异形截面碳化硅纤维制备及其吸波性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料在军事和民用领域均具有广泛的应用。结构吸波材料是一种既可作承力部件,又具有优良的电磁波吸收性能的复合材料,是吸波材料的重要组成部分。异形截面碳化硅纤维与圆形碳化硅纤维一样,具有优异的力学性能和耐高温性能,同时又具有良好的吸波性能,有望成为结构吸波材料理想的增强/吸波一体化纤维。
     本文设计了具有相应形状的异形孔喷丝板,以聚碳硅烷为原料,通过熔融纺丝、空气不熔化和高温烧成制备了条形、三叶形、四叶形、五叶形、六叶形、七叶形、三折叶形、T形和C形等多种异形截面碳化硅纤维。研究了纺丝工艺对纤维异形度和当量直径的影响,确立了异形截面碳化硅纤维的制备工艺。研究了不同截面形状碳化硅纤维的电磁性能变化规律,分析了异形截面碳化硅纤维电磁匹配、形态及含量对其复合材料吸波性能的影响,并以此为基础制备了异形截面碳化硅纤维增强结构吸波复合材料,探讨了异形截面碳化硅纤维的吸波机理。
     根据聚合物模塑性理论和聚碳硅烷熔体流变性能设计了条形、三叶、四叶、五叶、六叶、七叶、三折叶和T形等叶片形喷丝孔以及具有不同弧度的C形喷丝孔,并通过实验验证,发现在狭缝宽度为0.12-0.14,狭缝长宽比为3-4时,可以制备具有较大异形度和较低当量直径的异形纤维。
     通过对纺丝工艺的研究发现,纺丝温度升高,异形截面纤维的异形度降低,当量直径增大。挤出速度和收丝速度对纤维异形度的影响不大。随挤出速度降低和收丝速度增大,异形纤维的当量直径降低。合适的异形纤维的纺丝工艺为:纺丝温度为聚碳硅烷软化点以上75-95℃,纺丝压力为0.5-1.3MPa,收丝速度为150-300rpm。
     通过合适的不熔化和烧成工艺,制备了异形度为0.3-0.8、平均当量直径为25μm左右的条形、三叶、四叶、五叶、六叶、七叶、三折叶和T形等8种叶片形和3种不同弧度的C形碳化硅纤维。叶片形碳化硅纤维截面曲率半径沿周向呈正割函数形式的变化,纤维叶片顶端和C形纤维截面两端的的曲率半径最小。异形截面碳化硅纤维与圆形碳化硅具有相同的元素组成和内部结构,且表面富碳。
     对比研究了圆形、叶片形和C形碳化硅纤维的电磁性能。发现每增加一对叶片,叶片形碳化硅纤维的归一化介电常数值实部比圆形纤维提高约10%,虚部提高约15%;偶数型纤维的每个叶片对介电常数的贡献略高于奇数型纤维;随叶片数量的增加,纤维损耗角正切值呈增大趋势,吸收峰有向低频移动的趋势;随纤维截面弧度的增大,C形碳化硅纤维的介电常数和归一化介电常数虚部降低,实部也呈降低的趋势,损耗角正切值降低,其吸收峰向高频移动。
     研究了纤维长度、排列方式及含量等对异形碳化硅纤维复合材料的介电常数和吸波性能的影响,发现随着纤维长度增加,其介电常数增大,介电损耗效能先提高后降低;当纤维无规排列时,比有序单向排列具有更加明显的频散效应,并且无规排列纤维的介电损耗角正切值大于有序单向排列;随纤维含量增加,复合材料的介电常数和介电损耗角正切增大。
     使用具有不同截面形状和不同规格的SiC纤维,进行阻抗匹配,设计了多层结构吸波复合材料。发现不同截面形状SiC纤维增强的多层结构吸波复合材料可以集合不同形状纤维的优点,或者拓宽吸波频宽,或者在保证吸波性能的情况下减少材料厚度,特别是可以一定程度上提高低频段的吸波性能。制备了一种双层结构吸波复合材料,该复合材料厚度为3.5mm,最低反射率为-18.62dB,反射率低于-10dB的频宽超过8GHz。
     通过在上浆剂中添加羰基铁粉,制备了三叶形SiC/羰基铁粉复合纤维束。与三叶形SiC纤维相比,磁改性纤维束增强的复合材料的反射衰减大于10dB的频宽向低频移动了2GHz左右,有效改善了材料在低频段的吸波性能。
     初步探讨了异形截面碳化硅纤维的吸波机理。异形截面纤维表面曲率的变化使纤维在电磁波作用下的极化发生改变,叶片形碳化硅纤维叶片端和C形纤维两端具有较大的表面曲率,在电磁场作用下,容易聚集较大密度的电荷,形成宏观偶极子。偶极子的产生增强了纤维的极化能力,增大了纤维的介电常数。随纤维叶片数量增加,叶片形碳化硅纤维的偶极子数增加,纤维介电常数增大,纤维损耗角正切值呈增大趋势,纤维对电磁波的损耗效能提高,吸收峰有向低频移动的趋势,吸波频宽具有增大的趋势。随着纤维截面弧度的增加,C形碳化硅纤维偶极子的偶极矩减小,且C形纤维表面的有效导电表面积减少,介电常数降低,纤维的损耗角正切值降低,纤维的吸收峰有向高频移动的趋势。随纤维比表面积增大,异形截面SiC纤维的介电常数增大。
Microwave-absorbing materials have found widespread applications both in the military and civil fields. Structural microwave-absorbing materials perform both as reinforcements to withstand strength and also act as absorbents with excellent absorption ability of electromagnetic wave. Besides having the same excellent mechanical property and resistance to elevated temperature as circular silicon carbide (SiC) fibers, non-circular section SiC fibers also have good microwave-absorbing properties, which make them have potential to be the ideal reinforcement and absorbent in structural microwave-absorbing materials.
     In this presentation, spinnerets with specific non-circular holes were designed. Starting from polycarbosilane (PCS), after the process of melt-spinning, air-curing, high-temperature treatment, ribbon-like, trilobal, quatrefoil, pentalobal, sexfoil, septfoil, swirl-shaped, T-shaped and C-shaped SiC fibers were elaborated. Influences of spinning procedures on degree of complex profile (Dp) and equivalent diameter (Ed) of non-circular section SiC fibers were studied, and the optimum fabrication processes of them were determined subsequently in this paper. Electromagnetic properties of SiC fibers with different cross-sections were studied, influences of form and content of non-circular SiC fibers as well as electromagnetic matching on microwave-absorbing properties of the composites were also analyzed. Based on these studies, structural microwave-absorbing materials reinforced by non-circular section SiC fibers were prepared, and the microwave-absorbing mechanism of non-circular section SiC fibers was discussed.
     Ribbon-like, trilobal, quatrefoil, pentalobal, sexfoil, septfoil, swirl-shaped, T-shaped and C-shaped spinneret holes were designed according to polymer moulding theory and rheologic behaviour of PCS. Through the experiments, it was discovered that fibers could have good Dp and suitable Ed when the wide of slit is 0.12-0.14mm and the length-width ratio of slit is 3-4.
     According to the study of spinning process, Dp of non-circular section SiC fibers reduces while Ed of fibers increases with higher spinning temperature. Extrusion speed and fiber taken-up rate have little influence on Dp of them, while Ed of non-circular fibers reduces if extrusion is slowed down or collection is speeded up. Spinning processes were established like these: the spinning temperature is 75-95℃higher than the softening point of PCS, spinning pressure is between 0.5MPa and 1.3MPa, taken-up rate is between 150rpm and 300rpm.
     Through suitable air-curing and high-temperature treatment, ribbon-like, trilobal, quatrefoil, pentalobal, sexfoil, septfoil, swirl-shaped, T-shaped SiC fibers and C-shaped fibers with different sectional radian were prepared. Radius of curvature of vanes-shaped SiC fibers changes following secant formula, and the radius of curvature of vane head as well as end of C-shaped fibers is least. With carbon-rich on the surface, non-circular section SiC fibers have the same elements composition and internal structures as circular fibers.
     Electromagnetic properties of circular, vane-shaped and C-shaped SiC fibers were studied. It was found that real part of normalized dielectric constant of vane-shaped SiC fibers increases 10% while imaginary part increases 15% compared with circular fibers when a pair of vanes is added. The celebration of each vane to the normalized dielectric constant of the fibers with even number vanes is higher than the fibers having odd number vanes. Fiber loss tangent increases with increasing number of the vanes, while absorption peak moves to lower frequency. Real part and imaginary part of normalized dielectric constant as well as loss tangent of C-shaped SiC fibers reduce when the sectional radian increases, the absorption peak moves to higher frequency at the same time.
     Influences of length, arrangement and content of fibers on electrical parameters and microwave absorbing properties of composites were studied. When length of the fiber increases, electrical parameters of the composites increase. Loss tangent of non-circular SiC fibers increases first along with increase of length, and then decreases with continuative increase. Non-circular SiC fibers distributing randomly have more obvious frequency dispersion effect and larger imaginary part of electrical parameters as well as larger loss tangent compared with order unidirectional fibers. Electrical parameters of composites increase along with increasing of content of fibers, dielectric constant and dielectric loss tangent of the composites also increase.
     Multilayer structural microwave-absorbing materials reinforced by non-circular section SiC fibers were designed using different SiC fibers through impedance matching. By this method, we can exploit the advantages of different SiC fibers at the same time. The band width of reflectivity can be widened, or the material thickness can be decreased when the microwave-absorbing property is not weakened. And in particular, the microwave-absorbing property at low frequency can be improved. A double layer structural microwave- absorbing composite was fabricated: thickness of the composite was 3.5mm, the minimum reflectivity was -18.62dB while the band width of reflectivity below -10dB was beyond 8GHz.
     Trilobal SiC fibers/carbonyl iron compound fiber bundles were prepared through adding carbonyl iron in sizing agent. The band width of reflectivity lower than -10dB of composite reinforced by fiber bundles modified by magnetic agent moves to low frequency 2GHz compared with composite reinforced by trilobal SiC fibers. With the additive, the microwave-absorbing properties of composites at low frequency were improved.
     The microwave-absorbing mechanism of non-circular SiC fibers was discussed preliminarily. Because of the evolution of the surface curvatures of the fibers, non-circular section SiC fibers have different polarization effect under electromagnetic wave. Vane head of vane-shaped SiC fibers and ends of C-shaped fibers have higher surface curvature, more charges gather there, macro-dipoles can be formed afterwards. The formation of macro-dipoles enhances the polarization capacity of the fibers, subsequently increases the electrical parameters of them. When there are more vanes in the vane-shaped SiC fibers, the number of dipoles inside them increases, the normalized dielectric constant and loss tangent increase, while absorption peak moves to lower frequency and microwave-absorbing band width increases. When the sectional radian of C-shaped SiC fibers increases, dipole distance and surface area of effective electric conduction reduces, thus dielectric constant reduces, loss tangent of C-shaped SiC fibers reduce, and absorption peak moves to higher frequency. Dielectric constant of non-circular section SiC fibers increases with surface area.
引文
[1]华宝家,肖高智,杨建生,碳纤维在结构隐身材料中的应用[J],宇航材料工艺,1994,24(3):31-34
    [2]曹辉,结构吸波材料及其应用前景[J],宇航材料工艺,1993,23(4):34-37
    [3]李萍,陈绍杰,朱珊等,隐身复合材料的研究和发展[J],飞机设计,1994,(1):29~34
    [4]赵稼祥,碳纤维及其复合材料的新进展[J],新型碳材料,1991,6(3-4):21-25
    [5]张常泉,国外结构吸渡材料在巡航导弹上的应用[J],宇航材料工艺,1987,(3):6-9
    [6]中国航空信息中心,F-22“猛禽”战斗机专辑[J],航空周刊,1997;(43):l1-l3
    [7]林一平,美国“海影”号隐形艇[J],航海科技动态,1997,(11),:27
    [8]陈少经,出色的隐身战舰—法国“拉斐特”级导弹护卫舰[J],兵器知识,2005,(5):38-39
    [9]夏新仁,隐身技术发展现状与趋势[J],中国航天,2002,(1):40-44
    [10]赵东林,沈曾民,迟伟东,温永魁,碳纤维结构吸波材料及其吸波碳纤维的制备[J],高科技纤维与应用,2000,25(3):8-14
    [11]周永江,程海峰,曹义,陈朝辉,导电PAN织物结构吸波材料的制备[J],玻璃钢/复合材料,2006,(6):13-15
    [12]蔺万钟编译,瑞典下一代护卫舰述评[J],导航与雷达动态,1996,(5):22-24
    [13]杜朝平,世界现役岸舰导弹比较[J],舰载武器,2003:28-32
    [14]方有培,赵霜,汪立萍,隐身巡航导弹及其目标特性[J],航天电子对抗,21(1):15-18
    [15]宋玉瑞,更加先进的反舰导弹[J],飞航导弹,2005,(12):1-4
    [16]陈文英译,董树人校,反舰导弹在亚太地区稳步发展[J],电子工程信息,2005,(1):41-44
    [17]张纯学,AGM-158联合空对面防区外导弹(JASSM)概述[J],飞航导弹,2002,(10):1-5
    [18]周军,俄罗斯部署常规战斗部巡航导弹[J],飞航导弹,2003,(12):27-28
    [19]张德文,飞机隐身技术新进展[J],飞机工程,1996,(2):28~32
    [20]欧进萍,高雪松,韩宝国,碳纤维水泥基材料吸波性能与隐身效能分析[J],硅酸盐学报,2006;34(8):901-907
    [21]Y.B. Feng, T. Qiu, C.Y. Shen, Absorbing properties and structural design ofmicrowave absorbers based on carbonyl iron and barium ferrite[J], Journal of Magnetism and Magnetic Materials, 2007, (318): 8-13
    [22]Rastislav Dosoudil, Marianna U?áková, Jaroslav Franek, Jozef Sláma, Vladimír Olah, RF electromagnetic wave absorbing properties of ferrite polymer composite materials[J], Journal of Magnetism and Magnetic Materials, 2006, (304): 755-757
    [23]Zhuangjun Fan, Guohua Luo, Zengfu Zhang, Li Zhou, Fei Wei, Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites, Materials Science and Engineering B 2006, (132): 85-89
    [24]Rahul Sharma, R.C. Agarwala, Vijaya Agarwala, Development of radar absorbing nano crystals by microwave irradiation, Materials Letters, 2008, 62: 2233-2236
    [25]Woo-Kyun Jung, Beomkeun Kim, Myung-Shik Won, Sung-Hoon Ahn, Fabrication of radar absorbing structure (RAS) using GFR-nano composite and spring-back compensation of hybrid composite RAS shells, Composite Structures, 2006, 75: 571-576
    [26]Muto N, Miyayama M, Yahagida Infrared detection by Si-Ti-C-O fibers[J]. J Amer Ceram Soc., 1990, (73):443
    [27]Yamauna T., Toshikawa T, Shibuya M. Electromagnetic wave absorbing material[P]. US Patent, 5094907, 1992
    [28]Narisawa M., Itoi Y., Okamura K., J. Mater. Sci.[J], 1995, 30: 3401
    [29]Mouchon E., Colomban Ph., J. Mater. Sci.[J], 1996, 31: 323
    [30]程海峰,陈朝辉,李永清等,短切碳化硅纤维微波电磁参数改性研究[J],宇航材料工艺,1999,(4): 41-44
    [31]黄小忠,磁性涂层连续结构-功能纤维的制备及其电磁理论[D],2002.5
    [32]王军,宋永才,冯春祥,掺混型碳化硅纤维及其微波吸收特性[J],材料工程,1998,(5):41-43
    [33]王军,陈革,宋永才等,含镍碳化硅纤维的制备及其电磁性能Ⅱ.含镍碳化硅纤维的电磁性能[J],功能材料,2001,32(1):34-36
    [34]王军,宋永才,冯春祥,含钛碳化硅纤维的制备及其微波吸收特性[J],材料研究学报,1998,12(4):419-422
    [35]王军,宋永才,冯春祥,具有微波吸收功能的掺混型碳化硅纤维的研制[J],功能材料,1997,28(6):619-622
    [36]欧阳国恩,碳化硅-碳功能材料[J],功能材料,1994, 25(4): 300-305
    [37]王娟,王应德,冯春祥,何迎春,三叶形截面碳化硅纤维纺丝工艺的研究[J],合成纤维工业,2000,23(3):23-25
    [38]王应德,冯春祥,王娟等,具备吸收雷达波功能的三叶型碳化硅纤维研制[J],复合材料学报,2001,18(1):42-45
    [39]Jung-Wook Kim, Juergen G. Heinrich, Influence of processing parameters on microstructure and ferroelectric properties of PZT-coated SiC fibers[J], Journal of the European Ceramic Society, 2005, 25: 1637-1645
    [40]John J. Brennan. Fiber reinforced glass and glass-ceramics composites[J]. J.Mater.Sci Lett., 1996, 30: 240-243
    [41]NARISAWA M., ITOI Y., OKAMURA K., Electrical resistivity of Si-Ti-C-O fibres after rapid heat treatment[J], JOURNAL OF MATERIALS SCIENCE, 1995,30: 3401-3406
    [42]Yang Z., Guha A.K., Sirkar K.K., Novel membrane-based synergistic metal extraction and recovery processes[J], Ind.Eng.Chem.Res., 1996, (35): 1383-1394
    [43]MOUCHON E., COLOMBAN PH. , Microwave absorbent: preparation, mechanical properties and r.f.-microwave conductivity of SiC (and/or mullite) fibre reinforced Nasicon matrix composites[J],JOURNAL OF MATERIALS SCIENCE, 1996,31: 323-334
    [44]罗发,周万城,赵东林,结构吸波材料中纤维的电性能和吸波性能[J],材料工程,2000,(2):37-40
    [45]李家俊,郑长进,赵乃勤,郭新权,含碳化硅纤维正交电路屏的吸波复合材料的研究[J],材料工程,2005,(3):6-10
    [46]程海峰,陈朝晖,李永清等,碳化硅短切纤维电磁特性改进研究[J],宇航材料工艺,1998,28(2):55-59
    [47]程海峰,陈朝晖,李永清等,短切碳化硅纤维微波电磁参数改性研究[J],宇航材料工艺,1999,(4): 41-44
    [48]杨孚标,李永清,程海峰等, SiC纤维的B4C涂层研究[J],功能材料,2002,33(3):286-287
    [49]Huang Xiao-zhong, Feng Chun-xiang, Song Yong-cai, et al. Magnetic Characteristic of Fiber-Coated with BaFe12O9[R]. International Conference on Sensing Unit and Sensor Technology, 2001.10
    [50]Yamamura T., Toshikawa T., Shibuya M., USP5094907, 1992
    [51]刘军,宋永才,冯春祥等,低电阻率SiC纤维先驱体的合成与表征[J],高分子材料科学与工程,2001,17(3):34-37
    [52]宋永才,陆逸,冯春祥,材料科学进展,1990,4(5):436
    [53]吴晓光,车桦秋,含磁性SiC微波吸收剂及纤维的研制[J],隐身技术,1995,(1):1-14
    [54]陈志彦,王军,李效东,王应德,先驱体法制备连续Si-Fe-C-O吸波纤维的研究[J],航空材料学报,2006,26(2):33-36
    [55]Yajima S., Okamura k., Hayashi J. Structure analysis in continuous silicon carbide fiber of high tensile strength[J]. Chem.Lett., 1975, (12): 1209-1212
    [56]Fishichbach D. B., Lemoine P. M., Yen G. V. Mechanical properties and structure of a new commercial SiC-type fiber Tyrranno[J]. J. Mater. Sci., 1988, (23):987-993
    [57]Andersson C A,Warren R,Silicon carbide fibes and for use in composite materials [J], Composites, 1984, 15(1):16-22
    [58]王秀春,国外隐身材料的研究与发展[J],隐身技术,1993,(4):70-74
    [59]余煜玺,李效东,曹峰,邢欣,冯春祥,先驱体法制备含异质元素SiC陶瓷纤维的现状与进展[J],硅酸盐学报,2003,31(4):371-375
    [60]Takemi Yamamura, Toshihiro Ishikawa, Masaki Shibuya, Electromagnetic wave absorbing matrial[P], 1992, USP5094907
    [61]刘海韬,夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究[D],国防科技大学,2010
    [62]Scholz R, Dos Santos Marques F, Riccardi B. Electrical conductivity of silicon carbide composites and fibers [J]. Journal of Nuclear Materials, 2002, (307-311): 1098-1101.
    [63]杨尚林,王俊,郑卫,李庆芬,结构吸波材料的设计与性能预报[J],哈尔滨工程大学学报,2003,24(5):544-547
    [64]葛副鼎,朱静,陈利民,吸收剂颗粒形状对吸波材料性能的影响[J],宇航材料工艺,1996,(5):42-49
    [65]S.A. Tretyakov, Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss[J], Physics Letters A, 2005, 343: 231–237
    [66]何燕飞,龚荣洲,王鲜,赵强,吸波材料等效电磁参数和吸波特性研究[J],物理学报,2008,57(8):5261-5266
    [67]Hideo Oka, Y. Kataoka, H. Osada, Y. Aruga, F. Izumida, Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process[J], Journal of Magnetism and Magnetic Materials, 2007, (310): 1028-1029
    [68]Hongtao Zhang, Jinsong Zhang, Hongyan Zhang, Electromagnetic properties of silicon carbide foams and their composites with silicon dioxide as matrix in X-band[J], Composites: Part A, 2007, 38: 602-608
    [69]Ki-Yeon Park, Sang-Eui Lee, Chun-Gon Kim, Jae-Hung Han, Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures [J], Composites Science and Technology, 2006, 66: 576–584
    [70]程海峰,刘海韬,刘世利,周永江,楚增勇,张德勇,电路模拟吸波材料的研究及其发展[J],材料工程,2006,(增刊1):485-488
    [71]邢丽英,蒋诗才,李斌太,含电路模拟结构吸波复合材料[J],复合材料学报,2004,21(6):27-33
    [72]姚承照,张晨,冯志海,李仲平,李嘉禄,电路模拟吸波材料带宽拓展方法探索[J],宇航材料工艺,2008,(5):33-36
    [73]Fulghum D A. Stealth engine advances revealed in JSF designs [J]. Aviation Week & Space Technology, 2000, (19): 28-33
    [74]Papiernik A. Resonant modes of circular microstrip patches in multilayered substrates [J]. IEEE Trans Microwave Theory Techniques, 1999, 47(4): 488-498
    [75]Epp L W, Chen J C, Stanton P H, et al. Design of Tick Frequency Selective Surface with Complex Apertures [R]. Chicago: IEEE AP-S. 1992: 18-25
    [76]Menzel W. Theory of microstrip lines on artificial periodic substrates [J]. IEEE Trans Microwave Theory Techniques, 1999, 47(5): 629-635
    [77]邢丽英,蒋诗才,李斌太,含电路模拟结构陷阱式吸波复合材料研究[J],材料工程,2003,(12):29-32
    [78]李家俊,郑长进,赵乃勤,郭新权,含碳化硅纤维正交电路屏的吸波复合材料的研究[J],材料工程,2005,(3):6-10
    [79]Won-Jun Lee, Jong-Woo Lee, Chun-Gon Kim, Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band[J], Composites Science and Technology, 2008, 68: 2485-2489
    [80]许占显,贾宝富,林为干,孔立堵,卡西尼卵形贴片的电磁微波吸收研究[J],材料导报,2007,21(专辑Ⅷ):336-340
    [81]周永江,程海峰,刘世利,刘海韬,张德勇,楚增勇,十字型电阻贴片频率选择表面吸收体吸波性能研究[J],材料工程,2006,(增刊1):106-109
    [82]寇松江,徐金平,一款具有双方环结构的有源电路模拟吸波材料[J],现代电子技术,2008,(20):7-10
    [83]Tianchun Zou, Chunsheng Shi, Naiqin Zhao, Jiajun Li, Kang Yang, Microwave absorbing properties of the Archimedean plane spiral antenna array/epoxy resin composites[J], Materials Science and Engineering B, 2007, 142: 51-54
    [84]Kim Jin-Bong, Lee Sang-Kwan, Kim Chun-Gon, Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band[J], Composites Science and Technology, 2008, 68: 2909-2916
    [85]LIJIMA S, Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56
    [86]TANS S J, VERSCHUEREN A R M, DEKKER C, Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393: 49-50
    [87]BACHTOLD A, HADLEY P, NAKANISH I T, Logic circuits with carbonnanotube transistors [J], Science, 2001, 294: 1317-1321
    [88]SLEPYAN G Y, MAKSIMENKO S A, Electromagnetic response of carbon nanotubes and nanotube ropes[J], Synthetic Metals, 2001, 124: 121-123
    [89]赵东林,曾宪伟,沈曾民,碳纳米管/聚苯胺纳米复合管的制备及其微波介电特性研究[J],2005,物理学报,54(8):3878-3883
    [90]赵东林,沈曾民,含碳纳米管微波吸收材料的制备及其微波吸收性能研究[J],无机材料学报,2005,20(3):608-612
    [91]刘晓来,赵东林,田丽霞,碳纳米管的微波介电特性[J],中山大学学报(自然科学版),2006,45(5):38-41
    [92]赵东林,李怀玉,沈曾民,螺旋形碳纤维手性吸收剂的制备及其生长过程研究[J],功能材料,2007,38(增刊):2942-2945
    [93]Dong-Lin Zhao, Zeng-Min Shen, Preparation and microwave absorption properties of carbon nanocoils[J], Materials Letters, 2008, 62: 3704-3706
    [94]沈曾民,戈敏,赵东林,螺旋形炭纤维的吸波性能[J],新型炭材料,2005,20(4):289-293
    [95]赵东林,沈曾民,迟伟东,炭纤维及其复合材料的吸波性能和吸波机理[J],新型炭材料,2001,16(2):66-72
    [96]Bunshi Fugetsu, Eiichi Sano, Masaki Sunada, Yuzuru Sambongi, Takao Shibuya, Xiaoshui Wang, Toshiaki Hiraki, Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper[J], CARBON, 2008, 46: 1253-1269
    [97]Bjorn Hornbostela, Ulrich Leuteb, Petra Potschkec, Jochen Kotza, Daniela Kornfelda, Po-Wen Chiud, Siegmar Rotha, Attenuation of electromagnetic waves by carbon nanotube composites[J], Physica E, 2008,40: 2425-2429
    [98]沈曾民,赵东林,镀镍碳纳米管的微波吸收性能研究[J],新型炭材料,2001,16(1):1-4
    [99]Zhuangjun Fan, Guohua Luo, Zengfu Zhang, Li Zhou, Fei Wei, Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites[J], Materials Science and Engineering B, 2006, 132: 85-89
    [100]S.A. Maksimenko, V.N. Rodionova, G.Ya. Slepyan, V.A. Karpovich, O. Shenderova, J. Walsh, V.L. Kuznetsov, I.N. Mazov, S.I. Moseenkov, A.V. Okotrub, Ph. Lambin, Attenuation of electromagnetic waves in onion-like carbon composites[J], Diamond & Related Materials, 2007, 16: 1231-1235
    [101]Ludmila Matzui, Ludmila Vovchenko, Yuriy Prylutskyy, Igor Korotash, Volodymyr Matzui, Peter Eklund, Uwe Ritter, Peter Scharff, Electromagnetic losses in carbon–epoxy composites[J], Materials Science and Engineering C, 2007, 27:1007-1009
    [102]牟方志,官建国,樊希安,王维,童国秀,李维,四氧化三铁中空/螺旋纤维的制备及形成机理[J],高等学校化学学报,2008,29(9):1707-1711
    [103]董德明,官建国,王维,李维,周静,环氧树脂修饰微米片状Fe粉的制备与电磁性能[J],金属学报,2009,45(9):1141-1145
    [104]Moon Suk Kim, Eui Hong Min, Jae Gui Koh, Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber[J], Journal of Magnetism and Magnetic Materials, 2009, (321): 581–585
    [105]Yuchang Qing, Wancheng Zhou, Fa Luo, Dongmei Zhu, Microwave-absorbing and mechanical properties of carbonyl-iron/epoxysilicone resin coatings[J], Journal of Magnetism and Magnetic Materials (doi:10.1016/j.jmmm. 2008.07.011)
    [106]张德勇,程海峰,唐耿平,刘海韬,周永江,吸收剂形状对雷达吸波材料性能的影响研究[J],功能材料,2007,38(增刊):2963-2965
    [107]Lal K,Parshad R.J. Phys D:Appl Phys[J],1973,6:1788
    [108]Neelakanta D S.J. Phys Condens Matter[J],1990,2:4935
    [109]吴明忠,赵振声,何华辉,多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J],功能材料,1999,30(1):91-93
    [110]赵振声,张秀成,聂彦,何华辉,多晶铁纤维吸波材料的微波特性研究[J],磁性材料及器件,2000,31(1): 18-21
    [111]Yan Nie, Huahui He, Zhenshen Zhao, Rongzhou Gong, Hongbin Yu, Preparation, surface modification and microwave characterization of magnetic iron fibers[J], Journal of Magnetism and Magnetic Materials, 2006, (306): 125-129
    [112]刘凌云,龚荣洲,王鲜等,吸波微粒的散射和吸收特性[J],华中科技大学学报(自然科学版),2006,34(5):74-76
    [113]彭伟才,陈康华,磁性纤维随机混合媒质等效电磁参数的计算[J],稀有金属材料与工程,2005,34(9):1407-1410
    [114]吴明忠,赵振声,何华辉,多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J],功能材料,1999,30(1):91-93
    [115]Jun Yamada,Radiative properties of fibers with non-circular cross sectional shapes[J],Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, (73): 261-272
    [116]Y.B. Feng, T. Qiu, C.Y. Shen, Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite[J], Journal of Magnetism and Magnetic Materials, 2007, (318): 8-13
    [117]Rahul Sharma, R.C. Agarwala, Vijaya Agarwala, Development of radarabsorbing nano crystals by microwave irradiation[J], Materials Letters, 2008, 62: 2233-2236
    [118]U.R. Lima, M.C. Nasar, R.S. Nasar, M.C. Rezende, J.H. Araujo, Ni–Zn nanoferrite for radar-absorbing material[J], Journal of Magnetism and Magnetic Materials, 2008, (320): 1666-1670
    [119]刘建华,孙杰,李松梅,陈冬梅,不同形貌氧化锌的微波电磁性能研究[J],北京航空航天大学学报,2004,30(9):822-825
    [120]周祚万,楚珑晟,刘世楷等,四针状ZnOw的微波吸收及微波-热转换特性研究[J],功能材料,2002年,33(1):55-57
    [121]郭岚,傅敏恭,万益群,钟己未,四针状氧化锌晶须的制备及其吸波性能的研究[J],无机化学学报,2007,23(7):1251-1254
    [122]曹佳伟,黄运华,张跃,廖庆亮,邓战强,四针状纳米氧化锌电磁波吸收特性,物理学报,2008,57(6):3641-3645
    [123]李松梅,陈冬梅,刘建华,T-ZnO晶须化学镀铜复合粉体的制备及其电磁性能的研究[J],物理化学学报,2004,20(11),1389-1393
    [124]司玲,王利侠,张杰等,亚微米级Ag2S空心球的乳液法合成[J],无机化学学报,2003,19(11):1253-1256
    [125]O.P. Chakrabarti, P.K. Das, J. Mukerji, Growth of SiC particles in reaction sintered SiC[J], Materials Chemistry and Physics, 2001, 67: 199-202
    [126]Rakesh Kumar Sharma, Shraboni Das, Amarnath Maitra, Enzymes in the cavity of hollow silica nanoparticles[J], Journal of Colloid and Interface Science, 2005, (284): 358-361
    [127]姜艳秋,刘艳华,赵旭,赵敬哲,田玉美,王子忱,壳壁上具有介孔的Si/Al复合氧化物中空微球的制备[J],高等学校化学学报,2005,26(6):1018-1020
    [128]梁志武,郝广杰,申小义,郭天瑛,宋谋道,张邦华,中空结构聚合物微粒的制备方法[J],高分子通报,2003,(5):36-41
    [129]宋岩,席聪,陈光德,刁佳杰,景轩,Au-Au2S复合纳米球壳微粒的空腔谐振及参量讨论[J ],光学学报,2002,22(11) :1392-1395
    [130]Jaeruen Shim, Hyo-Tae Kim, Design of wave absorber for small conducting sphere[J ] . Electronics letters, 1998, 34 (19): 1833-1834
    [131]Xu Hongfei, Xu Lina, Gu Ning, Sun Zhongliang, A new electromagnetic functional material composed of metallic hollow micro-spheres[J], Journal of Southeast University (English Edition), 2003, 19(1): 8-11
    [132]唐耿平,程海峰,赵建峰,楚增勇,周永江,空心微珠表面改性及其吸波特性[J],材料工程,2005,(6):11-13,35
    [133]Wuyou Fu, Shikai Liu, Wenhua Fan, Haibin Yang, Xiaofen Pang, Jing Xu,Guangtian Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property[J], Journal of Magnetism and Magnetic Materials, 2007, (316): 54-58
    [134]黄征,官建国,玻璃微珠/银核壳纳米复合粒子电性能的研究[J],电子元件与材料,2008,27(10):13-15
    [135]刘飚,官建国,王琦,张清杰,核壳型铁钴复合材料的制备及其微波吸收性能的研究[J],功能材料,2005,36(1):133-135
    [136]田红艳,张文杰,王省哲,核壳椭球微粒的吸波特性分析[J],功能材料,2007,38(增刊):2993-2996
    [137]杜纪柱,刘顺华,炭包EPS空心导电球吸波机理讨论[J],材料科学与工程学报,2007年,25(1):129-131
    [138]董纪震,罗鸿烈,合成纤维生产工艺学[M],纺织工业出版社,1996年11月,第二版
    [139]Chuanfang Yang, E. L. Cussler. Reaction dependent extraction of copper and nickel using hollow fibers[J], J. Membr. Sci., 2000, (166): 229-238
    [140]L. Dahuron, E.L. Cussler, Protein extraction with hollow fobers[J], AI.ChE.J., 1988, (34): 130-136
    [141]M. Rodriguez, R.M.C. Viegas, S. Luque, I.M. Coelhoso, J.P.S.Z. Crespo, J.R. Alvarez. Removal of valeric acid from wastewaters by membrane contactors[J], J. Membr.Sci., 1997, 37 (1): 45-53
    [142]D. D. Edie, N. K. Fox, B. C. Barnett, and C. C. Fain, Melt-spun non-circular carbon fibers[J]. Carbon. 1986, 24(3): 477-482
    [143]D. D. Edie and E. Stoner. In Carbon-Carbon Materials and Composites[M], (Edited by J. D. Buckley and D. D. Edie), pp.41-69. Noyes publications, Park Ridge, NJ (1993)
    [144]Rhee B S, Ryu S K, In S J, et al. Mechanical property of round and C-Shaped mesophase carbon fibers[J]. Carbon 90(Paris), 1990: 178-179
    [145]Edie D D, Pitch and Mesophase fibers. In: Figueiredo J L, Bernardo C A, Baker R T K, et al. Carbon Fibers Filaments and Composites[M]. Dordrecht: Kluwer Academic Publishers, 1990: 43-72
    [146]Fizer E, Fritz W, Metzler W. Hollow multi-filament carbon fibers based on hydrogenated mesophase pitch[J]. CARBON (Germany), 1992: 647-649
    [147]Hayes G J, Metzler W, Fitzer E, et al. Single filament evaluation of hollow pitch-based carbon fibers-tensile and recoil[J]. CARBON 92(Germany), 1992: 813-815
    [148]Rhee B, Ryu Sss, In S, et al. The mechanical properties and structures of pitch based hollow carbon fibers[J]. International Symposium on Carbon (Tsukuba), 1990: 598-601
    [149]Stoner E G, Edie D D. Effect of shape on tensile strength of pitch-based carbon fibers[J]. CARBON 90(Paris), 1990: 180-181
    [150]Rhee B, Ryu Sss, In S, et al. The mechanical properties and structures of pitch based hollow carbon fibers[J]. International Symposium on Carbon (Tsukuba), 1990: 598-601
    [151]S. J. Park , M. K. Seo, H. B. Shim,Effect of fiber shapes on physical characteristics of non-circular carbon fibers-reinforced composites[J],Materials Science and Engineering A, 2003, (352): 34-39
    [152]李明伟,王成扬,中间相沥青基条形炭纤维的制备与性能[J],材料研究学报,1998,12(5):535-538
    [153]王成扬,李明伟,Y形沥青基炭纤维的制备及不熔化处理对其性能的影响[J],炭素技术,1997,(6):1-4
    [154]Zha Q. F, Ji Y, Liu L. Oxidative stability of hollow large-diameter mesophase pitch based carbon fiber[R]. 21st biennial Conf. On Carbon(Buffalo), 1993: 74-75
    [155]孙良奎,程海峰,楚增勇,周永江,同轴静电纺丝再经两步后处理制备PAN基中空碳纤维[J],高分子学报,2009,(1):61-65
    [156]K. E. Robinson, D. D. Edie, Microstructure and texture of pitch-based ribbon fibers for thermal management [J], Carbon, 1996, 34(1): 13-36
    [157]Yulia V. Basova, Dan D. Edie, Young-Seak Lee, Laura K. Reid, Seung-Kon Ryu, Effect of precursor composition on the activation of pitch based carbon fibers [J], Carbon, 2004, 42: 485-495
    [158]L.M. Manocha, A. Warrier, S. Manocha, D.D. Edie, A.A. Ogale, Microstructure of carbon/carbon composites reinforced with pitch-based ribbon-shape carbon fibers [J], Carbon, 2003, 41: 1425-1436
    [159]崔东辉,朱绪宝,雷达吸收材料发展趋势[J],飞航导弹,2000,(11):54-57
    [160]赵东林,沈曾民,迟伟东,温永魁,碳纤维结构吸波材料及其吸波碳纤维的制备[J],高科技纤维与应用,2000,25(3):8-14
    [161]谢炜,程海峰,楚增勇,陈朝辉,短切中空多孔碳纤维复合材料的吸波性能,无机材料学报,2008,23(3):481-485
    [162]谢炜,程海峰,楚增勇,陈朝辉,周永江,以中空多孔碳纤维为主体的轻质吸波材料吸波性能研究,无机材料学报,2009,24(2):320-324
    [163]刘新,王荣国,刘文博,杨玉蓉,闫亮,异形截面碳纤维复合材料的吸波性能[J],复合材料学报,2009,26(2):94-100
    [164]德国专利, DE 101 12734 Al, 2001.12.6
    [165]王应德,王娟,冯春祥等,异形(三叶形)截面碳化硅纤维制备工艺研究[J],高技术通讯,2000,10(8):91-93
    [166]王应德,冯春祥,王娟等,具备雷达吸波特性的三叶形碳化硅纤维的研制[J],复合材料学报,2001,18(1):42-45
    [167]Wang Y. D., Chen Y. M., Zhu M. F. et al. Development for silicon carbide fibers with trilobal cross section[J], J.Mater.Sci.Lett., 2002, (21): 349-350
    [168]Jiang Yonggang, Wang Yingde, Lan Xinyan, et al. Preparation of C-shaped silicon carbide fibers[J], J. Materials Science, 2004, 39: 5881-5882
    [169]姜勇刚,C形、中空截面碳化硅纤维的制备[D],国防科技大学,2003
    [170]刘旭光,复杂异形截面碳化硅纤维的制备与性能[D],国防科技大学,2005
    [171]殷玲玲,王应德,薛金根等,三叶形连续碳化硅纤维的性能研究[J],功能材料,2005,36(3):445-447。
    [172]殷玲玲,同板多形碳化硅纤维的制备及其性能研究[D],国防科技大学,2004
    [173]Yiming Yao,Anna Janis,Uta Klement,Characterization and dielectric properties ofβ-SiC nanofibres[J],J Mater Sci,2008,43(3):1094-1101
    [174]Kassiba A, Charpentier S (2003) In: Legrand AP, Sénémaud C (eds) Nanostructured silicon-based powders and composites[J]. Taylor & Francis, London and New York, p 211
    [1]王应德,姜勇刚,多功能纤维截面快速观察装置[P],中国专利:200320124138.X,2004-12-15
    [2]SJ20512-1995,微波大损耗固体材料复介电常数和复磁导率测试方法[S]
    [3]SJ20155-92,射频辐射吸收体(微波吸收材料)的通用规范[S]
    [1]董纪震,罗鸿烈,王庆瑞,曹振林等编,合成纤维生产工艺学(上册)[M],中国纺织出版社, 1996
    [2]A.谢皮斯基,纤维成形基本原理[M],上海科学技术出版社
    [3]郭英,电路模拟法计算异孔喷丝板孔流量[J],合成纤维工业,2001,25(4):59-60
    [4]吴其晔,巫静安,高分子材料流变学[M],高等教育出版社,2002: 226-228
    [5]王贵恒,高分子材料成形加工原理[M],化学工业出版社,1982
    [6]戴干策,聚合物加工中的传递现象[M],中国石化出版社,1999
    [7]沈新元,高分子材料加工原理[M],中国纺织出版社,2000:189-191
    [8]王应德,具有吸波功能的三叶形截面碳化硅长丝的研究[D],东华大学, 2003.10:88-89
    [9]刘辉,王应德,冯春祥,吴文华,朱美芳,陈彦模,聚碳硅烷流变性能的研究[J],合成纤维工业,2001.10,24(5):23-25
    [10]王军,姚闽,王娟,陈革,宋永才,冯春祥,异型截面聚碳硅烷纤维的制备[J],材料工程,2000,(9):38-41
    [11]王应德,王娟,冯春祥,何迎春,异型(三叶型)截面碳化硅纤维制备工艺研究[J],高技术通讯,2000,10(8):91-93
    [12]S.T.Taylor, Y.T.Zhu, W.R.Blumenthal, M.G.Stout, et al. Characterization of Nicalon fibers with varying diameters Part 1 Strength and fracture studies[J]. J.Mater.Sci., 1998, 33(6):1465-1473
    [13]董纪震,罗鸿烈,王庆瑞,曹振林,合成纤维生产工艺学(上册)[M],中国纺织出版社:140-143
    [14]姜勇刚,C形、中空截面碳化硅纤维的制备[D],国防科技大学,2003
    [15]M. NARISAWA, Y. ITOI, K. OKAMURA,Electrical resistivity of Si-Ti-C-O fibres after rapid heat treatment[J],JOURNAL OF MATERIALS SCIENCE, 1995, 30: 3401-3406
    [16]E. MOUCHON, PH. COLOMBAN , Microwave absorbent: preparation, mechanical properties and r.f.-microwave conductivity of SiC (and/or mullite) fibre reinforced Nasicon matrix composites[J],JOURNAL OF MATERIALS SCIENCE, 1996, 31: 323-334
    [17] S.T.Taylor, Y.T.Zhu, W.R.Blumenthal, M.G.Stout, et al. Characterization of Nicalon fibers with varying diameters Part 1 Strength and fracture studies[J]. J.Mater.Sci., 1998, 33(6):1465-1473
    [18] T.J.Clark, M.Jaffe, J.Rabe, N.R.Langley. Thermal stability characterization of SiC fibers: I, Mechanical property and chemical structure effects[J]. Ceram. Eng. Sci. Proc., 1986, 7(7-8): 901-913
    [19]赵藻藩,周性尧,张悟铭,赵文宽,仪器分析[M],高等教育出版社, 1990.5:215-218
    [1]王应德,冯春祥,王娟,宋永才,王军,姚闽,何迎春,薛金根,龙剑锋,具备吸收雷达波功能的三叶型碳化硅纤维研制[J],复合材料学报,2001,18(1):42-45
    [2]王军,王应德,王娟,姚闽,陈革,宋永才,冯春祥,异型截面碳化硅纤维的制备及其雷达吸波特性[J],功能材料,2000,31(6):628-630
    [3]刘旭光,王应德,条形碳化硅纤维的制备与性能[J],固体火箭技术,2008.12,31(6):642-645
    [4]刘旭光,王应德,姜勇刚,王得印,张晓宾,C形碳化硅纤维制备及性能[J],稀有金属材料与工程,2008.1,37(S1):395-398
    [5]彭伟才,陈康华,磁性纤维随机混合媒质等效电磁参数的计算[J],稀有金属材料与工程,2005,34(9):1407-1410
    [6]吴明忠,赵振声,何华辉,多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J],功能材料,1999,30(1):91-93
    [7]M. Narisawa, Y. Itoi, K. Okamura,Electrical resistivity of Si-Ti-C-O fibres after rapid heat treatment[J],Journal of Materials Science, 1995, 30: 3401-3406
    [8]E. Mouchon, PH. Colomban,Microwave absorbent: preparation, mechanical properties and r.f.-microwave conductivity of SiC (and/or mullite) fibre reinforced Nasicon matrix composites[J],Journal of Materials Science, 1996, 31: 323-334
    [9]王国强,章平,邹勇,刘祖黎,纳米复合高分子电磁参数及吸波性能的研究[J],华中科技大学学报,2001,29(7):89-91
    [10]孙晶晶,李建保,张波等,陶瓷吸波材料的研究现状[J],材料工程,2003,(2):43~47
    [11]Mohammad Hossein Shams, Seyed Mohammad Ali Salehi, Ali Ghasemi, Electromagnetic wave absorption characteristics of Mg-Ti substituted Ba-hexaferrite[J], Materials Letters, 2008, 62: 1731-1733
    [12]Andersson C A,Warren R,Silicon carbide fibers and for use in composite materials [J], Composites, 1984, 15(1):16-22
    [13]王秀春,国外隐身材料的研究与发展[J],隐身技术,1993,(4):70-74
    [14]M. NARISAWA, Y. ITOI, K. OKAMURA,Electrical resistivity of Si-Ti-C-O fibres after rapid heat treatment[J],JOURNAL OF MATERIALS SCIENCE, 1995, 30: 3401-3406
    [15]E. MOUCHON, PH. COLOMBAN , Microwave absorbent: preparation, mechanical properties and r.f.-microwave conductivity of SiC (and/or mullite) fibrereinforced Nasicon matrix composites[J],JOURNAL OF MATERIALS SCIENCE, 1996, 31: 323-334
    [16]陈志彦,王军,李效东,王应德,先驱体法制备连续Si-Fe-C-O吸波纤维的研究[J],航空材料学报,2006,26(2):33-36
    [17]殷之文,电介质物理学[M],科学出版社,2005:1-6
    [18]孙晶晶,李建保,张波等,陶瓷吸波材料的研究现状,材料工程,2003,(2):43~47
    [19]吴王杰,王晓,蒋敏,大学物理学(上册)[M],高等教育出版社, 2005
    [20]Yiming Yao,Anna Janis,Uta Klement,Characterization and dielectric properties ofβ-SiC nanofibres[J],J Mater Sci,2008, 43(3): 1094-1101
    [21]Kassiba A, Charpentier S (2003) In: Legrand AP, Sénémaud C (eds) Nanostructured silicon-based powders and composites[J]. Taylor & Francis, London and New York, p 211
    [22]R.科埃略,B.阿拉德尼兹,电介质材料及其介电性能[M],科学出版社,2000:137-142
    [23]Jun Yamada,Radiative properties of fibers with non-circular cross sectional shapes[J],Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 73: 261-272
    [1]Guozhu Shen, Ming Xub, Zheng Xua, Double-layer microwave absorber based on ferrite and short carbon fiber composites[J], Materials Chemistry and Physics, 2007, (105): 268–272
    [2]Yuzun Fan, Haibin Yang, Xizhe Liu, Hongyang Zhu, Guangtian Zou, Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite[J], Journal of Alloys and Compounds, 2008, (461): 490–494
    [3]沈曾民,赵东林,镀镍碳纳米管的微波吸收性能研究[J],新型炭材料,2001,16(1):1-4
    [4]李家俊,郑长进,赵乃勤,郭新权,含碳化硅纤维正交电路屏的吸波复合材料的研究[J],材料工程,2005,(3):6-10
    [5]程海峰,陈朝辉,李永清,张长瑞,王德安,短切碳化硅纤维微波电磁参数改性研究[J],宇航材料工艺,1999,(4):41-44
    [6]李黎明,徐政,陶瓷纤维吸波材料的吸波机理及其结构设计[J],江苏陶瓷,2004,37(l):6-11
    [7]许健翔,张巍,短切导电纤维填充的复合材料吸波性能研究[J],玻璃钢/复合材料,2002,(4):16-19
    [8]杨尚林,王俊,郑卫,李庆芬,结构吸波材料的设计与性能预报[J],哈尔滨工程大学学报,2003,24(5):544-547
    [9]吴明忠,赵振声,何华辉,各向异性吸波材料对电磁波的反射[J],华中理工大学学报,1998,26(9):81-82
    [10]葛副鼎,朱静,陈利民,吸收剂颗粒形状对吸波材料性能的影响[J],宇航材料工艺,1996,(5):42-49
    [11]吴明安,杨坤涛,雷达吸波材料吸波性能的正交实验[J],山西大学学报(自然科学版), 2006,29(2):162-164
    [12]李小莉,贾虎生,羰基多晶铁纤维吸波性能的研究[J],材料工程,2007,(3):14-17
    [13]赵东林,沈曾民,迟伟东,温永魁,碳纤维结构吸波材料及其吸波碳纤维的制备[J],高科技纤维与应用,2000.6,25(3):8-14
    [14]周永江,程海峰,曹义,陈朝辉,导电PAN织物结构吸波材料的制备[J],玻璃钢/复合材料,2006,(6):13-15
    [15]吴明忠,赵振声,何华辉,多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J],功能材料,1999,30(1):91-93
    [16]彭伟才,陈康华,磁性纤维随机混合媒质等效电磁参数的计算[J],稀有金属材料与工程,2005,34(9):1407-1410
    [17]A.N. Lagarkov, K.N. Rozanov, A.K. Sarychev, N.A. Simonov, Experimental and theoretical study of metal-dielectric percolating films at microwaves[J], Physica A, 1997, (241): 199-206
    [18]殷之文,电介质物理学[M](第二版),科学出版社,2003:1-10
    [19]唐宏,赵晓鹏,邢丽英,许健翔,刘曙,多层吸波材料的数值优化设计[J],微波学报,2003,19(3):55-58
    [20]孙晶晶,李建保,张波等,陶瓷吸波材料的研究现状[J],材料工程,2003,(2):43-47
    [21]殷玲玲,同板多形碳化硅纤维的制备及其性能研究[D],国防科技大学,2004
    [22]陈志彦,王军,李效东,王应德,先驱体法制备连续Si-Fe-C-O吸波纤维的研究[J],航空材料学报,2006,26(2):33-36
    [23]王军,陈革,宋永才,萧加余,许云书,孙颖,含镍碳化硅纤维的制备及其电磁性能Ⅱ.含镍碳化硅纤维的电磁性能[J],功能材料,2001,32(1):37-39
    [24]王军,宋永才,冯春祥,具有微波吸收功能的掺混型碳化硅纤维的研制[J],功能材料,1997,28(6):619-622
    [25]杨孚标,李永清,程海峰等, SiC纤维的B4C涂层研究[J],功能材料,2002,33(3):286-287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700