太湖典型湿地恢复区植物群落及沉积物特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竺山湾河口湿地是太湖水域第一块建成的规模化河口湿地,其背靠太湖,又位于太滆运河河口,受太湖、滆湖和太滆运河影响,地理位置特殊,生境独特,同时还受到很多外界的干扰和破坏。因此,其建设、研究成果对太湖其它河口湿地、湖滨带以及同类浅水湖泊湿地恢复都具有普遍指导意义。本文以竺山湾湿地植被恢复区为研究区,研究了恢复后湿地植物的群落特征、沉积物粒度、沉积物中碳、氮、磷的分布特征以及重金属污染状况,为评价湿地植被建设成果、完善湿地生态修复技术和管理方案及后期湿地恢复的长期监测和研究提供了基础数据和科学依据。主要研究结果如下:
     (1)恢复后的湿地植物群落发展正处于上升阶段,并已进入自然演替状态,但整体生物量还偏低,生态系统的生产力水平还有待于进一步提高。不同水分条件对物种多样性变化影响较大,随着基底高程的降低,物种丰富度指数呈下降趋势,Shannon-Wiener多样性指数和Pielou均匀度指数变化基本一致,先降低后升高,Simpson优势度指数则先升高后降低。
     (2)研究区沉积物组成以粉砂为主,沉积物类型主要是砂质粉砂和粉砂。粘土、粉砂、砂均为中等程度变异,且在研究区分布比较均匀。芦苇群落对沉积物中粘粒和砂粒的沉积效果最好。
     (3)沉积物有机碳的平均值为19.59g·kg-1,储量较高;全氮含量不是很高,平均值为1.25g·kg-1,全磷和有效磷的平均值分别为5.32g·kg-1和420mg·kg-1,其中全磷的平均值远超过加拿大安大略省环境和能源部发布的沉积物严重级别生态毒性效应的全磷浓度。从不同群落来看,总体上芦苇群落对碳、氮、磷等元素的拦截、沉积效果最好;沉水植物群落和芦苇群落分布区中大部分区域碳氮比都大于20,表明研究区有机质的外源输入量很大。
     (4)有机碳、全氮、全磷和有效磷的季节变化顺序都为秋冬季>春季>夏季,其主要受温度、水环境、湿地动植物、微生物等因素变化的影响。对植物体内氮、磷含量的研究表明单位面积内芦苇的全氮贮量是香蒲的6.65倍,全磷贮量是荷花的4.41倍,因此芦苇是研究区高功能积累群落。
     (5)沉积物中As、Cd、Gr、Cu、Ni、Pb、Zn七种重金属的平均值都明显高于各自的背景值。地累积指数法评价结果显示,研究区As、Cd的污染程度比较严重,Zn的污染基本上为中等程度,Cr、Pb基本上为轻微污染。潜在生态风险指数法评价显示,研究区大约80%的区域处于强与很强的危害程度,造成研究区重金属潜在危害的主要元素是Cd和As。
Zhushan Bay wetland was the first estuary designed as restoration wetland in Taihu lake. It was located adjacent to Taihu lake and close to estuary of Taige canal thus can be influenced by Taihu lake, Gehu lake and Taige canal. The area receive high levels of human the disturbances and destructions. A case study on the wetland plant restoring area of Zhushan Bay was conducted to reveal the characteristics of the wetland plant community, grain size of the sediments, spatial distribution of C, N, P and the pollution condition of heavy metals in the sediments. The results showed:
     (1) The restored wetland plant community was in early succession stage. The overall plant biomass was low. Ecosystem productivity was positioned to increase. Water depth showed great influence on the species diversity. Plant species richness index reduced, Shannon-wiener diversity index and Pielou evenness index first decreased then increased, while Simpson dominance index first increased then decreased along increase with water depth.
     (2) In the studied area, the sediments was primarily consisted of silt. Dominant sediments were mainly silt and sandy silt. The clay, silt and sand all had moderate variability and were well-distributed in the space. Deposition of the clay and sand was the highest in Phragmites australis community.
     (3) SOC was very high with a mean value of 19.59g·kg-1. TN was relatively low with a mean vaule of 1.25g·kg-1. The means of TP, AP were 5.32g·kg-1 and 420mg·kg-1 respectively. The mean of TP greatly exceed levels of toxic tolerance standards issued by Environment and Energy Ministry of Ontario, Canada. From the different community, Phragmites australis community intercepted the highest levels of sediment and C, N, P. Sediment C/N was greater than 20 in most submerged plant community and Phragmites australis community, which showed exogenous input of organic matters.
     (4) Seasonal changes of SOC, TN, TP and AP all were autumn-winter spring>summer mainly influenced by change of the temperature, water environment, the wetland plants, animals and microbes. In the same area TN of Phragmites australis was 6.65 times that of Typha angustifolia. TP of Phragmites australis was 4.41 times that of Nelumbo nucifera. Phragmites australis community was most effective in intercepting sediments and elements.
     (5) The average contents of As, Cd, Cr, Cu, Ni, Pb and Zn were all higher than their background values. Results from Geo-accumulation index method indicated that As and Cd reached the serious pollution level, that Zn was the moderate pollution level, that Cr and Pb reached the lower pollution level, that Cu and Ni pollution had different pollution levels in the studied area. Results from ecological risk index method indicated that about 80% of the studied area reached severe and very severe harm degree and Cd and As were the main elements of potential harm.
引文
Adams W J, Kimerle R A, Barnett J J W. Sediment quality and aquatic life assessment. Environmental Science&Technology, Applied Geochemistry,2002,17 (9):1171-1181.
    Ambasht R S, Kumar R and Srivastava N K.. Strategy for managing the Rihand River riparian ecosystem deteriorating under rapid industrialization[J]. In:Mitsch W J ed. Global wetlands:old world and new. Elswvier, Netherlands,1994.
    Anderson, A. R., D. G. Pyatt & I. M. S. White. Impacts of conifer plantations on blanket bogs and prospects of restoration. In: Wheeler, B. D., S. C. Shaw, W. J. Fojt & R. A. Robertson eds. Restoration of temperate wetlands[J]. Chichester:John Wiley & Sons,1995:533-548.
    Anthony, D., Leth, J. O.. Large-scale bedforms, sediment distribution and sand mobility in the eastern North Sea off the Danish west coast[J], Marine Geology,2002,182:247-263.
    Baba I, Inada K, Taijima K.. Mineral nutrition and occurrence of Physiological diseases[A], In the mineral nutrition of the rice plant, ed. Baltimore:International Rice Research Institute, John Hopkins,1964.
    Bachand P A M, Home A J. Denitrification in constructed free-water surface wetlands:Ⅱ.Effeets of vegetation and temperature, [J].Ecological Engineerin,2000,14:17-32.
    Bachmann R W, Hoyer M V, Canfield Jr D E. Internal heterotrophy following the switch from macrophytes to algae in Lake Apopka, FIorida[J]. Hydrobiologia,2000,418:217-227.
    Bastos, A. C., Kenyon, N. H., Collins, M.. Sedimentary processes, bedforrns and facies associated with a coastal headland: Portland Bill, Southern UK[J]. Marine Geology,2002,187:235-258.
    Batalla, R. J., Martin-Vide, J. P.. Thresholds of particle entrainment in a poorly sorted sandy gravel-bed river[J]. Catena,2001, 44:223-243.
    Beilfuss R D and Barzen J A. Hydrological wetland restoration in Mekong Delta, Vietnam. In:Mitsch W J ed. Global wetlands: old world and new[J]. Elsevier, Netherlands,1994.
    Bilali L El, Rasmussen P E, Hall G E M, et al. Role of sediment composition in tracemetal distribution in lake sediments[J].1992, 26(10):1864-1875.
    Blizard, C. R., Wohl, E. E.. Relationships between hydraulic variables and bedload transport in a subalpine channel, Colorado Rocky Mountains, U.S.A[J]. Geomorpnology,1998,22:359-371.
    Blott S J, Pye K. Gradistat:a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms,2001,26:1237-1248.
    Cambridge M C.et al. The loss of seagrass in Cockburn Sound, Western Australiall. Possible causes of seagrass decline[J]. Aquat.Bot.,1986,24:269-285.
    Chambers J M and McComb A J. Establishment of wetland ecosystems in lakes created by mining in Western Australia. In:Mitsch W J ed. Global wetlands:old world and new[J]. Elsevier, Netherlands,1994.
    Chen J S, Wang F Y, Li X D, et al. Geographical variations of trace elements of the major rivers in eastern China[J]. Environmental Geology,2000,39(12):1334-134.
    ChengqingYin, ZhiwenLan.The nutrient retention by ecotone wetlands and their modification for BaiYangDian lake restoration[J].wat.sci. tech,1995,32(3):159-167.
    Coops H, Hosper S H. Water-level management as a tool for the restoration of shallow lakes in the Netherlands[J]. Lake and Reservoir Management,2002,18(4):295-298.
    Den Hartog C, Segal S. A. A new classification of the water-Plant communities[J].Acta Bot Neerl,1964,13:367-393 De Kroom H et al. Resource allocation patterns as a function of clonal morphology:a general model applied to foraging clonal plant[J]. Journal of ecology,1991,79:519-530.
    Dennis M, Kenneth A R. An individual-based model of lake fish communities:application to piscivore stocking in lake Mendota [J]. Ecol Model,2000,125(1):67-102.
    Duck, R.W., Rowan, J.S., Jenkins P.A., Youngs I.A Multi-Method Study of Bedload Provenance and Transport Pathways in an Estuarine Channel [J]. Physical Chemistry Earth (B),2001,26(9):747-752.
    Dvaenport T. The federal clean lakes Program wokrs[J].wat.sci.tech,1999,39(3):149-156.
    FitzGerald, D. M., Buynevich, I. V., Fenster, M. S., Mckinlay, P. A.. Sand dynamics at the mouth of a rock-bound, tide-dominated estuary[J]. Sedimentary Geology,2000,131:25-49.
    Folk R L.Andrews P B,Lewis D W. Det rital sedimentary rock classification and nomenclature for use in New Zealand [J].New Zealand Journal of Geology and Geophysics,1970,13 (4):937-968.
    Folk, R. L., Ward, W. C.. Brazos river bar:a study in the signification of grainsizeparameters[J]. Journal of Sedimentary Petrology, 1957,27:3-27.
    Friedman, G. M..Address of retiring President of the International Association of Sedimentology:difference in size distributions of populations of particles among sands from various origins[J]. Sedimentology,1979,26:3-22.
    Gao, S., Collins, M. Net sediment transport patterns inferred from grain size trends, based upon definition of transport vectors[J]. Sedimentary Geology,1992,81:47-60.
    Gao, S., Collins, M.. Analysis of grain-size trends for defining sediment transport pathways in marine environments[J]. Journal of Coastal Research,1994,10(1):70-80.
    Gorham E. Northern peatlands:role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991,1(1):182-195.
    Groudeva V I, Groudev S N, Doycheva A S.Bioremediation of waters contaminated with crude oil and toxic heavy metals[J]. In J Miner Process,2001,62:293-299.
    Gumbricht T. Nutrient removal processes in fresh water submerged macrophyte systems[J]. Ecol Eng,1993,2:1-30.
    Hakanson L. An ecological risk index for aquatic pollution control:a sedimentological approach[J]. Water Research,1980,14(8): 975-1001.
    Hartmann, M. Peat accumulation perspectives in rewetted fens:the role of plant species and rewetting techniques. In:Malterer, T. J., K. W. Johnson & J. Stewart eds. Peatland restoration and reclamation. Duluth:International Peat Society,1998:44-48.
    Havens K E, Jin K R, Rodusky A J, et al. Hutricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level[J]. The Scientific World,2001,1:44-70.
    Henry C P and Amoros C. Restoration ecology of riverine wetlands:A scientific base[J]. Environmental Management.1995,19(6): 891-902.
    Holland D.Down the riverside[J]. Landscape Design,2002,11:65-67.
    HuW P, SvenE J, ZhangF B.A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecological Modelling,2006,190(4):367-398.
    Jones R C et al. Phytoplankton as a factor in the decline or the submersed macrophyte Myriophylum spicatum L. in Lake Wingra, Wisconsin, USA[J]. Hydrobiologia,1983,107:213-219.
    Joosten,J. H. J. Time to regenerate:long-term perspectives of raised bog regeneration with special emphasis on palaeoecological studies. In:Wheeler, B. D., S. C. Shaw, W. J. Fojt & R.A. Robertson eds. Restoration of temperate wetlands. Chichester:John Wiley & Sons,1995:379-404.
    Kobayashi N, Raiche A W, Asano T. Wave attenuation by vegetation [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1993,119:30-48.
    Koppitz, H., H. Kuhl,T. Timmermann & W. Wichtmann. Fen restoration and reed cultivation:first results of an interdisciplinary project in Northeastern Germany-biotic aspects. In:Malterer, T. J., K. W. Johnson&J. Stewart eds. Peatland restoration and reclamation. Duluth:International Peat Society,1998:235-243.
    Kusler J A. Wetland.Scientific American,1994,1:58-62.
    L bersile E M, Steinnes E. Metal uptake in plants from a beaeh forest area near a copper smelter in Norway[J]. Water Air soil Pollute,1988,37:25-39.
    Lode, E. Rewetting strategies based on 200 soil pits from naturally restored peat cutting sites. In:Malterer, T. J., K. W. Johnson&J. Stewart eds. Peatland restoration and reclamation. Duluth:International Peat Society,1998.
    Madsen J D, Chamber P, Joes W F, et al. The interaction between water movement, sediment dynamics and submersed macrophytes[J]. Hydrobiologia,2001,444:71-84.
    Maltby E, Immirzi P. Carbon dynamics in peatlands and other wetland soils:regional and global perspectives[J].Chemosphere, 1993,27:999-1023.
    Matheron G. Principles of geostatistics[J].Economic Geology,1963,58:1246-1266.
    May R. M. Thresholds and break points in ecosystems with a multiplicity of stable states[J]. Nature,1977,269:471-477.
    McCoy M B and Rodriguex J M. Cattail (Typha dominguensis) eradication methods in the restoration of a tropical, seasonal, freshwater marsh. In:Mitsch W J ed. Global wetlands:old world and new. Elsevier, Netherlands,1994.
    McLaren, P., Bowles D.The effects of sediment transportation on grain-size distributions[J]. Journal of Sediment Petrol,1985,55(4):457-470.
    McLaren, P., Cretney, W. J., Powys, R.L.Sediment pathways in a British Columbia Fjordand the irrelationship with particle-associated contaminants[J]. Journal of Coastal Research,1993,9(4):1026-1043.
    McManus, J.. Grain size determination and interpretation[A]. In:Tucker Med. Techniques in Sedimentology[C], Backwell, Oxford, 1988:63-85.
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994,114(3/4):289-302.
    Milendovic N, Damijanovic M, Ristic M. Study of heavy metal pollution in sediments from iron gate (Danube River), Serbia and montenegro[J]. Polish Journal of Environmental Studies,2005,14(6):781-787.
    Mitsch W J, et al. Wetlands of the old and new world:ecology and management. In:Mitsch W J ed. Global wetlands:old world and new. Elsevier, Netherlands,1994.
    Moss B. Engineering and biological approach to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components[J]. Hydrobiogia,1990,200/201:367-377.
    Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia,1990,201:367-377.
    Ni L Y. Stress of fertile sediment on the growth of submersed macrophytes in eutrophic waters[J]. Acta Hydrobiologica Sinica,2001,25(4):399-405.
    Nichols S A, Yandell B. Habitat relationships for some Wisconsin Lake Plant associations[J]. Journal of Freshwater Ecology, 1995,10:367-377.
    Pedreros. R., Howa, H. L., Michel, D. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas[J]. Marine Geology,1996,135:35-49.
    Pejrup, M. The triangular diagram used for classification of estuarine sediments:a new approach in tide-influenced sedimentary environments and facies. Dordrecht. D. Reidel Publishing company,1987:298-300.
    Pokorny J, Kvet J and Ondok J P. Functioning of the plant component in densely stoked fishpods. Bull. Ecol.,1990,21(3):44-48.
    Ponnamperuma F N. Dynamic aspects of flooded soil and the nutrietion of rice plant[A].In the mineral nutrition of the rice plant, ed[M]. Baltimore:International Rice Research Institute, John Hopkins,1965.
    Ramesh R, Ramanathan AL, Ramesh S, et al. Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system[J].Geochemical Journal,2000,34:295-319.
    Reilly J F. Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to ground water recharge[J]. Ecological Engineering,2000,14:33-47.
    Richards, J. R. A., B. D. Wheeler & A. J. Willis. The growth and value of Eriophorum angustifolium Honck. in relation to the revegetation of eroding blanket peat. In:Wheeler, B. D.,S. C. Shaw, W. J. Fojt & R. A. Robertson eds. Restoration of temperate wetlands. Chichester:John Wiley & Sons,1995:509-521.
    Robyn A Overall, David L Parry. The uptake of uranium by Eleocharis dulcis (Chinese water chestnut) in the Ranger Uranium Mine constructed wetland filter[J]. Environmental Pollution,2004,132:307-320.
    Roulet Nigel T. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol:prospects and significance for Canada.Wetlands,2000,20(4):605-615.
    Rubee C D A. Canada's federal policy on wetland conservation:a global model. In:Mitsch W J. Global wetlands:old world and new[J]. Elsevier, Netherlands,1994.
    S. Antschi, P. Hochener, P. Benoitg, et al. Chemical Processes at the Sediment Water lnterface[J]. Mar. Chem,1990, 30(13):269-315.
    S. Olivares-Rieumont, D. De La Rosa, L Lima, et al. Assessment of Heavy Metal Levels in A lmendares River Sediments-Ha-vana City, Cuba[J]. Water Research,2005,39(16):3945-3953.
    Schafer, A.&W. Wichtmann. Fen restoration and reed cultivation:first results of an interdisciplinary project in Northeastern Germany Economic aspects. In:Malterer, T. J., K. W. Johnson&J. Stewart eds. Peatland restoration and reclamation. Duluth: International Peat Society,1998:244-249.
    SchefTer M. The effect of aquatic vegetation on turbidity:how important are the filter feeders[J]. Hydrobiologia,1999,408/409: 307-316.
    Schmid B et al. Clonal integration and population structure in perennials, effects of severing rhizome connection[J]. Ecology,1987,68(6):2016-2022.
    Schumnacner M. Variations of heavy metals in water, sediment and biota from the delta of Ebro River, Spain[J]. Journal of Environmennt Science and Health, Part A,1995,30(6):1361-1372.
    Shepard, F. P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology,1954,24:151-158.
    Shi Z, Pethick J S, Pye K. Flow structure in and above the various heights of a salt marsh canopy:a laboratory flume study [J]. Journal of Coastal Research,1995,11 (4):1204-1209.
    Silvertown J W.植物种群生态学导论[M].祝宁等译.哈尔滨:东北林业大学出版社,1987.
    Streever, W. An international perspective on wetland rehabilitation.Dordrecht:Kluwer Academic Publishers,1999.
    Tarn N F Y, Wong Y S. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J]. Environmental Pollution,2000,110:195-205.
    Todd L Ingersoll,Lawrence A Raker.Nitrate removal in wetland microcosms[J]. Water Research,1998,32(3):677-684.
    Unger J A et al. Population characteristics, growth, and survival of the halophyte salicarnia europaea[J]. Ecology,1987, 68:569-575.
    US National Research Council. Restoration of Aquatic Ecosystems. Nat A cad Press, Washington D C.I 992.
    Vertacrik A, Prohic E, et al. Behavior of some trace elements in alluvial sediments zagerb water-well field area Croatis[J], Wat. Res,1995,29:237-246.
    Visher, GS. Grain size distributions and depositional processes[J]. Journal of Sedimentary Petrology,1969,39:1074-1106.
    Warren L A, Zimmerman A P. Suspended Particulate oxide and organic matter interactions in trace metal sorption reaction in a small urban river[J]. Biogeochemistry,1994,24(1):21-34.
    Wheeler B D, Shaw S C, Fojt W J. Restoration of Temperate Wetlands. Chichester:John Wiley&Sons,1995,12-87.
    Xu F L, Tao S, Dawson R,A. A GIS-based method of lake eutrophication assessment J]. Ecol modeling,2001,144:231-244.
    Yong P. The "new science" of wetland restoration. Environmental Science & Technology.1996,7:292-296.
    Zedler, J. B.&J. C. Callaway. Tracking wetland restoration:do mitigation sites follow desired trajectories? Restoration Ecology, 1999,7:69-73.
    Zedler, J. B. Handbook for restoring tidal wetlands (Marine Science Series). Boca Raton:CRC Lewis Publishers,2000.
    包先明,陈开宁,范成新.浮叶植物重建对富营养化湖泊氮磷营养水平的影响[J].生态环境,2005,14(6):807-811.
    鲍志娟,盖平.吉林省西部地区芦苇地上部生物量季竹动态的研究[J].吉林农业大学学报,2002,24(5):31-34.
    蔡庆华,赵斌,潘文斌.芦苇生长格局分形特征的初步研究[J].水生生物学报,1998,22(2):123-127
    曹萃禾.四种生态类型的水生维管束植物净化能力的研究[J].水产科学,1990,9(3):8-11.
    陈洪达.武汉东湖水生维管束植物群落的结构和动态[J].海洋与湖沼,1980,11(3):275-284.
    陈家宽,王海洋,何国庆.江西境内珍稀植物普通野生稻和中华水韭产地的考察.生物多样性.1998,6:260-266.
    陈家宽主编.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社,2003,94-115.
    陈坚,顾林娣,章宗涉,等.马来眼子菜抑制藻类增长及其抑制系数的计算[J].上海师范大学学报(自然科学版),1994,23(1):69-73.
    陈静生,王飞越,宋吉杰等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].环境化学,1996,15(1):8-14.
    陈沈良,杨世伦,吴瑞明.杭州湾北岸潮滩沉积物粒度的时间变化及其沉积动力学意义[J].海洋科学进展,2004,22(3):299-305.
    陈水森,詹志明.基于GIS的鄱阳湖湿地遥感调查实验研究[J].热带地理,1999,19(1):35-38.
    陈永川,汤利,张德刚,等.滇池沉积物总氮的时空变化特征研究[J].土壤,2007,39(6):879-883.
    陈振楼,许世远,柳林等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,2000,55(6):641-650
    陈中义,雷泽湘,周进,等.梁子湖六种沉水植物种群数量和生物量周年动态[J].水生生物学报,2000,24(6):582-588.
    陈中义,雷泽湘,周进,等.梁子湖优势沉水植物冬季种子库的初步研究[J].水生生物学报,2001,25:152-158.
    陈中义,李博,陈家宽.米草属植物入侵的生态后果及管理对策[J].生物多样性,2004,12(2):280-289.
    程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势[J].海洋与湖沼,2000,31(6):604-615.
    丛艳静.基于GIS技术的兴化平原耕地土壤重金属污染空间分异与环境风险评价[D].福州:福建农林大学.2006.
    崔保山,刘兴土.湿地生态恢复研究综述[J].地球科学研究进展,1999,14(4):358-364.
    崔心红,陈家宽,李伟.长江中下游湖泊水生植被调查方法[J].武汉植物学研究,1999,17(4):357-361.
    崔心红,蒲云海,熊秉红,等.水深梯度对竹叶眼子菜生长和繁殖的影响[J].水生生物学报,1999,23(3):269-272.
    崔心红,熊秉红,蒲云海,等.5种沉水植物无性繁殖和定居能力的比较研究[J].植物生态学报,2000,24(4):502-505.
    戴塔根,罗莹华,梁凯.重金属在不同粒径PM10中的含量与动态[J].地球科学与环境学报,2006,28(4):87-91.
    戴志军,陈吉余,程和琴,等.南汇边滩的沉积特征和沉积物输运趋势[J].长江流域资源与环境,2005,14(6):735-739.
    丁平兴,胡克林,孔亚珍,朱首贤.长江河口波—流共同作用下的全沙数值模拟[J].海洋学报,2003,25(5):113-124.
    丁喜桂,叶思源,高宗军.近海沉积物重金属污染评价方法[J].海洋地质动态,2005,21(8):31-36.
    董永发,丁文望.长江河口沉积物粒度特征与水动力的关系.长江河口动力过程和地貌演变[M].上海:上海科学技术出版社,1988:314-322.
    冯益民,唐守正,李增元.空间统计分析在林业中的应用[J].林业科学,2004,40(3):149-155.
    付为国,李萍萍,吴沿友,等.北固山湿地植物群落特征及其物种多样性研究[J].湿地科学,2006,4(1):42-47.
    高吉尚,叶春,杜鹃,等.水生植物对面源污水净化效率研究[J]中国环境科学,1997,17(3):247-251.
    高建华,欧维新,杨桂山,等.苏北潮滩不同生态带沉积物分布特征[J].东海海洋,2005,23(1):40-47.
    高建平,王珊玲.水体富营养化评价和防治的一些进展[J].农村生态环境,1989,(3):55-60.
    高为利,张富元,章伟艳,等.海南岛周边海域表层沉积物粒度分布特征[J].海洋通报,2009,28(2):71-80.
    葛振鸣,王天厚,施文或,等.崇明东滩围垦堤内植被快速次生演替特征[J].应用生态学报,2005,16(9):677-681.
    葛振鸣,王天厚,周晓,等.上海崇明东滩堤内次生人工湿地.鸟类冬春季生境选择的因子分析[J].动物学研究,2006,27(2):44-50.
    古滨河.美国Apopka湖的富营养化及其生态修复[J].湖泊科学,2005,17(1):1-8.
    谷孝鸿,范成新,杨龙元等.固城湖冬季生物资源现状及环境质量与资源利用评价[J].湖泊科学,2002,14(3):283-288.
    谷孝鸿,张圣照,白秀玲,等.东太湖水生植物群落结构的演变及其沼泽化[J].生态学报,2005,7(25):1541-1548.
    顾丁锡.二十年来太湖生态环境状况的若干变化[J].上海师范学院学报(环境保护专辑).1983:50-59.
    郭长城,胡洪营,李锋民.湿地植物香蒲体内氮、磷含量的季节变化及适宜收割期生态环境学报[J].2009,18(3):1020-1025.
    国家海洋局.海洋调查规范(第四分册—海洋地质调查)[M].北京:海洋出版社,1975:9-88.
    国家自然科学基金委员会.生态学[M].北京:科学出版社,1997
    何池.全毛果苔草湿地植物营养元素分布及其相关性[J].生态学杂志,2002,21(1):10-13.
    何池全.湿地植物生态过程理论及其应用—三江平原典型湿地研究[M].上海:上海科学技术出版社,2003,7-55.
    侯景儒.中国地质统计学(空间信息统计学)发展的回顾与前景[J].地质与勘探,1997,33(1):53-58.
    胡春华,濮培民,王国祥,等.冬季净化湖水的效果与机理[J].中国环境科学,1999,19(6):561-565.
    胡火金.论中国传统农业的生态化实践[J].南京农业大学学报(社会科学版),2005,5(3):71-75.
    胡耀辉.伊乐藻等几种沉水植物的生物量和生产量测定以及竞争态势试验[J].湖泊科学,1996,8(增刊):73-78.
    胡芝华,钦佩,蔡鸣,等.互花米草总黄酮局部用药的抗炎作用[J].植物资源与环境,1998,7(2):6-11.
    黄才安,严恺.动床阻力的研究进展及发展趋势[J].泥沙研究,2002,4:75-81.
    黄亮,李伟,吴莹,等.长江中游若干湖泊中水生植物体内重金属分布[J].环境科学研究,2002,15(6):1-4
    黄思静.用EXCEL计算沉积物粒度分布参数[J].成都理工学院学报,1999,26(2):196-198.
    黄勇,郭庆荣,任海等.地统计学在土壤重金属研究中的应用及展望.生态环境,2004,13(4):681-684.
    黄志伟,陈桂琛.青海湖几种主要湿地植物的种群分布格局及动态[J].应用与环境生物学报,2001,7(2):113-116.
    贾海林,刘苍字,杨欧.长江口北支沉积动力环境分析[J].华东师范大学学报(自然科学版),2001,1:90-96.
    贾建军,高抒,薛允传.图解法与矩法沉积物粒度参数的对比[J].海洋与湖沼,2002,33(6):577-582.
    贾玉连,柯贤坤,许叶华,等.渤海湾曹妃甸沙坝—泻湖海岸沉积物搬运趋势[J].海洋科学,1999,3:56-60.
    姜在兴.沉积学[M].北京:石油工业出版社,2003.
    蒋东辉,高抒,程鹏.渤海海峡沉积物输运的数值模拟[[J].海洋与湖沼,2002,33(5):553-561.
    金刚,崔奕波.黄丝草生物量相对增长率与初始生物量关系的季节变化[J].水生生物学报,1996,20(增刊):186-190.
    金刚,李钟杰,刘伙泉,等.保安湖沉水植被恢复及其渔业效益[J].湖泊科学,1999,11(3):260-265.
    金刚.梁子湖、牛山湖和保安湖沉水植被资源现状[J].水生生物学报,1999,23(1):87-89.
    金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:151-170
    金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990:10-15.
    金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001:113-146.
    金相灿.黄河中游悬浮物对铜、铅、锌的吸附[J].中国环境科学,1983,4:10-17.
    金相灿.黄河中游悬浮物对铜、铅、锌的吸附与释放研究[J].中国环境科学,1984,4:54-60.
    孔繁翔.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    兰文辉.灰色聚类法在大气环境评价中的应用及与其它方法的比较[J].干旱环境监测,1995,9(3):147-150.
    雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报,1985(9):10-21.
    黎云祥,刘玉成,钟章成.植物种群生态学中的构件理论[J].生态学杂志,1995,14(6):35-41.
    李博,徐炳声,陈家宽.从上海外来杂草区系剖析植物入侵的一般特征[J].生物多样性,2001,9(4):446-457.
    李宏文.三种水生植物的生态敏感度研究[J].南京林业大学学报,2000,24(增刊):74-77.
    李九发,沈焕庭,潘定安.长江河口底沙运动规律[A].长江河口最大浑浊带和河口锋研究论文集[C].华东师范大学学报,1995:62-68.
    李亮亮,依艳丽,凌国鑫等.地统计学在土壤空间变异研究中的应用.土壤通报,2005,36(2):265-268.
    李思米.基于GIS的中尺度土壤重金属空间插值分析及污染评价—以江苏省南通市为例[D].南京:南京农业大学.2005.
    李天煜,李洪敬,谢素霞.水生维管植物克隆繁殖方式的多样性[J].广西植物,2000,20(3):233-238.
    李天煜.水生维管植物研究:Ⅱ、水生维管植物对干涸的适应[J].广西植物,2001,21(4):326-329.
    李伟,程玉.洪湖主要沉水植物群落的定量分析[J].水生生物学报,1999,23(1):53-57.
    李伟,程玉.洪湖主要沉水植物群落的定量分析Ⅰ.微齿眼子菜群落[J].水生生物学报,1999,23(1):53-58.
    李伟,程玉.洪湖主要沉水植物群落的定量分析Ⅱ.微齿眼子菜+穗花狐尾藻+轮藻群落[J].水生生物学报,1999,23(3):240-244.
    李伟,黄德世.水生植物生产量测定的种群统计学方法[J].武汉植物学研究,1999,17(3):249-253.
    李伟,刘贵华,周进,等.淡水湿地种子库研究综述[J].生态学报,2002,22(3):395-402.
    李伟,钟扬.湖北斧头湖湖滨湿地植物的联结与相关分析[J].武汉植物学研究,1995,13(1):65-69.
    李文朝,胡维平.湖泊生态修复与水质的净化试验研究.见:秦伯强,胡维平,陈伟民,等编著.太湖水环境演化过程与机理[M].北京:科学出版社,2004:314-341.
    李文朝.东太湖沉积物中氮的积累与水生植物沉积[J].中国环境科学,1997,17(5):418-421.
    李文朝.浅水湖泊生态系统的多稳态理论及其应用[J].湖泊科学,1997,9(2):97-104.
    李文朝.浅型富营养湖泊的生态恢复—五里湖水生植被重建实验[J].湖泊科学,1996,8:1-10.
    李晓燕,张树文,王宗明等.吉林省德惠市土壤特性空间变异特征于格局.地理学报,2004,59.
    梁娟.磨刀门河口沉积物粒度特征与沉积环境[J].热带地理,2005,25(2):117-122.
    林杰,李海东,张金池,等.基于GIS的小流域土壤抗蚀性空间变异特征[J].水土保持研究,2009,16(2):19-23.
    刘阿成.杭州湾口北部的表层沉积物粒度分布和动力沉积作用研究[J].海洋通报,2002,21(1):49-56.
    刘苍字,吴立成,华棣.长江口水下三角洲的沉积特征述要[A].长江口深水航道治理与港口建设专辑[C].华东师范大学学报,1995:38-41.
    刘恩峰,沈吉,朱育新,等.太湖表层沉积物重金属元素的来源分析[J].湖泊科学,2004,16(2):113-119.
    刘贵华,王海洋,周进,等.湖南茶陵普通野生稻保护区优势种的空间分布和生态位分析[J].植物生态学报,2001,25:65-70.
    刘金铃,李柳强,林慧娜,等.中国主要红树林区沉积物粒度分布特征[J].厦门大学学报,2008,47(6):891-893.
    刘静宜,任安璞,彭安,等.环境化学[M].北京:中国环境科学出版社,1987:123-132.
    刘军普,田志坤,翟金双.互花米草净化污水的研究[J].河北环境科学,2002,2:45-48.
    刘俐,宋存义,熊代群,等.渤海湾表层沉积物重金属在不同粒级有机-矿质复合体中的分布[J].环境科学研究,2006,19(1):75-79.
    刘庆,钟章成.斑苦竹无性系种群克隆生长格局动态的研究[J].应用生态学报,1996,7(3):240-244.
    刘伟龙,胡维平,陈永根,等.西太湖水生植物时空变化[J].生态学报,2007,27(1):159-170.
    刘杏梅,徐建民,章明奎等.太湖流域土壤养分空间变异特征分析[J].浙江大学学报,2003,29(1):76-82.
    刘彦卿.泥石流沉积物的粒度分析[J].水土保持通报,1985(1):27-30.
    刘仲衡,吴锦秀,张亚民,等.利用粒度参数分析石岛湾海岸泻湖的沉积环境[J].山东海洋学院学报,1983,13(2):81-92.
    马克平,刘玉明.生物群落多样性的测度方法Ⅰ.α多样性的测度方法(下)[J].生物多样性,1994,2(4):231-239.
    毛志刚,王国祥,刘金娥,等.苏北滨海湿地不同植被带沉积物粒度特征分析[J].海洋科学进展,2008,26(4):454-462.
    孟春红,赵冰.三峡水库蓄水后的富营养化趋势分析[J].农业环境科学学报,2007,26(3):863-867.
    孟诩,刘苍字,程江.长江口沉积物重金属元素地球化学特征及其底质环境评价[J].海洋底质与第四纪地质,2003,23(3):37-42.
    倪乐意,李纯厚,黄祥飞.富营养水体中水生植被的恢复[A].刘建康.东湖生态研究[M].北京:科学出版社,1995.
    倪乐意.大型水生植物.见:刘健康主编,高级水生生物学[M].北京:科学出版社,1999:235-236.
    倪乐意.武汉东湖水生植被结构和多样性的长期变化规律[J].水生生物学报,1996,20(增刊):60-74.
    牛红义,吴群河,陈新庚.珠江(广州河段)表层沉积物粒度分布特征[J].生态环境2007,16(5):1353-1357.
    潘成荣,李凌,叶琳琳,等.瓦埠湖沉积物中氮与磷赋存形态分析[J].水资源保护,2007,23(4):10-14.
    彭少麟,周厚诚,陈天杏,等.广州森林群落的组成结构数量特征[J].植物生态学与地植物学报,1989,13(1):10-17.
    彭少麟.恢复生态学及植被重建[J].生态科学,1996,15(2):26-31.
    彭晓彤,周怀阳,叶瑛,等.珠江河口沉积物粒度特征及其对底层水动力环境的指示[J].沉积学报,2004.22(3):487-493.
    彭映辉,倪乐意,简永兴,陈家宽.2004.两湖平原六个湖泊水生植物多样性的比较研究[J].云南植物学研究,26:191-198.
    蒲云海,李伟.中国竹叶眼子菜的生态学研究[J].武汉植物学研究,1999,17(增刊):65-72.
    濮培民,胡维平.净化湖泊饮用水源的物理—生态工程实验研究[J].湖泊科学,1997,9(2):159-167.
    濮培民,王国样,李正魁,等.健康水生态系统的退化及其修复—理论、技术及应用[J].湖泊科学,2001,13(3):193-203.
    钱蟒,史兴民,南峰.新疆克拉玛依市兴农湖剖面古沉积环境分析[J].水土保持研究,2005,12(4):96-99.
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983:182-415.
    乔永民,黄长江.汕头湾表层沉积物重金属元素含量和分布特征研究.海洋学报,2009,31(1):106-116.
    钦佩,谢民,周爱堂.互花米草的初级生产与类黄酮的生成[J].生态学报,1991,11(4):293-298.
    秦伯强,高光,胡维平,等.浅水湖泊生态系统恢复的理论与实践思考[J].湖泊科学,2005,17(1):9-16.
    秦触东.土壤空间变异研究中的半方差问题[J].农业工程学报,1998,(4):42-44.
    丘耀文,朱良生,黎满球,等.海陵湾沉积物重金属与粒度分布特征[J].海洋通报,2004,23(6):49-53.
    邱东茹,吴振斌.富营养化浅水湖泊沉水水生植被的衰退与恢复[J].湖泊科学,1997,9(1):82-88.
    任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2002.
    任明迅,吴振斌.植物的冗余及其生态学意义Ⅱ.大型水生植物生长冗余研究[J].生态学报,2001,21(7):1072-1078.
    尚士友,杜健民,张志毅,等.沉水植物资源开发与湖泊保护的研究[J].农业工程学报,1997,(3):12-17.
    时钟.海岸盐沼植物单向恒定水流流速剖面[J].泥沙研究,1997,(3):82-88.
    史丹.我国湖泊富营养化问题及防治对策[J].资源开发与市场,2005,21(1):17.
    宋碧玉,曹明,谢平.沉水植被的重建与消失对原生动物群落结构和生物多样性的影响[J].生态学报,2000,20(2):270-277.
    宋宪强,雷恒毅,余光伟等.重污染感潮河道底泥重金属污染评价及释放规律研究.环境科学学报,2008,28(11):2258-2268.
    孙惠民,何江,高兴东,等.乌梁素海沉积物中全磷的分布特征[J].沉积学报,2006,24(14):579-584.
    孙惠民,何江,吕昌伟等.梁素海沉积物中有机质和全氮含量分布特征[J].应用生态学报,2006,17(4):620-624.
    孙顺才,黄漪平.太湖[M].北京:海洋出版社,1993:231-235
    孙文浩,俞子文,余叔文.城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理[J].环境科学学报,1989,9(2):188-195.
    汤国安,杨听.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006,363-422.
    唐萍,吴国荣,陆长梅,等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42-47.
    唐阵武,程家丽,岳勇,等.武汉典型湖泊沉积物中重金属累积特征及其环境风险[J].湖泊科学,2009,21(1):61-68.
    屠清瑛等.巢湖富营养化研究[M].合肥:中国科学技术大学出版社,1990.
    汪浩,马武生.Fuzzy综合评价模型在京杭大运河扬州段水质评价中的应用[J].淮海工学院学报:自然科学版,2008,17(4):57-60.
    王爱军.淤泥质海岸潮间带沉积物的区域分布特征及其影响因素[C].第十届中国河口海岸学术研讨会论文集.北京:海洋出版社,2007:44-50.
    王国祥,濮培民,张圣照,等.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J].植物资源与环境,1998,7(2):35-41.
    王海,王春霞,王子健等.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435.
    王建,白世彪,陈晔.Surfer 8地理信息制图[M].北京:中国地图出版社,2004.
    王克林.洞庭湖湿地景观结构与生态工程模式[J].生态学杂志,1998,17(6):28-32.
    王腊春,陈晓玲,储同庆.黄河、长江泥沙特性对比分析[J].地理研究,1997,16(4):71-79.
    王连生,郁亚娟,黄宏等.淮河沉积物中重金属的测定和评价方法[J].环境科学研究,2003,16(2):26-28.
    王树功,黎夏,周永章.湿地植被生物量测算方法研究进展[J].地理与地理信息科学,2004,20(5):104-109.
    王苏民,李建仁.湖泊沉积—研究历史气候的有效手段——以青海湖、岱海为例[J].科学通报,1991,36(1):54-56.
    王献蒲.贵州威宁草海湿地生态系统的保护与利用.北京:国家环境保护局中日友好环境保护中心出版,1995.
    王雨春,此里能布,马根连,等.洱海沉积物磷的化学赋存形态研究[J].中国水利水电科学研究院学报,2005,3(2):150-154.
    王政权.地统计学在生态学中的应用[M].北京:科学出版社,1999.
    韦玉春,陈锁忠.地理建模原理与方法.科学出版社,2004:286-302.
    魏荣菲,庄舜尧,杨浩,等.苏州河网区河道沉积物重金属的污染特征[J].湖泊科学,2010,22(4):527-537.
    吴洁.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001,21(6):540-544
    吴振斌,邱东茹,贺锋等.水生植物对富营养水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    武安斌.冰碛物的粒度参数特征及其与沉积环境的关系[J].冰川冻土,1983,5(2):47-53.
    谢建华,杨华.不同植物对富营养化水体净化的静态试验研究[J].工业安全与环保,2006,32(6):23-25.
    熊汉锋,陈治平,黄世宽,等.梁子湖水体P的季节变化与沉积物P释放初步研究[J].湿地科学,2006,4(3):174-178.
    徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科学,2003,5(14):147-149.
    徐争启.攀枝花市区水系沉积物中重金属元素地球化学研究[D].[硕士论文].成都:成都理工大学,2005.
    许航.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69-73.
    许木启,黄玉瑶.受损水域生态系统恢复与重建研究[J].生态学报,1998,18(5):547-557.
    许朋柱,秦伯强.太湖湖滨带生态系统退化原因以及恢复与重建设想[J].水资源保护,2002,(3):31-36.
    严以新,高进,郑金海,等.长江口南港泥沙运动的水动力条件[J].河海大学学报(自然科学版),2002,30(5):1-6.
    颜昌宙,金相灿,赵景柱,等.湖滨带退化生态系统的恢复与重建[J].应用生态学报,2005,16(2):360-364.
    颜昌宙,叶春,刘文祥.云南洱海湖滨带生态重建方案研究[J].上海环境科学,2003,22(7):459-464.
    阳承胜,蓝崇钰,张干.N、P、K在宽叶香蒲人工湿地系统中的分布与积累[J].深圳大学学报理工版,2005,22(3):264-268.
    杨清心.东太湖水生植被的生态功能及调节机制[J].湖泊科学,1998,10(1):67-73.
    杨世伦.长江口沉积物粒度参数的统计规律及其沉积动力学解释[J].泥沙研究,1994,3:23-31.
    杨永兴,何太蓉,王世岩.三江平原湿地生态系统P、K的分布特征及季节动态研究[J].应用生态学报,2001,12(4):522-526.
    杨卓,李贵宝,王殿武,等.白洋淀底泥重金属的污染及其潜在生态风险评价[J].农业环境科学学报,2005,24(5):945-951.
    叶春.洱海湖滨带生态恢复工程模式研究.北京:中国环境科学研究院.1999.
    尹澄清.白洋淀水陆交错带对陆源营养物质的截留作用初步研究[J].应用生态学报,1995,6(1):76-80.
    由文辉,宋永昌.淀山湖3种沉水植物的种子萌发生态[J].应用生态学报,1999,6(2):196-200,
    由文辉.淀山湖水生维管束植物群落研究[J].湖泊科学,1994,6(4):63-70.
    于丹,杨国亭.小兴凯湖的水生植被及其生态作用[J].水生生物学报,1992,16(1):24-32.
    于丹.东北水生植物区划[J].水生生物学报,1996,20(4):322-332.
    于丹.东北水生植物区系与周缘地区水生植物区系关系的分析[J].植物研究,1994,14(4):401-408.
    于天仁,王振权.土壤分析化学[M].北京:科学出版社,1988:9-18.
    袁静,杜玉民,李云南.惠民凹陷古近系碎屑岩主要沉积环境粒度概率累积曲线特征[J].石油勘探与开发,2003,30(3):103-107.
    岳明周虹霞.太白北坡落叶阔叶林物种多样性特征.云南植物研究[J],1997,19(2):171-176.
    岳维忠,黄小平,孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼,2007,38(2):111-116.
    张富元,章伟艳,杨群慧.南海东部海域沉积物粒度分布特征[J].沉积学报,2003,21(3):452-460.
    张国华,曹文宣,陈宜瑜.湖泊放养渔业对我国湖泊生态系统的影响[J].水生生物学报,1997,21(3):271-280.
    张士华,邓声贵.黄河水下三角洲沉积物输运及海底冲淤研究[[J].海洋科学进展,2004,22(2):184-192.
    张巍,王学军,江耀慈,等.太湖零点行动前后水质状况对比分析[J].农村生态环境,2001,17(1):44-47.
    张维昊,张锡辉.内陆水环境修复技术进展[J].上海环境科学,2003,22(1)1:811-816.
    张文菊,童成立,杨钙仁,等.水分对湿地沉积物有机碳矿化的影响[J].生态学报,2005,25(2):249-253.
    张永泽.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309-314.
    张勇,胡海波,黄进,等.连云港云台山规划造林区植物多样性及其与环境的关系[J].2009,38(1):41-45.
    章申,唐以剑等.白洋淀区域水污染控制研究(第一集)[A].北京:科学出版社,1995.
    章宗涉.水生高等植物—浮游植物关系和湖泊营养状态[J].湖泊科学,1998,10(4):83-86.
    赵芳.白洋淀大型水生植物资源调查及对富营养化的影响[J].环境科学,1995,16(增刊):21-23.
    赵祥华,吴文卫,杨逢乐,等.滇池沉积物对磷的吸附特性研究[J].昆明理工大学学报:理工版,2008,33(6):82-85.
    赵晓英孙成权.恢复生态学及其发展[J].地球科学进展,1998,13(5):474-479.
    赵佐成.青藏高原四县水生植物群落调查[J].武汉植物学研究,1997,2:131-136.
    郑海龙,陈杰,邓文靖等.城市边缘带土壤重金属空间变异及其污染评价[J].土壤学报,2006,43(1):40-44.
    中国科学院南京土壤研究所.环境中若干元素的自然背景值及其研究方法[M].北京:科学出版社,1982:95-132
    周蒂.对数比统计分析及粒度数据中沉积水动力环境信息的提取[J].沉积学报,1996,14(增刊):149-157.
    周蒂.利用沉积物粒度数据反演沉积水动力参数[J].地质科学,1999,34(1):49-58.
    周进,Hisako TACHIBANA,李伟,等.受损湿地植被的恢复与重建研究进展[J].植物生态学报,2001,25(5):561-572.
    周晓,王天厚,葛振鸣,等.长江口九段沙湿地不同生境中大型底栖动物群落结构特征分析[J].生物多样性,2006,4(2):165-271.
    周晓静,高抒,贾建军.长江粘土矿物示踪标记稳定性的初步研究[J].海洋与湖沼,2003,34(62):683-692.
    庄武艺,谢钦尔.海草对潮滩沉积作用的影响[J].海洋学报,1991,13(2):230-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700