泄流坡滑坡滑带土地球化学与微观结构特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑带土是滑坡滑动的历史产物,记载着滑坡失稳滑动的大量信息。本文以泄流坡滑坡两个滑带剖面滑带土为研究对象,采用筛分法和光学法、XRD、XRF、穆斯堡尔谱和同步辐射、扫描电子显微镜等方法对其粒度、矿物成分、化学成分、铁和硫元素的赋存状态、微观结构等特征进行了研究。主要得出以下结论:
     (1)泄流坡滑坡滑带土大于2mm的颗粒含量基本都在25%-50%之间,按土质分类命名为砾砂;两个滑带剖面上滑体、滑带、滑床样品的级配都不良。
     (2)Ⅰ号剖面上,滑体样品在矿物成分上与滑带样品具有相似的特征,铁白云石的含量较高,方解石被溶解,石膏伴随而生:滑床样品中方解石的含量较高。Ⅱ号滑带剖面上,滑体和滑床样品的方解石含量较高;滑带中铁白云石的含量较高,有少量的石膏。滑带中的方解石被溶解,降低了滑带土的抗剪强度,是泄流坡滑坡在滑带失稳的主要原因之一。
     (3)铁和硫元素赋存状态显示:两个剖面滑体的赋存状态不同,Ⅰ号剖面上滑体样品具有与滑带相似的特征,处于还原环境中;Ⅱ号剖面的滑体以relax.+Para-Fe3+为主以及样品中只有硫酸盐态硫,说明滑体处于氧化环境。两个剖面上,滑带的赋存环境相似,都以Para-Fe2+为主和单质态硫的存在,说明其处于还原环境;滑床的赋存环境也一致,以Para-Fe3+为主以及样品中只有硫酸盐态硫,说明其处于较强的氧化环境中。滑带处于还原环境中有利于铁白云石的形成积累以及Fe3+/Fe2+的比值小于1是滑带土呈现灰黑色的主要原因。
     (4)滑体和滑床样品以方解石颗粒为骨架结构,滑带土颗粒主要是集粒的片状矿物,成层分布,使得滑带土容易顺层滑动失稳,是泄流坡滑坡失稳发生在滑带内的主要原因之一。
     (5)滑体样品的孔隙特征不同于滑带土的孔隙特征,而且滑带土在两个相互垂直的方向上孔隙特征差别明显,平行滑面上孔隙多而大,形态呈近圆状;垂直滑面上的孔隙相对少而小,平面形态呈狭长状。Ⅰ号剖面上,滑带土的平面孔隙率变化复杂,反映了滑带多期演化过程的复杂性;Ⅱ号剖面上,滑带土的平面孔隙率随剖面从上到下依次减小。滑带土平面孔隙率的极小值出现在滑面附近,与频率曲线均值的极小值特征相吻合,揭示了滑带形成环境的相对单调性。
Sliding mud, the landslide product of sliding, records all information of landslide in sliding process. In the thesis, geochemical characteristic and micro structure of sliding mud in two slip zone profiles of Xieliupo landslide of Zhouqu county have been studied, including particle size, mineral and chemical composition, element species and microstructure using sieving method and optical method, XRD and XRF, Mossbauer spectroscopy and XANES, SEM, respectively. The main conclusions are as follows:
     (1) The content of sliding mud particle (>2mm) in Xieliupo landslide ranged from25%to50%, and meanwhile this kind of sliding mud was called gravel sand by soil classification. The soil of sliding body, slip zone and bedrock was bad gradation in both profiles.
     (2) In the profile Ⅰ, there were similar characteristics between the samples of sliding body and slip zone in mineral composition, both of them were rich in ankerite, and calcite was dissolved with gypsum formed; bedrock samples also had many ankerite. In the profile Ⅱ, the samples of sliding body and bedrock had more calcite, however, sliding mud had more ankerite and a little gypsum. One of the reasons of Xieliupo landslide instability was that calcite was dissolved and the shear strength of sliding mud was decreased.
     (3) Iron species and sulfur species revealed that the sliding body samples of profile I were similar with sliding mud in reduced condition, but the sliding body samples of profile II were in oxidation condition. The sliding mud and bedrock of both profiles were in reduced condition and oxidation condition respectively, characterized by more Para-Fe2+and sulfur in the samples, more Para-Fe3+and only sulfate in the samples, respectively. It was because the slip zone was easy to form ankerite in reduced condition and the ratio of Fe3+/Fe2+was less than1that the sliding mud was gray/black.
     (4) The samples of sliding body and bedrock were mainly calcite, while sliding mud was main schistose particle and layered structure, which was one of main reasons of Xieliupo landslide instability in slip zone.
     (5) The pore characteristic of sliding body was different from sliding mud's, the pore of parallel sliding plane of sliding mud closed to round and vertical section's was long and narrow. In the profile Ⅰ, area fraction varied in complex revealed sliding mud self-complexity. In the profile Ⅱ, area fraction was decreased along profile from sliding body to bedrock. The minimize of sliding mud area fraction reflected near sliding plane, which was similar with the minimize of frequency curve'peak, revealed the period of forming time of slip zone to some degree.
引文
[1]Yin K.L, Chen L.X, Zhang G.R. Regional landslide hazard warning and risk assessment [J]. Earth Science Frontiers,2007,14 (6):85-97.
    [2]成永刚.近二十年来国内滑坡研究的现状及动态[J].地质灾害与环境保护,2003,14(4):1-5.
    [3]宋昆仑,骆培云.日本的滑坡研究及滑坡整治工程技术[J].1993,(5):10-12.
    [4]Palla's, R., Vilaplana, J.M., Guinau M. A pragmatic approach to debris flow hazard mapping in areas affected by Hurricane Mitch:example from NW Nicaragua[J]. Engineering Geology, 2004,72:57-72.
    [5]David K.K., Matthew C.L. Assessing landslide hazards [J]. Science,316:1136-1138.
    [6]Marc-Andre B., Doug S., Rejean C. Structural and engineering geology of the East Gate Landslide, Purcell Mountains, British Columbia, Canada[J]. Engineering Geology,2006, 84:183-206.
    [7]段永侯.我国地质灾害的基本特征与发展趋势[J].第四纪研究,1999,19(3):208-216.
    [8]Yin Y.P. A review and vision of geological hazards in China[J]. Scientific and Technological Management of Land and Resources,2001,18 (3):26-29.
    [9]Huang R.Q. Some catastrophic landslides since the twentieth century in the southwest of China [J]. Landslides,2009,6:69-81.
    [10]王恭先.滑坡防治工程措施的国内外研究[J].中国地质灾害与防治学报,1998,(1):1-9.
    [11]文宝萍,陈海洋.矿物成分、特征地球化学组分对水在滑带形成中作用的指示意义:以三峡库区大型滑坡为例[J].地学前缘,2007,14(6):98-106
    [12]李瑞鹅.黄土滑坡滑带土的研究[D].西安:西北大学,2005.
    [13]曲焰.武都滑坡滑带特征及滑面强度[M].重庆:科学技术出版社重庆分社,1984.
    [14]刘小丽,邓建辉,李广涛.滑带土强度特性研究现状[J].岩土力学,2004,25(11):1849-1854.
    [15]王恭先,徐峻岭.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004.
    [16]龙建辉,郭文斌,李萍,等.黄土滑坡滑带土的蠕变特性[J].岩土工程学报,2010,32(7):1023-1028.
    [17]龙建辉,李同录,雷晓峰,等.黄土滑坡滑带土的物理特性研究[J].岩土工程学报,2007,29(2):289-293.
    [18]李瑞鹅,徐郝明,王娟娟.黄土滑坡滑带土的特点-以天水椒树湾滑坡为例[J].煤田地质与勘探,2009,37(1):43-47.
    [19]王娟.G212线陇南段滑坡滑带土工程特性试验研究[D].兰州:兰州大学,2006.
    [20]许强,黄润秋,程谦恭,等.三峡库区泄滩滑坡滑带土特征研究[J].工程地质学报,2003,11(4):354-359.
    [21]刘耀涛,邓荣贵,刘汉超.某滑坡区滑带土工程地质特性研究[J].地质灾害与环境保护,1996,7(2):6-11.
    [22]严绍军,项伟,唐辉明,等.大岩淌滑坡滑带土蠕变性质研究[J].岩土力学,2008,29(1):58-68.
    [23]第三机械工业部勘测公司,冶金部成都勘察公司,铁道部科学研究院西北研究所.滑坡滑带土残余强度的几种实验方法(滑坡文集(二))[M].北京:中国铁道出版社,1979.
    [24]李晓,梁收运,郑国东.滑带土的研究进展[J].地球科学进展,2010,25(5):484-491.
    [25]李建伟,简文星,张宏家,等.川东天台乡滑坡滑带土蠕变特征[J].安全与环境工程,2010,17(4):105-110.
    [26]王洪兴,唐辉明,晏同珍.小浪底库区庙上北滑坡滑带土粘土矿物定向性的X射线衍射研究及其对滑坡的作用[J].矿物岩石,2004,24(2):26-29.
    [27]Wen B.P., Chen H.Y. Mineral compositions and elements concentrations as indicators for the role of groundwater in the development of landslide slip zones:a case study of large-scale landslides in the Three Gorges area in China [J]. Earth Science Frontiers,2007,14(6):98-106.
    [28]严春杰,唐辉明,陈洁渝,等.三峡库区典型滑坡滑带土微结构和物质组分研究[J].岩土力学,2002,23(增刊):23-26.
    [29]廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984.
    [30]李育枢,李天斌.煤系地层中炭质泥岩滑带土的初步研究[J].岩土工程技术,2006,20(2):88-93.
    [31]郑国东,徐胜,郎煜华,等.日本富山县中田浦滑坡滑带内的黄铁矿[J].地球化学,2006,35(2):201-210.
    [32]Early K. R., Skempton A. W. Investigation of the landslide at Waltons's Wood, Staffordshire. Journal of hydrogeology and engineering geology,1972,5:19-41.
    [33]Shuzui H. Process of slip surface development and formation of slip surface clay in landslide in Tertiary volcanic rocks, Japan. Engineering Geology,2001,61:199-219.
    [34]Wen B.P., Duzgoren-Aydin N.S., Aydin A. Geochemical characteristics of the slip zones of a landslide in granitic saprolite, HongKong: implications for their development and microenvironments [J]. Environmental Geology,2004,47:140-154.
    [35]Zheng G.D., Xu S., Lang Y.H.,et al. Variation of iron species in sliding mud [J]. Chinese Science Bulletin,2002,47 (23):2018-2024.
    [36]Zheng G.D, Lang Y.H., Miyahara M. Iron oxide precipitates in seepage of groundwater from a landslide slip zone [J]. Envrionmental Geology,2007,51:1455-1464.
    [37]郑国东.基于穆斯鲍尔谱技术的铁化学种及其在相关表生地球科学研究中的应用[J].矿物岩石地球化学通报,2008,27(2):161-168.
    [38]Zheng G.D. Iron speciation by Mossbauer spectroscopy and its implications in various studies on the Earth surface processes [J]. Bulletin of Mineralogy, Petrology and Geochemistry,2008, 27 (12):61-168.
    [39]Zheng G.D., Lang Y.H., Matsuo M., et al. Mossbauer spectroscopic characterization of iron species in sliding mud [J]. Hyperfine Interactions,2002,141/142:361-367.
    [40]郑明新.论滑带土强度特征及强度参数的反算法[J].岩土力学,2003,24(4):528-532.
    [41]Wen B.P., Aydin A., Duzgoren-Aydin N.S. Residual strength of slip zones of large landslides in the Three Gorges area, China [J]. Engineering Geology,2007,93:82-98.
    [42]Skempton A.W. First-time slides in over-consolidated clays [J]. Geotechnique,1970,20 (3): 320-324.
    [43]周平根.滑带土强度参数的估算方法[J].水文地质工程地质,1998,(6):30-32.
    [44]Mitchell J.K. Fundamentals of soil behavior [M]. New York:John Wiley and Sons,1976.
    [45]Moore R. The chemical and mineralogical controls upon the residual strength of pure and natural clays [J]. Geotechnique,1991,41 (1):35-47.
    [46]Chandler R.J. Back analysis techniques for slop stabilization works:a case record [J]. Geotechnique,1977,27 (4):479-495.
    [47]Gibo S., Egashira K., Nakamura S. Strength recovery form residual state in reactivated landslides [J]. Geotechnique,2002,52 (9):683-686.
    [48]任光明,聂德新,左三胜.滑带土结构强度再生研究[J].地质灾害与环境保护,1996,7(3):7-12.
    [49]任光明,聂德新.大型滑坡滑带土结构强度再生特征及其机理探讨[J].水文地质工程地质,1997,(3):28-31.
    [50]刘茂,赵其华.滑带土抗剪强度影响因素及其变化规律综述[J].水利与建筑工程学报,2010,8(6):123-126.
    [51]汪斌,朱杰兵,唐辉明,等.黄土坡滑坡滑带土的蠕变特性研究[J].长江科学院院报,2008,25(1):49-52.
    [52]谈云志,王世梅.某滑坡滑带土的土水特征曲线试验研究[J].合肥工业大学学报(自然科学版),2007,30(3):298-300.
    [53]Pusch R. Experience from preparation and investigation of clay microstructure [J]. Engineering Geology,1999,54:187-194.
    [54]刘爱萍,崔春龙.岩土体微观组构与力学性能关系研究现状与展望[J].西南科技大学学报,2003,18(2):75-78.
    [55]Prikryl R., Ryndova T., Bohac J. Microstructures and physical properties of "backfill" clays: comparison of residual and sedimentary montmorillonite clays [J]. Applied clay science,2003, 23:149-156.
    [56]张礼中,胡瑞林,李向全.土体微观结构定量分析系统及应用[J].地质科技情报,2008,27(1):108-112.
    [57]施斌.粘性土微观结构简易定量分析法[J].水文地质工程地质,1997,1:7-10.
    [58]Morgenstern N.R., Tchalenko J.S. Microscopic structures in kaolin subjected to direct shear [J]. Geotechnique,1967,17 (4):309-328.
    [59]Skempton A.W. Long-term stability of caly slopes [J]. Geotechnique,1964,14 (2):77-101.
    [60]郑晓晶,殷坤龙,姚林林,等.三峡库区万州区膨胀性滑带土抗剪强度参数变化规律的试验研究[J].工程勘察,2008,(3):1-4,13.
    [61]严春杰,唐辉明,孙云志.利用扫描电镜和X射线衍射仪对滑坡滑带土的研究[J].地质科技情报,2001,20(4):89-92.
    [62]Wen B.P., Aydin A. Microstructural study of a natural slip zone:qualification and deformation history [J]. Engineering Geology,2003,68 (3-4):289-317.
    [63]Wen B.P., Aydin A. Mechanism of a rainfall-induced slide-debris flow:constraints from microstructure of its slip zone [J]. Engineering Geology,2005,78:69-88.
    [64]任权.列车长持时振动引起黄土滑坡滑带土微结构变化研究[D].西安:西北大学,2008.
    [65]Diane E.M., Michael J. R. Talc-bearing serpentinite and the creeping section of the San Andreas fault [J]. Nature,2007,448 (16):795-797.
    [66]Fu B.H., Lin A.M., Kano K., et al. Quaternary foiding in the eastern Tian Shan, northwestern China [J].Tectonophysics,2003,369 (1-2):79-101.
    [67]周永昆,魏作安,朱彬,等.滑带土厚度及含水率对其强度参数的影响[J].中国地质灾害与防治学报,2010,21(2):25-29.
    [68]陈松,徐光黎,陈国金,等.三峡库区黄土坡滑坡滑带工程地质特征研究[J].岩土力学,2009,30(10):3048-3052.
    [69]郑国东,徐胜,郎煜华,等.滑坡面黏土中铁元素的化学种变化[J].科学通报,2002,47(24):1889-1893.
    [70]余志山.泄流坡滑坡形成条件与诱发因素分析[J].兰州大学学报(自然科学版),2006,42(专辑):170-175.
    [71]康胜,梁收运,刘高等.清水子滑坡特征分析及形成机制研究[J].兰州大学学报(自然科学版),2006,42(专辑):64-67.
    [72]崔凯,谌文武,毛深秋,等.国道212线固水子滑坡形成机制与稳定性分析[J].兰州大学学报(自然科学版),2006,42(专辑):68-71.
    [73]Zheng G.D., Lang Y.H., Takano B., et al. Iron speciation of sliding mud in Toyama Prefecture, Japan [J]. Journal of Asian Earth Sciences,2002,20:955-963.
    [74]Fabio F., Giulio D.T., Takehiro H. et al. Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges [J]. Terra Nova,2010,22 (5):347-353.
    [75]杨重存.G212线泥石流、滑坡分类与分级的探讨[J].云南交通科技,1998,14(1):37-40.
    [76]孙英勋.滑坡的处治分类与治理模式探讨[J].地质与勘探,2006,42(1):85-88.
    [77]柳侃.福建省土质滑坡分类探讨[J].探矿工程,2003(增):91-92.
    [78]刘广润,晏鄂川,练操.论滑坡分类[J].工程地质学报,2002,10(4):339-342.
    [79]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [80]李哲,应育浦.矿物穆斯堡尔谱学[M].北京:科学出版社,1996.
    [81]包良满,林俊,刘卫,等.民用锅炉煤燃烧过程中硫的种态研究[J].2007年北京同步辐射装置年报,2007,86-91.
    [82]J.I.戈尔茨坦等著,张大同译.扫描电子显微镜技术与X射线显微分析[M].北京:科学出版社,1988.
    [83]赵家政,徐洮.分析电子显微使用手册[S].银川:宁夏人民教育出版社,1996.
    [84]徐海清.离子土固化剂加固滑带土研究[D].武汉:中国地质大学,2008.
    [85]畅益锋,李仁华.白龙江泄流坡滑坡变形特征及成因分析[J].中国地质灾害与防治学报,1999,10(1):93-95.
    [86]余志山.泄流坡滑坡灾害损失预测及成灾方式研究[J].甘肃科技,2007,23(12):72-76.
    [87]卞伟强.泄流坡滑坡稳定性模糊评价[J].2009,25(14):28-30.
    [88]李晓.滑带土组成特征及其成因意义[D].兰州:兰州大学,2010.
    [89]朱筱敏.沉积岩石学[M].北京:石油工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700