气固声热耦合的汽车排气消声器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壳排气消声器实际工作时,会存在高温高速气流,精确分析弹性壁、气流和温度对消声器声学性能、压力损失和模态参数的影响具有重要意义。本文结合数值仿真和相关试验手段,从气固声热耦合的角度做了如下研究工作:
     (1)设计搭建了测量消声器声学性能和压力损失的气动-声学试验台。将简单膨胀腔消声器传递损失的测量值、仿真结果与一维平面波理论值进行比较,在无精确理论值的条件下实现了对试验台上消声器传递损失测量的间接标定。通过对压力损失测量和仿真进行对比,发现它们之间差异较小。应用所搭台架对某型消声器GT-POWER仿真模型进行了置信度检验,对另外两只复杂结构消声器进行了声学试验和压力损失测量,通过对测量结果的综合评价,实现了对消声器的相对择优。
     (2)在Workbench中从气固耦合和热固耦合方面,分析了气流和温度对简单膨胀腔消声器结构模态参数的影响,发现气流对模态参数的影响较小,而温度因素则不能忽略。
     (3)基于Virtual.Lab软件,应用声固耦合有限元法研究了弹性壁对消声器传递损失的影响,将只约束进气端和进出气端都约束时的结构模态参数分别参与声固耦合计算,都发现传递损失降低且在某些结构模态频率处发生了跳变。并且改变壳体厚度,发现壳体越薄,跳变现象越明显。
     (4)基于CFD分析所提供的温度场边界条件,实现了热声单向耦合,研究得出内部气体温度较高且非均匀分布时消声器传递损失在高频段增大,在声固耦合和热声耦合的基础上,分析了热声固耦合作用下的传递损失。
     (5)仿真分析了常温和高温状态下消声器的声学模态频率和声压分布。发现相对常温而言,高温下的声学模态频率有所增大,声压分布基本不变。
     (6)考虑气流速度对消声器传递损失的影响,通过仿真发现相对无流情况,气流速度的方向决定了传递损失是增大还是减小,气流速度的绝对值越大,对传递损失的改变越大。
     本课题的研究工作具有如下的创新性:
     考虑弹性壁和非均匀分布的高温的共同作用时,所得到的消声器传递损失将更加精确,热声固的耦合在消声器的研究中尚不多见。
When thin shell exhaust muffler actually works, there will be high temperature and high speed airflow. Analyzing the influence of the elastic wall, airflow and temperature to the acoustic performance, pressure loss and the modal parameters of the muffler accurately is of great significance. Based on the numerical simulation and related experiments, some research done in this paper by coupling the gas-solid-acoustics-thermal is as follows.
     (1) Aero-dynamic&acoustic test rig which can measure the acoustics performance and pressure loss of the muffler has been set up. By comparing the measuring result and the simulation result with the theoretical value in the one-dimensional plane wave of the simple expansion chamber muffler transmission loss, the indirect calibration of transmission loss measurement is realized on the test rig on condition that there is no precise theoretical value. By comparing measuring result and simulation result of pressure loss, only little difference between them is found. The confidence of the muffler's GT-POWER simulation model is verified by the test rig and by conducting the acoustic experiments and measuring the pressure loss of two other structure-complicated mufflers, the test results are evaluated comprehensively to choose the relatively better muffler.
     (2) From the sides of gas-solid coupling and thermal-solid coupling, the airflow and temperature on the influence of the simple expansion chamber muffler structure modal parameters is analyzed on the Workbench software and the conclusion is made that airflow has less effect on the modal parameters, while the temperature factor can not be ignored.
     (3) Based on the Virtual. Lab software, the influence of elastic wall to transmission loss of muffler has been studied using acoustics-solid coupling finite element method.Whether only the inlet side is constrained or both the inlet and outlet sides are constrained in the acoustics-solid coupling analysis, the transmission loss always decreases and jumps in some structure modal frequency. And the conclusion is made that changing the shell thickness, the thinner the shell, the more obvious the jump phenomenon.
     (4) The boundary condition of temperature field based on the CFD analysis is used in the one-way thermal acoustic coupling analysis and it is found that the transmission loss of muffler increases in high frequency when it is full of non-uniform distribution high temperature gas, and on this bases of acoutics-solid coupling and thermal-acoustic coupling, the transmission loss curve is analyzed under the thermo-fluid-structure coupling condition.
     (5) The acoustic modal frequency and sound pressure distribution are analyzed under normal temperature and high temperature condition. Compared with the normal temperature, the acoustic modal frequency increased and the sound pressure distribution basically remained unchanged on high temperature condition.
     (6) Considering the influence of airflow velocity to transmission loss of the muffler, the simulation result shows that compared with no flow case, the velocity direction of airflow determines whether the transmission loss increases or decreases, the greater the absolute value of the airflow velocity, the greater the change of transmission loss.
     The research work of this paper has certain innovations as follows.
     The transmission loss will be more accurate under the combined action of the elastic wall and non-uniform distribution high temperature, coupling thermal acoustics with solid in the study of muffler is rarely seen.
引文
[1]方丹群.噪声控制技术[M].上海:上海科学出版社,1986.
    [2]何渝生,邓兆祥,陈朝阳.汽车噪声控制[M].北京:机械工业出版社,1985.
    [3]马大猷.噪声控制学[M].北京:科学出版社,1987.
    [4]黎志勤,黎苏.汽车排气系统噪声与消声器设计[M].北京:中国环境出版社,1991.
    [5]杨润潮.轿车排气消声器的设计及优化[D]武汉:武汉理工大学,2011.5.
    [6]Davis, et al, Theoretical and experimental investigation of muffler with coments on engine exhaust muffler design,1954,NACA 1192.
    [7]M.L. Munjal, M.G. Prasad. On plane-wave propagation in a uniform pipe in the Pressure of a mean flow and a temperature gradient. Journal of the Acoustic Society of America,1986.5(80):1501-1506.
    [8]毕嵘.汽车进排气消声器性能的数值仿真研究[D].合肥:合肥工业大学,2007.
    [9]A.F.Sebert, C.Y.Cheng. Application of the boundary element method to Acoustic cavity response and muffler analysis. Transaction of the American Society of Mechanical Engineers. Journal of Vibration and Acoustic,1987(109):15-21.
    [10]Z.H. Jia, A.R.Mohanty, A.F.Seybert. Numerical modeling of reactive perforated mufflers. Proceeedings of the Second International Congress on Recent Developments in Air and Structure-borne Sound and Vibration. Alabama,1992:119-129.
    [11]石岩.排气消声器消声特性仿真分析与排气噪声声音品质设计.[D].天津:天津大学,2010.
    [12]阮登芳.共振式进气消声器设计理论及应用研究.[D].重庆:重庆大学,2005.
    [13]康钟绪.消声器及穿孔元件声学特性研究.[D].哈尔滨:哈尔滨工程大学,2009.
    [14]赵海军.内燃机消声器气流再生噪声研究.[D].重庆:重庆大学,2010.
    [15]苏清祖,田冬莲.净化消声器压力损失计算方法[J].汽车工程社,1999(21)1:61-65.
    [16]毕嵘,刘正士,王敏,等.排气消声器声学及阻力特性数值仿真研究[J].噪声与振动控制,2008(2)1:111-114.
    [17]谷芳,刘伯潭,潘书杰.排气系统的数值模拟及优化设计[J].汽车工程,2007(29),11:950-957.
    [18]Seong-Hyun Lee, Jeong-Guon Ih. Effect of non-uniform perforation in the long concentric resonator on transmission loss and back pressure[J]. Journal of Sound and Vibration,2008,311:280-296.
    [19]袁翔.抗性穿孔管消声器数值仿真研究[D].合肥:合肥工业大学,2009.5.
    [20]张晓东.发动机进气系统消声器的气动-声学性能研究[D]上海:上海交通大学,2007.7.
    [21]Kendra Eads and Kamyar Haghighi, Han-Jun Kim and John M. Grace, Finite Element Optimization of an Exhaust System, SAE 2000-01-0117.
    [22]王园.全地域四轮车消声器消声性能仿真与改进[D].重庆:重庆大学,2007.10.
    [23]谢亮.排气系统的传热及热性能研究[D]武汉:武汉理工大学,2010.5.
    [24]C.Young, M. Croker Finite Element Acoustical Analysis of Complex Muffler Systems With and Without Wall Vibration. Noise Control Engineering.1977 9(2):86-93.
    [25]王朝晖.基于边界元与有限元耦合模型的消声器传递损失预测[D].南京:南京理工大学,2004.7.
    [26]孟强.汽车发动机排气系统振动性能及内部流场声场仿真分析[D].沈阳:东北大 学,2008.7.
    [27]董红亮,邓兆祥,来飞.考虑温度影响的消声器声学性能分析及改进[J].振动工程学报,2009.2.
    [28]徐贝贝.排气消声器声学性能预测的有限元法研究[D].哈尔滨:哈尔滨工程大学,2009.3.
    [29]Munjal ML. Acoustics of ducts and mufflers [M].New York:Wiley-Interscience Publication,1987.
    [30]赵世举.排气消声器压力损失仿真与试验研究[D].重庆:重庆大学,2010.05.
    [31]LM International Corporation Transmission loss computation of a muffler with perforated plates. SYSNOISE User Manuual,2001:4.
    [32]李增刚,詹福良.Virtual.Lab Acoustics声学仿真计算高家应用实例[M].北京:国防工业出版社,2010.
    [33]胡习之.基于有限元法的汽车消声器降噪性能仿真研究[D].广州:华南理工大学,2012.5.
    [34]何琳,朱海潮.声学理论与工程应用[M].北京:科学出版社,2006.
    [35]刘鹏飞,毕传兴.汽车消声器声学性能及流场特性数值分析[J].振动与噪声控制.2009.8.
    [36]谷芳,刘伯潭,李洪亮,等.基于CFD数值模拟的汽车排气系统结构分析[J]内燃机学报,2007,25(4):355-363.
    [37]B.E.Launder,D.B.Spalding,Lectures in Mathematical Models of Turbulence.Academic Press,London,1972.
    [38]Fluent Inc., FLUENT User's Guide. Fluent Inc.,2003.
    [39]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [40]许京荆.ANSYS 13.0 Workbench数值模拟技术[M].北京:中国水利水电出版社,2012.
    [41]工程材料使用手册编辑委员会,工程材料手册:1.结构钢、不锈钢[M].北京:中国标准出版社,1988.
    [42]机械工程手册编辑委员会,机械工程手册:第20篇金属材料强度[M].北京:机械工业出版社,1979.
    [43]全国压力容器标准化技术委员会,压力容器材料使用手册:碳钢及合金钢.北京:化学工业出版社,2000.
    [44]凌桂龙,丁金滨,温正.ANSYS Workbench 13.0从入门到精通[M].北京:清华大学出版社,2012.
    [45]黄世勇,王智勇.热环境下的结构模态分析[J].导弹与航天运载技术,2009.5.
    [46]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [47]袁守利,谢亮,刘志恩.汽车排气系统传热与热负荷研究[J].武汉理工大学学报,2011.6.
    [48]何渝生,邓兆祥.汽车噪声控制[M].北京:机械工业出版社,1995.
    [49]刘鹏飞.汽车排气系统的声学性能及流场特性的数值分析研究.[D].合肥:合肥工业大学,2009.3.
    [50]郑蕾.汽车排气消声器声学性能分析及结构改进[D].重庆:重庆大学,2009.04.
    [51]唐金花.特种车辆驾驶室内部噪声分析研究[D].南京:南京理工大学,2006.6.
    [52]杜功焕,朱哲民,龚秀芬声学基础[M].南京:南京大学出版社,2001.
    [53]马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700