基于时序分析的直接空冷系统空气侧流动特性及表征方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接空冷系统具有节约冷却水、系统结构简单等优点,可以有效带动富煤缺水地区的电力发展,因此近些年来,直接空冷系统在我国北方得到了大范围的应用。但由于直接空冷系统采用阵列式风机平台和A型框架结构单元以及以环境空气为冷却介质的特点,使得机组在运行中会出现诸如风机集群运行效率不高、气流分配不均以及易受环境气象影响等问题,这一系列问题会直接影响到空冷凝汽器的换热性能。因此,如何揭示、掌握直接空冷系统空气侧气流的流动特性及其对空冷凝汽器换热性能的影响机理成为目前直接空冷系统设计、研发过程中比较棘手的问题。
     本文对直接空冷系统中空气侧气流流动特性及表征方法的研究,以空冷机组受环境气象条件影响大、风机集群运行效率不高等问题为起因,通过采集空冷风机及单元周遭气流的脉动时序信号开展实验研究,研究环境自然风与风机机械风的区别,揭示风机入口干涉效应和风机群抽机理,探究空冷单元流场的分布特性,最后将研究拓展到基于空冷电厂环境气象时序数据,将多元环境引入到空冷系统设计的典型年优化上。
     本文结合空冷系统本身受环境自然风和风机机械风共同影响的特点,将功率谱分析方法应用于空冷风机周遭气流动态特性研究,确定了采用热线风速仪获取气流湍流脉动时序信号的实验方案,用表征气流动态特性的代表性参数(功率谱指数、能量累积因子)对环境自然风和风机机械风的频域动态特性进行了定量区分。
     将功率谱分析方法可区分自然风和机械风的结论应用于风机入口气流流动特性的实验研究中,定量分析了风机入口气流速度、湍流强度、功率谱指数及能量在频域的分配状况,得到了风机入口机械风的定量影响范围。
     逐步增加被测风机周遭风机的台数,对风机的集群运行特性进行研究,主要内容包括:1)被测风机的流量并不随周遭风机台数的增加而单调减小;2)风机入口的对称性是影响风机流量的主要因素之一;3)在风机集群运行时,被测风机主流区的流量和速度较单台风机运行时降低,而被测风机近壁区的流量和速度较单台风机运行时增大;4)风机入口气流的湍流强度会随着风机台数的增多而增加。
     针对空冷A型框架单元开展流场实验研究,探究单元内部A型框架倾斜面出口气流的速度分布特性,揭示了空冷单元气流分配不均的原因,实验结果表明:在远离风机中心截面的区域存在流场分布的不对称性,空冷单元底角处存在流动死区,中心区域存在低速区,A型框架倾斜面出口速度和湍流强度在风机中心截面两侧表现出明显的不对称性。
     依托电厂当地气象环境历史时序数据,提出了一种基于多元环境因子的FS统计气象典型年的表征方法。该方法可以兼顾到所有对系统有影响的气象参数(环境温度、环境风速、太阳辐射等),并且能够反映直接空冷系统最为敏感的冬夏季节的气候长期规律,可为空冷系统的设计、研发提供更为合理的指导。
The primary advantages for direct air cooling system are water-saving and simple structure, which can promote the electric power development of the areas in shortage of water but rich in coal. Because of this, in the recent years direct air cooling system is used extensively in the northern of china. However, due to the array-fans platform and A-type frame are adopt in direct air cooling system and the ambient air is used as cooling medium, some problems such as low operating efficiency of fan cluster, uneven distribution of airflow and being vulnerable to environmental impact will be occurred during the fans operation in cluster. These problems will directly affect the heat exchange performance of air condenser. Therefore, how to reveal and grasp the flowing property of air-side flow in direct air cooling system and its effect mechanism on heat transfer performance of air condensers have became the troublesome problems in the design and development stage of direct air cooling system.
     The studies about the flowing property and characterization method of air-side flow in direct air cooling system presented in the paper are originates from the problems of environment-sensitive of air cooling unit and low operating efficiency of fan cluster. The experimental study is carried out by collecting the pulsation timing signals of air cooling fan and its around air flows. In this study, the difference between environmental wind and mechanical wind are investigated, the interference effects of fan inlet and the mechanism of fan cluster pumping are revealed, the distribution property of flow field in air cooling unit is explored, and then the study is extended to the optimization of typical year in air cooling system design on the basis of meteorological timing series data of air cooling plant.
     Firstly, on the basis of the combined effects of environmental wind and mechanical wind on air cooling system, the method of power spectral analysis is used in the study of dynamic property of airflows around air cooling fans. The experiment plan is determined by collecting the pulsation timing signals of turbulent flows using hot-wire anemometer. The representative parameters (such as power spectral index and energy accumulation factor) which characterize the dynamic property of air flows are used to distinguish the dynamic property in frequency domain of environmental wind and mechanical wind.
     Secondly, the paper applies the conclusion which is the ability of power spectral analysis method to distinguish the environmental wind and mechanical wind to the flowing performance experiment of fan inlet so as to analyze the air velocity, turbulence intensity, power spectral index and the energy distribution in frequency domain quantitatively, and then obtain the quantitative effective range of mechanical wind in fan inlet.
     Thirdly, increasing the number of fans around the measured fan slowly, the cluster operating performances of fans are studied, the major conclusions are obtained as follows:1) the flow rate of measured fan is not decreased monotonously as the increase of the number of ambient fans;2) whether the fan inlet is symmetry is one of the major factors affecting the flow rate of fan;3) when the fan is running in cluster, the air flow rate and velocity of the mainstream region of measured fan is lower than that in single fan, the air flow rate and velocity of the wall-closed region of measured fan is larger than that in single fan;4) the turbulence intensity in fan inlet is increased as increasing the fans number.
     Fourthly, the experimental study about the flow field of A-type frame in air cooling unit is conducted so as to investigate the feature of velocity distribution in the interior of unit and the outlet of A-type frame, and reveal the reason why the distribution of flow rate of air cooling unit is not uniform. The experiment results show that the flow field far from the center cross section of fan is not symmetry, the bottom-corner of air cooling unit exists flowing dead-zone, the center region of air cooling unit exists low-velocity zone, the velocity distribution and turbulence intensity of A-type frame outlet are not take center cross plane as symmetry plane.
     Fifthly, according to the meteorology timing data of local power plants, a characterization method about FS statistics meteorology typical year with multiple environmental factors introduced is proposed. This method can take into account all meteorological parameters (such as environment temperature, wind velocity, solar radiation, etc.) affecting the air cooling system, and reflect the long-term meteorological law of winter and summer to which the air cooling system is most sensitive, which provide a more reasonable guidance for air-cooling system design and improvement.
引文
[1]陈立军,米利俊,徐超,等.新形势下直接空冷和间接空冷的发展分析[J].电站系统工程,2010,26(6):5-7.
    [2]丁尔谋.发电厂空冷技术[M].北京:水利电力出版社,1992.
    [3]王佩璋.世界首台2×1000 MW火电空冷机组及其系统技术要点[J].华北电力技术,2010,10:34-38.
    [4]张晓鲁.600 MW火电机组空冷技术的研发与工程示范[J].中国电力,44(3):64-68.
    [5]杨立军,杜小泽,杨勇平,等.直接空冷系统轴流风机群运行特性分析[J].中国电机工程学报,2009,29(20):1-5.
    [6]温高.发电厂空冷技术[M].北京:中国电力出版社,2008.
    [7]李军.大型空冷机组直接空冷系统的冻结原因及防冻措施[J].热力发电,2008,37(5):58-61.
    [8]杨立军,郭跃年,杜小泽,等.环境影响下的直接空冷系统运行特性研究[J].现代电力,2005,22(6):39-42.
    [9]Heeren H. Dry cooling eliminates thermal pollution [J]. Combustion,1972,44(4):18-26.
    [10]Brogden R. K., Brauer W. Dry-cooled wyodak plant completes full year of successful operation [J]. Electric Light and Power,1979,57(11):58-64.
    [11]Knirsch H. Design and construction of large direct dry cooled units for thermal power plants [J]. ASME/IEEE Joint Power Generation Conference,1990,15(4):66-70.
    [12]胡琳,李占斌,何凌空,等.火电建设与气候[M].北京:气象出版社,2010.
    [13]温高.发电厂空冷技术[M].北京:中国电力出版社,2008.
    [14]邱丽霞.直接空冷汽轮机及其热力系统[M].北京:中国电力出版社,2006.
    [15]王佩璋.我国600MW火电机组直接空冷技术的开发研究[J].电力建设,2002,23(7):5-8.
    [16]梁伟平.直接空冷机组空冷风机变频调速的节能分析[J].中国电力,2008,41(9):58-60.
    [17]吴秉礼,高延福.电站空冷风机技术评述[J].风机技术,2007,1:58-62.
    [18]Kroger D. G. Air-cooled heat exchangers and cooling towers:thermal-flow performance evaluation and design, Volume II [M]. Tulsa:Pennwell Corporation,2004.
    [19]卜永东,杨立军,杜小泽,杨勇平.电站空冷技术[J].现代电力,2013,30(3):69-79.
    [20]Kroger D. G. Fan performance in air-cooled steam condensers [J]. Heat Recovery Systems & CHP,1994,14(4):391-399.
    [21]Meyera C. J., Kroger D. G. Plenum chamber flow losses in forced draught air-cooled heat exchangers [J]. Applied Thermal Engineering,1998,18(9-10):875-893.
    [22]Meyer C. J., Kroger D. G. Air-cooled heat exchanger inlet flow losses [J]. Applied Thermal Engineering,2001,21(7):771-786.
    [23]Meyer C. J., Kroger D. G. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behavior. Applied Thermal Engineering,2004,24(2-3):359-371.
    [24]Salta C. A., Kroger D. G. Effect of inlet flow distortions on fan performance in forced draught air-cooled heat exchangers [J]. Heat Recovery Systems & CHP,1995,15(6): 555-561.
    [25]Duvenhage K., Vermeulen J. A., Meyer C. J. Flow distortions at the fan inlet of forced-draught air-cooled heat exchangers [J]. Applied Thermal Engineering,1996, 16(8-9):741-752.
    [26]Van Rooyen J. A., Kroger D. G. Performance trends of an air cooled steam condenser under windy conditions [J]. Journal of engineering for gas turbines and power,2008, 130(2):023006-1-023006-7.
    [27]Bredell J. R., Kroger D. G., Thiart G. D. Numerical investigation of fan performance in a forced draft air-cooled steam condenser [J]. Applied Thermal Engineering,2006,26(8-9): 846-852.
    [28]Bredell J. R., Kroger D. G., Thiart G. D. Numerical investigation into aerodynamic blade loading in large axial flow fans operating under distorted inflow conditions [J]. Research and Development (R&D) Journal of the South African Institution of Mechanical Engineering,2006,22(2):11-17.
    [29]王佩璋.火电厂湿冷与空冷系统水泵风机的节能改造[J].电力设备,2005,6(6):46-49.
    [30]周文平.火电厂直接空冷平台的数值模拟[D].重庆:重庆大学,2007.
    [31]周文平,唐胜利.电站空冷风机的设计与流场数值计算[J].风机技术,2007,1:21-24.
    [32]Yang L., Du X., Zhang H., et al. Numerical investigation on the cluster effect of an array of axial flow fans for air-cooled condensers in a power plant [J]. Chinese Science Bulletin, 56(21):2272-2280.
    [33]张辉,耿学良,郭牧,等.直接空冷风机进口空气流动特性[J].中国电机工程学报,2013,33(5):46-53.
    [34]时岩.空冷风机集群运行风量的确定方法[J].东北电力技术,2012,6:42-44.
    [35]卜永东.直接空冷单元流动传热特性及空气流场优化组织[D].北京:华北电力大学, 2013.
    [36]付万兵.直接空冷凝汽器单元内三维流场的数值模拟[J].动力工程,2013,29(1):63-68.
    [37]张璟.直接空冷凝汽器喷雾降温系统流动传热特性研究[D].北京:中国科学院大学,2013.
    [38]胡汉波.直接空冷式凝汽器翅片散热器流动传热性能及单元流场特性研究[D].重庆:重庆大学,2006.
    [39]周文平,唐胜利.空冷凝汽器单元流场的耦合计算[J].动力工程,2007,27(5):766-770.
    [40]Wen J., Tang D., Wang Z., et al. Numerical simulation of flow and heat transfer of a direct air-cooled condenser cell in a power plant[C]. ASME 2013 Heat Transfer Summer Conference, No. HT2013-17718, Minneapolis, Minnesota, USA, July 14-19,2013.
    [41]荆有印,丁桂艳,王长海.空冷岛内气流分布不均对冷却效果的影响[J].东北电力技术,2008,11:4-7.
    [42]张宛曦.空冷单元及空冷岛流场优化组织与传热强化[D].北京:华北电力大学,2012.
    [43]贾宝荣,杨立军,杜小泽,等.导流装置对直接空冷单元流动传热特性的影响[J].中国电机工程学报,2009,29(8):14-19.
    [44]周兰欣,李海宏,张淑侠.直接空冷凝汽器单元内加装消旋导流板的数值模拟[J].中国电机工程学报,2011,31(8):7-12.
    [45]苏咸伟.火电厂直接空冷凝汽器传热性能实验研究[D].北京:华北电力大学,2007.
    [46]杜小泽,金衍胜,姜剑波.火电厂直接空冷凝汽器传热性能实验研究[J].工程热物理学报,2009,30(1):99-101.
    [47]Ge Z., Du X., Yang L. Performance monitoring of direct air-cooled power generating unit with infrared thermography [J]. Applied Thermal Engineering,2011,31(4):418-424.
    [48]杜小泽,杨立军,金衍胜,等.火电站直接空冷凝汽器传热系数实验关联式[J].中国电机工程学报,2008,28(14):32-37.
    [49]赵维忠.直接空冷系统的真空严密性与冬季防冻的初步探讨[J].电力技术,2009(11):34-37.
    [50]耿胜民,吕雪霞,张勇,等.高寒地区直接空冷机组空冷凝汽器自动防冻控制[J].吉林电力,2011,39(3):11-13.
    [51]梁博,唐胜利.直接空冷系统优化设计和环境温度变化运行经济性的分析[J].热力发电,2008,37(5):6-9.
    [52]靳允立.适应环境温度变化的直接空冷机组空冷系统控制策略研究[J].热力发电,2012,41(2):37-41.
    [53]Goldschagg H. B. Lessons learned from the world's largest air cooled condenser [C]. Paper presented at the EPRI Int. Symp. on Improved Tehchnology for Fossil Power Plant-New and Retrofit Applicatipons, Washington, March,1993.
    [54]Duvenhage K., Kroger K. G. The influence of wind on the performance of forced draught air-cooled heat exchanger [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996,62(2-3):259-277.
    [55]Gu Z., Chen X., Lubitz W., et al. Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant [J]. International Journal of Thermal Sciences, 2007,46(3):308-317.
    [56]Liu P., Duan H., Zhao W. Numeical investigation of hot air recirculation of air-cooled condensers at a large power plant [J]. Applied Thermal Engineering,2009,29(10): 1927-1934.
    [57]刘沛清,赵万里,徐则林.火电厂直接空冷系统风洞热效应模拟实验研究[J].热能动力工程,2008,23(3):240-243.
    [58]赵万里,刘沛清.环境风对直接空冷系统塔下热回流影响的试验研究[J].动力工程,2008,28(3):390-394.
    [59]周兰欣,李建波,李卫华,等.600MW机组空冷岛外部流场的数值模拟与结构优化[J].中国电机工程学报,2009,29(17):38-42.
    [60]Yang L., Du X., Yang Y. Space characteristics of the thermal performance for air-cooled condensers at ambient winds [J]. International Journal of Heat and Mass Transfer,2011, 54(15-16):3109-3119.
    [61]Yang L., Du X., Yang Y. Wind effect on the thermo-flow performances and its decay characteristics for air-cooled condensers in a power plant [J]. International Journal of Thermal Sciences,2012,53:175-187.
    [62]Yang L., Du X., Yang Y. Measures against the adverse impact of natural wind on air-cooled condensers in power plant [J]. Science China Technological Sciences,2010, 53(5):1320-1327.
    [63]Owen M. T. F., Kroger D. G. The effect of screens on air-cooled steam condenser performance under windy conditions [J]. Applied Thermal Engineering,2010,30(16): 2610-2615.
    [64]Wang Q., Zhang D., Zeng M., et al. CFD simulation on a thermal power plant with air-cooled heat exchanger system in north china [J]. Engineering Computations,2008, 25(4):342-365.
    [65]Gao X., Zhang C., Wei J., et al. Performance predication of an improved air-cooled steam condenser with deflector under strong wind [J]. Applied Thermal Engineering,2010, 30(17-18):2663-2669.
    [66]Yang L. Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant [J]. Applied Energy,2012,99:402-413.
    [67]刘丽华,杜小泽,杨立军,等.太阳辐射对电站直接空冷系统运行的影响[J].化工学报,2010,61(10):2535-2539.
    [68]王强,靖长财.直接空冷机组空冷凝汽器运行风险分析[J].电力技术,2010,19(8):17-21.
    [69]潘新民,蔺婷婷,黄智强,等.电厂空冷设计中气象观测和分析原理[J].干旱气象,2009,27(2):190-192.
    [70]董旭光,王栋成,钱喜镇.宁夏鸳鸯湖电厂空冷气象条件分析[J].气象科技,2006,34(6):769-773.
    [71]刘文平,安炜,郭慕萍.电厂空冷系统环境气象场要素分析中的几个关键技术[J].气象科技,2008,36(6):814-817.
    [72]徐立霞.一类时间序列的频域分析及其应用[D].武汉:华中科技大学,2006.
    [73]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用(上册)[M].武汉:华中科技大学出版社,2007.
    [74]Kay S. M. Modern spectral estimation:theory and application [M]. Carrollton:Prentice Hall,1999.
    [75]Marple S. L., Jr. A Tutorial overview of modern spectral estimation [J]. Acoustics, Speech, and Signal Processing,1989,4:2152-2157.
    [76]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社,2004.
    [77]黄嘉佑,李黄.气象中的谱分析[M].北京:气象出版社,1984.
    [78]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [79]Donald B. P., Andrew T. W. Wavelet methods for time series analysis [M]. New York: Cambridge University Press,2006.
    [80]Daniel K., Glass L. Understanding nonlinear dynamics [M]. New York:Springer-Verlag, 1997.
    [81]Oguchi K., Adachi H., Kusakabe T., et al. Digital system for 1/f fluctuation-speed control of a small-fan motor. Proceedings of IEEE,1988,76(3):299-300.
    [82]Hara T., Shimizu M., Iguchi K., et al. Chaotic fluctuation in natural wind and its application to thermal amenity [C].2nd World Congress on Nonlinear Analysts, Athens, Greece, July 10-17,1996.
    [83]杨冬云,王司.1/f分形噪声理论及其在信号处理中的应用研究综述[J].黑龙江工程学院学报,2004,18(3):31-35.
    [84]Kitagawa T., Nomura T. A wavelet-based method to generate artificial wind fluctuation data [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(7):943-964.
    [85]朱颖心,欧阳沁,戴威.建筑环境气流紊动特性研究综述[J].清华大学学报(自然科学版),2004,44(2):1622-1625.
    [86]Ouyang Q., Dai W., Li H., et al. Study on dynamic characteristics of natural and mechanical wind in built environment using spectral analysis [J]. Building and Environment,2006,41(4):418-426.
    [87]Li H., Chen X., Ouyang Q. et al. Wavelet analysis on fluctuating characteristics of airflow in building environments [J]. Building and Environment,2007,42(12):4028-4033.
    [88]华金晶,欧阳沁,朱颖心,等.一种基于直流无刷电机控制的工位型个体化动态送风装置的研发与应用研究[J].建筑科学,2010,26(10):53-59.
    [89]张强.随机信号分析的工程应用[M].北京:国防工业出版社.2009.
    [90]赵若红,傅继阳,吴玖荣,等Matlab内建psd函数在工程随机振动谱分析中的修正方法[J].暨南大学学报(自然科学版),2007,28(5):435-439.
    [91]欧阳沁.建筑环境中气流动态特征与影响因素研究[D].北京:清华大学,2005.
    [92]Hinze J. O湍流(黄永念,颜大椿译)[M].北京:科学出版社,1987.
    [93]张涤明,朱顶金.粘性流体力学教程[M].广州:中山大学出版社,1988.
    [94]余志豪,苗曼倩,蒋全荣,等.流体力学[M].北京:气象出版社,2004.
    [95]Debnath L. Wavelet transforms and their applications [M]. Birkhauser, Boston, MA, 2002.
    [96]胡非.大气边界层湍流涡旋结构的小波分解[J].气候与环境研究,1998,3(2):97-105.
    [97]胡非.湍流、间歇性与大气边界层[M].北京:科学出版社,1995.
    [98]徐斌.湍流的现代实验研究方法[J].沿海企业与科技,2009,9:13-15.
    [99]范宝春.瞬态流场参数测量[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [100]朱行听,吴晓庆,李多扬.三维超声风速仪测量近地面湍流谱及C_n2的初步研究[J].大气与环境光学学报,2012,7(1):6-12.
    [101]丁向辉,李平,孟晓辉.高精度超声风速测量系统设计与实现[J].仪表技术与传感器,2011,2:41-44.
    [102]郅伦海.城市中心边界层风特性及超高层建筑动力响应研究[D].长沙:湖南大学,2011.
    [103]王婷婷.基于FLUENT的大气边界层风场LES模拟[D].北京:北京交通大学,2011.
    [104]王仲刚,邓洪洲,王肇民.桅杆风振试验研究[J].工程力学,2003,20(5):42-47.
    [105]Emil S, Robert H. S风对结构的作用—风工程导论(刘尚培译)[M].上海:同济大学出版社,1992.
    [106]刘建华,姜楠,舒玮.湍流局部平均速度结构函数与湍流多尺度相干结构[C].2003 全国流体力学青年研讨会论文集,2003.
    [107]姜楠,杨宇.湍流中的多尺度结构及其相对运动[J].科学技术与工程,2006,6(20):3254-3258.
    [108]李宏军.建筑环境中人工气流的动态特性研究[D].北京:清华大学,2005.
    [109]郭牧.空冷凝汽器风机群运行特性实验研究[D].北京:华北电力大学,2013.
    [110]白鹏宇.空冷机组设计初期气象参数的统计分析[J].电力勘测技术,2008,6:31-36.
    [111]王起峰.空冷气象参数分析系统的设计与开发[D].成都:电子科技大学,2011.
    [112]石磊,刘国银,薛海君,等.直接空冷系统气象典型年确定方法[J].热力发电,2010,39(9):1-4.
    [113]Finkelstein J. M., Schafer R. E. Improved goodness-of-fit tests. Biometrica,1971,58: 641-645.
    [114]Hall I. J., Prairie R. R, Anderson H. E., et al. Generation of typical meteorological years for 26 SOLMET stations. Sandia Laboratories Report SAND 78-1601, Albuquerque, New Mexico,1978.
    [115]Pissimanis D., Karras G., Notaridou V., et al. The generation of a "typical meteorological year" for the city of Athens. Solar Energy,1988,40:405-411.
    [116]Skeiker K. Generation of a typical meteorological year for Damascus zone using the Filkenstein-Schafer statistical method. Energy Conversion and Management,2004,45: 99-112.
    [117]Petrakis M., Kambezidis H. D., Lykoidis S., et al. Generation of a typical meteorological year for Nicosia, Cyprus. Renewable Energy,1998,13:381-388.
    [118]Kalogirou S.A. Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus. Renewable Energy,2003,28:2317-2334.
    [119]Bulut H. Generation of representative solar radiation data for Aegean region of Turkey. International Journal of Physical Sciences,2010,5:1124-1131.
    [120]Chan A. L. S., Chow T. T, Fong S. K. F., et al. Generation of a typical meteorological year for Hong Kong. Energy Conversion and Management,2006,47:87-96.
    [121]Chow T. T., Chan A. L. S., Fong S. K. F., et al. Some perceptions on typical weather year-from the observations of Hong Kong and Macau. Solar Energy,2006,80:459-467.
    [122]Jiang Y. Generation of typical meteorological year for different climates of China. Energy, 2010,35:1946-1953.
    [123]Yang L., Lam J. C., Liu J. Analysis of typical meteorological years in different climates of China. Energy Conversion and Management,2007,48:654-668.
    [124]Janjai S., Deeyai P. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment. Applied Energy,2009,86: 528-537.
    [125]Ebrahimpour A., Maerefat M. A method for generation of typical meteorological year. Energy Conversion and Management,2010,51:410-417.
    [126]Marion W., Urban K. User's manual for TMY2s (Typical meteorological years derived from the 1961-1990 National Solar Radiation Data Base). National Renewable Energy Laboratory, Golden, Colorado,1995.
    [127]Wilcox S., Marion W. Users manual for TMY3 data sets. National Renewable Energy Laboratory, Golden, Colorado,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700