]徐磊,刘正士,毕嵘.横流穿孔管消声器声学及阻力特性的数值分析[J].燕山大学学报,2010,4:301-306.
    [169]谷芳,刘伯潭,李洪亮.基于CFD数值模拟的汽车排气系统结构分析[J].内燃机学报,2007,25(4):358-363.
    [170]李以农,路明,郑蕾等.汽车排气消声器内部流场及温度场的数值计算[J].重庆大学学报,2008,31(10):1094-1097.
    [171] A. Selamet, Z. L. Ji. Acoustic attenuation performance of circular expansionchambers with extended inlet/outlet [J]. J. Sound Vib.1999,223(2):197-212.
    [172]徐磊.汽车排气消声器声学及阻力特性的数值仿真研究[D].合肥:合肥工业大学硕士论文.
    [173] A. Selamet, Z. L. Ji. Acoustic attenuation performance of circular expansionchambers with single inlet and double outlet [J]. J. Sound Vib.2000,229(1):3-19.
    [174] F. P. Mechel. Formulas of Acoustics (2n dEdition)[M]. Berlin: SpringerVerlag,2008.
    [175]李增刚,詹福良.Virtual.Lab Acoustics声学仿真计算高级应用实例[M].北京:国防工业出版社,2010.
    [176]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [177] Sullivan J W, Crocker M J. Analysis of concentric-tube resonators havingunpartitioned cavities [J]. J. Acoust. Soc. Am,1978,64(1),207-215.
    [178] S. Bilawchuk, K.R. Fyfe. Co mparison and imple mentation of the variousnumerical methods used for calculating transmission loss in silencer systems[J]. Applied Acoustics2003,64:903–916.
    [179] M. Abramowitz and I. A. Stegun, Handbook of Mathe matical Functions [M].Dover, New York,1970.
    [180] Sela met, A., Dickey, N. S., Radavich, P. M., and Novak, J. M. Theoretical,computational and experi mental investigation of Helmholtz resonators:one-di mensional versus multi-dimensional approach. SAE Paper.1994,940612.
    [181]阮登芳.共振式进气消声器设计理论及其应用研究[D].重庆大学博士论文,2005.
    [182] A. Selamet, Z. L. Ji. Circular asymmetric Helmholtz resonator. J Acoust SocAm2000,107:2360-2368.
    [183] A. Sela met, L. lee. Hel mholtz resonator with extended neck. J Acoust SocAm.2003,113:1975-1985
    [184] U. Ingard. On the theory and design of acoustic resonators. J Acoust Soc Am.1954,25:1037-1061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700