混合方法分析电大目标附近天线受扰方向图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电大尺寸复杂载体上各种天线和天线阵列的电磁辐射和电磁兼容问题是当今理论界与工程界中极富挑战性的课题。该课题的涉及面相当广泛,研究方法众多。随着计算机技术的不断进步,计算机辅助设计已经在工业产品的设计和生产过程中得到普及。目前,非均匀有理B样条(NURBS)曲面建模技术已经成为工业产品建模的主流方法。基于NURBS曲面建模技术的电磁计算方法是一个紧迫且具有重大理论意义和工程意义的课题。本文紧密结合支撑技术项目,综合考虑传统的高频方法和低频方法的优势,用高低频混合方法来分析这类问题,研究了基于NURBS曲面建模的MOM-PO混合方法以及高阶MOM结合UTD方法,并将其用于分析电大目标附近天线和天线阵列的受扰方向图。本文的主要工作和创新点可以概括为:
     1.提出一种改进的基于NURBS建模的PO方法来分析电大散射体附近天线的受扰方向图。该方法克服了传统方法中用球面波代替真实天线,且天线必须远离散射体的局限性。本文用真实天线辐射场作为PO区域的入射场来激发感应电流,使得天线无需远离散射体,增强了算法的通用性。基于SPM的NURBS-PO方法中,使用优化方法搜索驻相点。本文利用Ludwig积分来计算感应电流的曲面积分,使得算法更加简洁易于实现。另一方面研究了基于SPM的NURBS-PO方法的加速算法,使得该算法效率大幅提高。
     2.提出一种改进的基于NURBS建模的MOM-PO混合方法来分析位于散射体附近天线的受扰方向图。传统基于NURBS建模的MOM-PO方法中,采用SPM方法计算感应电流的曲面积分,天线必须远离散射体一个波长以上。本文从数值算例及理论两方面分析了SPM方法在近场计算时失效的原因。采用Ludwig积分计算有理贝齐尔曲面上的物理光学感应电流积分,克服了近场计算失效问题。数值算例验证了本文方法的有效性,且不受限于天线与散射体的距离。此外,提出了一种类似于自适应方法的积分区域剖分判定方法来提高算法效率。
     3.提出Ludwig积分结合SPM技术的NURBS MOM-PO方法,用于电大平台问题的高效分析。Ludwig积分需要对一个矩形区域进行剖分,为得到较高精度的计算结果,往往剖分较细,使得计算效率不高。SPM方法不需要任何剖分。因此,先对天线单元与散射体的距离进行预判断,如果距离低于一个波长则用Ludwig积分处理,反之则使用SPM方法。利用Ludwig积分结合SPM技术计算有理贝齐尔曲面上物理光学感应电流的积分,既避免了单纯使用SPM方法时近区场计算失效的问题,又避免了单纯使用Ludwig积分时计算效率较低的缺点。
     4.提出基于Ludwig积分结合SPM方法的NURBS MOM-PO快速算法。SPM方法求解过程中多次求解关键点消耗大量计算时间,本文引入两种加速技巧,通过对矩量法区域进行分组求解及计算方向图时采用插值关键点方法,极大的提高了NURBS建模MOM-PO混合方法的计算效率。数值结果与不加速的NURBSMOM-PO方法和三角形建模的MOM-PO得到的结果吻合良好。计算时间的对比说明了本文方法与传统方法相比,效率大幅度提高。
     5.提出高阶MOM结合UTD分析电大平台附近复杂天线受扰方向图。使用高阶MOM计算无平台下包围复杂天线的近区封闭面上的复矢量场,根据等效原理得到封闭面上的初始电磁流。采用UTD方法计算平台的散射场,迭代封闭面上的电磁流分布。根据迭代结束后的电磁流结合UTD计算天线的受扰方向性图,通过与矩量法的计算结果对比,说明本文方法的精度高,且该方法在计算复杂天线在电大平台下受扰方向图时具有计算时间上的优势。近似方法的提出提高了计算效率,且结果与MOM吻合甚好。本文方法比以往相关文献方法的优势在于考虑了电大平台对天线的影响,使得结果更加可靠。
The study of electromagnetic scattering and electromagnetic compatibility ofsome wire antennas mounted on electrically large complicated platform is a mostlychallenging research topic both in theory and engineering. The technology ofComputer Aided Design (CAD) is widely adopted in the design process of industriesproducts. The emergence of computational electromagnetics reduces a large amountof cost for the electromagnetic analysis. Today, the most popular method forgeometrical design is the Nonuniform Rational B-spline (NURBS) surface.Numerical method based on NURBS surface is an urgent and important issue. Beinglinked with research projects, the NURBS based hybrid Method of Moments andPhysical Optics (MOM-PO) and higher order MOM with Uniform geometricalTheory of Diffraction (UTD) are thoroughly studied. The author’s major work andcontributions are as follows:
     1. The Physics Optics (PO) method is used to calculate the disturbed patternof an antenna around the electrically large platform modeled with NURBS surface.The improved Ludwig integral method is applied to compute the integration ofinduced current over the surface. Compared with the existing NURBS-PO method,the new technique overcomes the limitation that the antenna must be located faraway from the scatterer. Since the true scattering field of antenna is replaced byspherical wave in conventional method. The present method also avoids thecomplicated theory and the possible invalidation in searching stationary points ofstationary phase method (SPM) method. Numerical results obtained from proposedapproach show great agreement with that obtained from pure Method of Moment(MOM). The feasibility of the proposed method is obviously demonstrated. And theapproach presented in this paper has the advantage over the MOM method in speedwhen they are used to solve high frequency problems.
     2. The MOM-PO hybrid method based on Ludwig integral and modifiedimpedance matrix is used to analyze the disturbed pattern of an antenna around theelectrically large scatterer modeled with NURBS surfaces. Compared with existingiterative MOM-PO method based on SPM, the new method avoids possible problemof iterative convergence. Ludwig integral is utilized to calculate the integral of POcurrents on Bezier surfaces. It overcomes the invalidity of SPM in the traditionalmethod. The comparison of the results obtained by this method with those publishedin literatures and from pure MOM shows the feasibility and accuracy of the present method.
     3. The conventional MOM-PO method based on NURBS modeling isimplemented by modifying the voltage matrix. However, the problem of iterativedivergence may occur. To solve this problem, a method of modifying the impedancematrix is presented to avoid the potential divergence. Ludwig integral combiningwith SPM is utilized to calculate the integral of PO currents on Bezier surfaces. Itovercomes the invalidity in the conventional method while keeping its efficiency.The comparison of the results obtained by this method with those published in theliterature and from pure MOM shows feasibility and accuracy of the present method.
     4. An efficient and stable MOM-PO hybrid method is proposed to calculatedisturbed pattern of antenna around electrically large platform modeled with NURBSsurfaces. Modified impendence matrix is used to implement the interaction of MOMregion and PO region for avoiding the convergence issue. SPM is used to calculatethe integral of induced current. Both grouping of MOM region and interpolation ofstationary points, are used to accelerate the present approach. Results obtained bythis method agree well with that from traditional Triangle MOM-PO. Comparison ofcomputing time of each method demonstrates the present method is accuracy enoughand much more efficient.
     5. The radiation pattern of the complex antenna around electrically largeplatform is analyzed by means of iterative vector fields and UTD method in thispaper. The complex field vectors produced by antenna without platform can beobtained by higher order MOM. The initial currents over the closed surface enclosingthe antenna are computed according to the equivalence theorem. Scattering fieldfrom platform is calculated by UTD method to iterate the currents over the enclosedsurface. After the electromagnetic currents are stable, the disturbed pattern can beobtained by UTD. Based on this method, an approximate method is also presented toimprove the efficiency. The results of the suggested methods show more accurate andhigher efficiency than that of MOM.
引文
[1] Barnhill R E, Riesenfeld R F, Computer-aided geometric design, AcademicPress,1974.
    [2] Oyvind Bjorke, Manufacturing Systems Theory, Tapir Academic Press,Trondheim, January2000.
    [3] R.F. Harrington, Field computation by MOMent method, IEEE Press, NewYork,1993.
    [4] J. M. Jin,“The Finite Element Method in Electromagnetics”, Wiley-IEEEPress, New York, May2002.
    [5] K.S.Yee,“Numerical solution of initial boundary value problems involvingMaxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat.,1966,14(5):302–307.
    [6] Inder. J. Gupta,“A Physical Optics Correction for Backscattering fromCurved Surfaces”, IEEE Trans., Antennas Propagat,1987,35(5):553-561.
    [7] Pouliguen, P., and Desclos, L,“A physical optics approach to near field RCScomputations”, Ann. Telecomm.,1996,51(5–6):219–226.
    [8]汪茂光,“几何绕射理论”,西安电子科技大学出版社,1994。
    [9] Pathak P H, Burnside W D, Marhefka R J,“A uniform GTD analysis of thediffraction of electromagnetic waves by a smooth convex surface,” IEEETrans. Antennas Propagat.1980,28(5):631-642.
    [10] Pathak P H, Wang N N, Bureside W D, et al.“A uniform GTD solution forthe radiation from sources on a convex surface,” IEEE Trans., AntennasPropagat.,1981,29(4):609-622.
    [11]宗卫华,梁昌洪,曹祥玉,项铁铭,“圆锥体与圆柱体的几何绕射理论绕射线寻迹”,西安电子科技大学学报(自然科学版),2002,29(4):482-485。
    [12]梁昌洪,崔斌,宗卫华,“费马原理确定柱面和锥面反射点的解析表示式”电波科学学报,2004,19(2):153-156。
    [13]梁昌洪,谭远洋,宗卫华,“Fermat原理求解柱2锥系统二阶反射问题”,西安电子科技大学学报,2004,31(4):497-500。
    [14]施法中,“计算机辅助几何设计与非均匀有理B样条”,高等教育出版社,2001。
    [15] X.-W. Zhao, X.-J. Dang, Y. Zhang, and C.-H. Liang, MLFMA analysis ofwaveguide arrays with narrow-wall slots, Journal of Electromagnetic WavesApplication,2007, Vol.21, no.8, pp:1063-1078.
    [16] G. A. Thiele and T. M. Newhouse,“Hybrid technique for combining MOMentmethods with the geometrical theory of diffraction”, IEEE Trans. onAntennas and Propagat.,1975,23(1):551-558.
    [17] Gary Athiele, Thomas Hnewhouse.“A hybrid technique for combiningMOMent methods with the geometrical theory of diffraction” IEEE Trans. onAntennas and Propagation,1975, AP-23(1):62-69.
    [18] R. E. Hodges and Y. Rahmat-Samii, An iterative current-based hybrid methodfor complex structures, IEEE Trans. Antennas Propag., Feb.1997, vol.45, no.2, pp:265–276.
    [19]雷继兆,梁昌洪,丁伟,张玉.并行FDTD-UTD方法分析机载相控阵天线,电波科学报,20(3),2005。
    [20]陈晓洁,王萌,梁昌洪,史小卫.利用PO修正MM-UTD计算机载波导缝隙天线阵的方向图,电子与信息学报,2008,30(7):1173-1775。
    [21] Joseph B. Keller,“Geometrical Theory of Diffraction”, Journal of the OpticalSociety of America,1962,52(2):116-130.
    [22] Ovidio Bucci, Giuseppe Pelosi,“From Wave Theory to Ray Optics”, IEEEAntennas and Propagation Magazine,1994,36(4):35-42.
    [23] R. G. Kouyoumjian,“Asymptotic High-Frequency Methods”, Proc IEEE,1965,53(8):864-876.
    [24] P. Ya. Ufimtsev,“Method of edge waves in the physical theory of diffraction”(from the Russian Method Krayevykh voin v fizicheskoy teorii diffraktsii,Izd-Vo Sov.Radio, pp1-243,1962), translation prepared by the US Air ForceForeign Technology Division. Wright-Patterson AFB, Ohio: released forpublic distribution September7,1971.
    [25] Neto, A.,“True physical optics for the accurate characterization of antennaradomes and lenses’’,2003IEEE Antennas Propag. Symp. Dig.,2003, Vol.4:416–419.
    [26] S. R Legault,“Refining physical optics for near-field computations”,Electronics Letters,2004,40(1):71-72.
    [27] D. P. Bouche, F. A. Molinet, and Mittra,“Asympotic and hybrid techniquesfor electromagnetic scattering”, Proc. IEEE,1993,81(12):1658-1684.
    [28] E. F. Knott,“A progression of high-frequency RCS prediction techniques”,Proc. IEEE,1985,73(2):252-264.
    [29] P. H. Pathak,“High-frquency techniques for antenna analysis”, Proc. IEEE,1992,80(1):44-65.
    [30] W. D. Burnside, C. L. Yu, and R. J. Marhefka,“A technique to combine thegeometrical theory of diffraction and the MOMent method”, IEEE Trans. OnAntennas and Propagat,1975,28(11):831-839.
    [31] J. N. Sahalos and G. A. Thiele,“On the application of the GTD-MMtechnique and its limitations”, IEEE Trans. on Antennas and Propagat.,1981,29(5):780-786.
    [32] E. P. Ekelman and G. A.Thiele,“A hybrid technique for combining theMOMent method threatment of wire antennas with the GTD for curvedsurfaces”, IEEE Trans. on Antennas and Propagat.,1980,28(11):831-839.
    [33] P. H. Pathak, W. D. Burnside, and R. J. Marhefka,“A uniform GTD analysisof the diffraction of electromagnetic waves by a smooth convex surface,”IEEE Trans.von Antennas and Propagat.,1980,28(9):631-642.
    [34] M. Martin and M. F. Catedra,“A study of a monopole arbitrary located on adisk using hybrid MM/GTD techniques”, IEEE Trans. on Antennas andPropagat.,1987,35(3):287-292.
    [35] G. A. Thiele,“Overview of selected hybrid methods in radiating systemanalysis”, Proc. IEEE,1992,80(1):67-78.
    [36] J. Silvestro,“Scattering from slot near conducting wedge using hybridmethod of MOMents/geometrical theory of diffraction: TE case”, ElectronicsLetters,1992,28(11):1055-1057.
    [37] J.P. Kim, C.W. Lee, and H. Son,“Analysis of corrugated surface waveantenna using hybrid MOM/UTD technique”, Electronics Letters,1999,35(5):353-354.
    [38] I.P. Theron, D. B. Davidson, and U. Jakobus,“Extensions to the HybridMethod of MOMents/Uniform GTD Formulation for Sources Located Closeto a Smooth Convex Surface”, IEEE Trans. on Antennas and Propagat.,2000,48(6):940-945.
    [39] V. A. Fock,“Electromagnetic Diffraction and Propagation Problems”,International Series of Monographs on Electromagnetic Waves, Vol.1, Oxford:Pergamon,1965.
    [40] P. Y. Ufimtsev,“Elementary edge waves and the physical theory ofdiffraction”, Electromagnetics,1991,11(6):125-160.
    [41] L. N. Medgyesi-Mitschang and D.-S. Wand,“Hybrid methods for analysis ofcomplex scatterers”, Proc. IEEE,1989,77(5):770-779.
    [42] L. N. Medgyesi-Mitschang, D.-S. Wand,“Hybrid methods in computationaleletromagnetics: A review”, Computer Physics Communications,1991,68(4):76-94.
    [43] L. N. Medgyesi-Mitschang, D.-S. Wand,“Hybrid solution for scattering fromperfectly conducting bodies of revolution”, IEEE Trans. on Antennas andPropagat.,1983,34(4):570-583.
    [44] L. N. Medgyesi-Mitschang, D.-S. Wand,“Hybrid solutions for large-impedance coated bodies of revolution”, IEEE Trans. on Antennas andPropagat.,1986,34(11):1319-1329.
    [45] H. J. Bilow,“Scattering by an infinite wedge with tensor impedanceboundary conditions-A Moment method/physical optics solution for currents”,IEEE Trans. on Antennas and Propagat.,1991,39(6):767-773.
    [46] D. S. Wang,“Current-based hybrid analysis for surface-wave effects on largescatters”, IEEE Trans. on Antennas and Propagat.,1991,39(6):839-850.
    [47] L. N. Medgyesi-Mitschang and J.M. Putnam,“Hybrid formulation forarbitary3-D bodies”, in10th Annu. Rev. of Progress in AppliedComputational Electromagnetics, ACES Conf., Monterey, CA, Mar.1994,2:267-274.
    [48] C. S. Kim and Y. Rahmat-sammii,“Low profile antenna study using thephysical optics hybrid method (POHM)”, Proc. IEEE Int. Symp. AntennasPropagat., June1991, London, Ont., Canada,1350-1353.
    [49] U. Jakobus, J. Christ, and F. M. Lanstorfer,“PO-MOM analysis ofcavity-backed antennas”, in IEE8th Int. Conf. Antennas Propgat. Edinburgh,Conf. Pubication Number370, Apr.1993:111-114.
    [50] U. Jakobous and F. M. Landstorfer,“Improved PO-MM hybrid formulationfor scattering from three dimensional perfectly conducting bodies of arbitraryshape”, IEEE Trans. On Antennas and Propagat.,1995,43(1):162-169.
    [51] U. Jakobus and F. M. Landstorfer,“Improvement of the PO-MM hybridmethod by accounting for effects of perfectly conducting wedges”, IEEETrans. on Antennas and Propagat.,1995,43(6):1123-1129.
    [52] U. Jakobus and F. M. Landstorfer,“Hybrid MOM-PO-FOCK analysis ofmonopole antennas mounted on curved convex bodies”, in ConferenceProceedings of the12th Annual Review of Progress in ComputationalElectromagnetics, Monterey, Mar,1996:101-108.
    [53] R.E. Hodges and Y. Rahmat-Samii,“An iterative current-based hybridmethod for complex structures”, IEEE Trans. On Antennas and Propagat.,1997,43(2):265-276.
    [54] F. Obelleiro, J. M. Taboada, J. L.Rodríguez, J. O. Rubi os, and A.M. Arias,“Hybrid MOMent-method physical-optics formulation for modeling theelectronmagnetic behavior of on-board antennas”, Microwave Opt. Tech. Lett.,2000,27(1):88-93.
    [55] J. M. Taboada, and F. Obelleiro,“Including multibounce effects in theMOMent-method physical-optics (MMPO) method”, Microwave Opt. Tech.Lett.,2002,32(4):435-439.
    [56] T. J. Cui, W. B. Lu, W. Hong, Z. C. Hao and X. X. Yin,“A two-region modelfor the fast implementation of the method of MOMents”, Proceeding of IEEEAP-S, Columbus, Ohio, June2003,2(6):330-333.
    [57] U. Jakobus and F. M. Landstorfer,“A combination of current-and ray-basedtechniques for the efficient analysis of electrically large scattering problems”,in Conference Proceedings of the13th Annual Review of Progress in AppliedComputational Electromagnetics,(Monterey), Mar.1997:748-755.
    [58] Johan Edlund“,A Parallel, Iterative Method of MOMents and Physical OpticsHybrid Solver for Arbitrary Surfaces”, Dissertation for the degree ofLicentiate of Technology in Numerical Analysis at Uppsala University,2001.
    [59] J. M. Taboada, P. Obelleiro, and J.L. Rodríguez,“Improvement of the hybridMOMent-method-physical-optics method through a novel evaluation of thephysical optics operator”, Microwave Opt. Tech. Lett.,2001,30(3):357-363.
    [60]华夷和,徐金平,牛臻戈,“FAFFA加速的PO-MM研究复杂金属载体上的线天线的电磁特性”,电子学报增刊,2003,31(12A):2045-2049。
    [61] Jorgensen E., Meincke P., Breinbjerg O.,“A hybrid PO-higher-orderhierarchical MOM formulation using curvilinear geometry modeling”,Antennas and Propagation Society International Symposium,2003. IEEE,June2003,4:98-101.
    [62] X. C. Wei and E. P. Li,“Wide-Band EMC Analysis of On-platform AntennasUsingImpedance-Matrix Interpolation With the MOMent Method-PhysicalMethod”, IEEE Transactions on Electromagnetic Compatibility,2003,45(3):552-556.
    [63] T. J. Cui, W. B. Lu,Z. G. Qian, W. Hong, and X. X. Yin, An efficientmulti-region model for electromagnetic scattering and radiation by PECtargets, IEEE Trans. Antennas Propagat., July2004, vol.52, No.7, pp.1707-1716.
    [64] Bezier P E, Numerical control-mathematics and applications, John Wiley&Sons, NewYork,1972.
    [65] D. M. Elking, J. M. Roedder, D. D. Car, S. D. Alspach,“A review ofhigh-frequency radar cross section analysis capability at McDonnell DouglasAerospace”, IEEE antennas and propagation magazine, October1995,37(5):33-43.
    [66] James M. Roedder,“CADDSCAT version2.3: a high-frequency physicaloptics code modified for trimmed iges b-spline surfaces”, IEEE antennas andpropagation magazine, June1999,41(3):69-80.
    [67] J. Perez, M. F. Catedra,“RCS of electrically large targets modeled withNURBS surfaces”, Electronics Letters,1992,28(12):1119-1121.
    [68] J. Perez, M. F. Catedra:“Application of physical optics to the RCScomputation of bodies modeled with NURBS surfaces”, IEEE Trans.Antennas Propagat.,1994,42(10):1404-1411.
    [69] Timothy J. Peters,“A Quasi-Interactive Graded-Mesh Generation Algorithmfor Finite Element/MOMent Method Analysis on NURBS-BasedGeometries”, IEEE Antennas Prop. Int. Symp., Seattle, WA, pp1390-1393.
    [70] L.Valle, F. Rivas, M. F. Catedra,“Combining the MOMent method withGeometrical modeling by NURBS surfaces and Bezier patches”, IEEE Trans.Antennas Propagat.,1994,42(3):373-381.
    [71] Domingo.M, Rivas.F, Perez.J, Torres.R.P, Catedra.M.F:“Computation of theRCS of complex bodies modeled using NURBS surfaces”, IEEE Antennasand Propagation Magazine,1995,37(6):36-47.
    [72] J.Perez, J.Sainz, M.F.Catedra,“Analysis of radiation and scattering of bodiesmodelled with parametric surfaces”,1996, Digital Object Identifier10.1109/APS.1820-1823.
    [73] Perez. Jesus, Saiz. Juan. A., Conde. Olga. M., Torres. Rafael. P., Catedra.Manuel. F,“Analysis of antennas on board arbitrary structures modeled byNURBS surfaces”, IEEE Trans. Antennas Propagat.,1997,45(6):1045-1053.
    [74] Jin-Lin Hu, Shi-Ming Lin, Wen-Bing Wang,“Computation of PO integral onNURBS surface and its application to RCS calculation”, Electronics Letters,1997,33(3):239-240.
    [75] M. F. Catedra, F. Rivas, and L. Valle,“A MOMent Method Approach UsingFrequency-Independent Parametric Meshes”, IEEE Trans. AntennasPropagat.,1997,45(10):1567-1568.
    [76] Olga M. Conde, J. Perez, M. F. Catedra:“Stationary Phase MethodApplication for the Analysis of Radiation of Complex3-D ConductingStructures”, IEEE Trans. on Antennas Propagat.,2001,49(5):724-730.
    [77] F. Saez de Adana, I. Gonza lez, O. Gutierrez and M.F. Catedra,“Asymptoticmethod for analysis of RCS of arbitrary targets composed by dielectric and/ormagnetic materials”, IEE Proc.-Radar Sonar Navig., October2003,150(5):375-378.
    [78] F. Saez de Adana, S. Nieves, E. García, I. González, O. Gutiérrez, and M. F.Cátedra,“Calculation of the RCS From the Double Reflection BetweenPlanar Facets and Curved Surfaces”, IEEE Trans. on Antennas Propagat.,September2003,51(9):2509-2512.
    [79] Sandy Sefi,“Ray tracing tools for high frequency electromagneticssimulations”, doctor thesis,2003.
    [80] Francisco Saez de Adana, Iván González Diego, Oscar Gutiérrez Blanco,Pablo Lozano, and Manuel F. Cátedra,“Method Based on Physical Optics forthe Computationof the Radar Cross Section Including Diffraction and DoubleEffects of Metallic and Absorbing Bodies Modeled With ParametricSurfaces”, IEEE Trans. on Antennas Propagat., December2004,52(12):3295-3303
    [81] Pippi', S. Della Casa, S.Maci,“A lineintegral asymptotic representation of thePO radiation from NURBS surfaces”, IEEE Antennas and PropagationSociety, AP-S International Symposium (Digest), v4, IEEE Antennas andPropagation Society Symposium2004Digest held in Conjunction with:USNC/URSI National Radio Science Meeting,2004:4511-4514.
    [82] M.F. Catedra, J. M. Gomez, F. Saez de Adana, I. GonzAlez, O. Gutinrrez,“Application of ray tracing accelerating techniques for the analysis ofantennas on complex platforms modelled by NURBS”, Antennas andPropagation Society International Symposium,2005, vol.4A,167-170.
    [83] Hüseyin A. S., and Arif E. A.,‘Computation of the Physical Optics Integralon NURBS Surfaces Using a Radon Transform Interpretation’, IEEEantennas and wireless propagation letters,2008,7, pp.70-73.
    [84] Cao Qin-feng, Lu shu, Xu Peng-gen,“SCTE:RCS prediction system forcomplex target and interaction with environment”,Wuhan Univ. J. Natur. Sci,1999,4(3):299-303.
    [85]陈玲玲,万国宾,刘冲,电磁散射目标的NURBS建模,计算机辅助工程,2005,14(3):71-73。
    [86]陈铭.基于NURBS建模的物理光学方法及混合方法研究.西安:西安电子科技大学博士学位论文.2006。
    [87]陈铭,张玉,王楠,梁昌洪.基于NURBS曲面建模的物理光学法中的遮挡判断算法研究,西安电子科技大学学报,33(6),2006:430-432。
    [88] Ming Chen, Yu Zhang, Chang-Hong Liang,“Analysis of antenna aroundNURBS surface with iterative MOM-PO technique”, J. of Electromagn.Waves and Appl., Vol.20, No.12,1667–1680,2006.
    [89]陈铭,王楠,梁昌洪.基于NURBS建模技术的迭代MOM-PO方法分析电大尺寸平台天线方向图,电子学报,2007,35(3):392-395。
    [90]陈铭,赵勋旺,梁昌洪.任意形状电大散射体附近天线受扰方向图的快速分析,电子与信息学报,2007,29(11):2787-2790。
    [91] M. Chen, Y. Zhang, X. W. Zhao, and C. H. Liang,“Analysis of antennaaround NURBS surface with hybrid MOM-PO technique,” IEEE Trans.Antennas Propag., vol.55, no.2, pp.407–413, Feb.2007.
    [92] Bezier P E,“The mathematical basis of the UNISURF CAD system”,Butterworth, London1986.
    [93] Bernstein, S."Démonstration du théorème de Weierstrass fondée sur le calculdes probabilities." Comm. Soc. Math. Kharkov13,1-2,1912.
    [94] Lorentz, G. G.,“Bernstein Polynomials”, Toronto: University of Toronto Press,1953.
    [95] I. J. Schoenberg,“On spline functions (with a supplement by T. N. E.Greville)”, in Inequalities I (O. Shisha, ed), Academic Press (New York),1967.
    [96] de Boor C.,“A practical guide to splines”, Springer-Verlag,1978.
    [97] de Boor C.,“On calculation with B-splines”, J Approx. Theory,1972,6(1):50-62.
    [98] Cox M,“The numerical evaluation of B-splines”, J inst math. Appl.1972, Vol10(2):134-149.
    [99] Gordon W J,“B-spline curves and surfaces”, Computer-aided geometricdesign, Academic press,1974,95-126.
    [100] Bohm. W,“Generating the Bezier points of B-spline curves and surfaces”,Computer aided design,1981,13(6):365-366.
    [101] Bohm. W,“Inserting new knots into B-spline curves”, Comput. Aided Des.1980,12(4):199-201.
    [102] E. F.克拉特著,阮颖铮,陈海译。雷达散射截面-预估,测量和缩减。电子工业出版社,1988年,第一版。
    [103] S. M. Rao, D. R. Wilton and A. W. Glisson, Electromagnetic scattering bysurfaces of arbitrary shape. IEEE Trans. on Antennas&Propagat.30(3), pp:409-418,1982.
    [104] A. C. Ludwig.“Computation of Radiation Patterns Involving NumericalDouble Integration”, IEEE Trans. on AP.1968,11(6):767-769.
    [105] Meng Wang, Ming Chen, Ludwig Algorithm's Improvement and ItsApplication on NURBS-PO Method, IEEE2005International Symposium onMicrowave, Antenna, Propagation and EMC Technologies For WirelessCommunications, August8-12,2005Beijing, China
    [106]王萌,陈铭,梁昌洪. LUDWIG算法的改进与应用.电波科学学报,2006,21(6):935-938。
    [107] V. Rokhlin,“Rapid solution of integral equations of scattering theory in twodimensions”, Journal of Computational physics,1990,86(2):414-439.
    [108] J. M. Song, C. C. Lu, W. C. Chew,“Multilevel fast multipole algorithm forelectromagnetic scattering by large complex objects”, IEEE Trans. onantennas and propagat.,1997,45(10):1488-1493.
    [109] P. Y. Ufimtsev, Elementary edge waves and the physical theory of diffraction,Electromagnetic,1991, vol.11, pp:125-160.
    [110] Frank Weinmann,“Ray Tracing With PO/PTD for RCS Modeling of LargeComplex Objects”, IEEE Trans. Antennas Propagat.,2006,54(6):1797-1806.
    [111] Djordjevic M, Notaros B M.“Higher order hybrid Method of MOMents–Physical Optics modeling technique for radiation and scattering from largeperfectly conducting surfaces”, IEEE Trans Antennas Propagat.,2005,53(2):800-813.
    [112] Edlund J. A Parallel, Iterative Method of MOMents and Physical OpticsHybrid Solver for Arbitrary Surfaces [Dissertation]. Sweden: UppsalaUniversity,2001.
    [113] N. Chako,“Asymptotic expansions of double and multiple integrals occurringin diffraction theory,” IMA J. Appl. Math.,1965, vol.1(4):372–422.
    [114] L. B. Felsen and N. Marcuvitz,“Radiation and Scattering of Waves”.Englewood Cliffs, NJ: Prentice-Hall,1973.
    [115] Jones D S, Kline M.“Asymptotic Expansion of Multiple Integrals and theMethod of Stationary Phase”, J Math Phys,1958,37(4):1-28.
    [116] M. Born and E. Wolf,“Principles of Optics”. London, Pergamon,1975.
    [117] L. Sirovich,“Techniques of Asymptotic Analysis”, New York: Springer-Verlag,1971.
    [118] J. C. Cooke,“Stationary phase in two dimensions,” IMA J. Appl. Math.,1982,29(1):25–37.
    [119] N. Bleistein and R. A. Handelsman,“Uniform asymptotic expansions ofdouble integrals,” J. Math. Anal. Appl.,1969,27(2):434–453.
    [120] J. P. McClure and R. Wong,“Two-dimensional stationary phaseapproximation: Stationary point at a corner”, Mar.1991, SIAM J. Math. Anal.,22(1):500–523.
    [121] W. H. Ierley and H. Zucker,“A stationary phase method for the computationof the far field of open cassegrain antennas,” Bell Syst. Tech. J., Mar.1970,vol.49,431–454.
    [122] C. A. Siller, Jr.,“Evaluation of the radiation integral in terms of endpointcontributions,” IEEE Trans. Antennas Propagat., Sept.1975,23(9):743–745.
    [123] H. Ikuno,“Calculation of far-scattered fields by the method of stationaryphase,” IEEE Trans. Antennas Propagat., Mar.1979,27(2):199–202.
    [124] H. Ikuno and M. Nishimoto,“Calculation of transfer functions of threedimensional indented objects by the physical optics approximation combinedwith the method of the stationary phase,” IEEE Trans. Antennas Propagat.,May1991,39(5):585–590.
    [125] H. Nakano, S. R. Kerner, and N. G. Alexopoulos,“The MOMent methodsolution for printed wire antennas of arbitrary configuration”, IEEE Trans.Antennas Propagat., Dec.1988,36(12):1667–1674.
    [126] Moschovitis Ch. G., Karakatselos K. T., Papkelis E. G., Anastassiu H. T.,Ouranos I. Ch., Tzoulis A., and Panayiotis V. F.,‘High Frequency AnalyticalModel for Scattering of Electromagnetic Waves from a Perfect ElectricConductor Plate using an Enhanced Stationary Phase Method Approximation’,IEEE Trans. on Antennas and Propagat.,2010,1,(58):233-238.
    [127] V. A. Borovikov,“Uniform stationary phase method”, The Institution ofElectrical Engineers, United Kingdom,1994.
    [128]王楠.基于任意曲面建模技术的一致性几何绕射理论方法.西安:西安电子科技大学博士学位论文.2007。
    [129] B.D.Popovic, On Polynomial Approximation of Current Along ThinAsymmetrical Cylindrical Dipoles, IEEE Transactions on Antennas andPropagation, January1971, vol.19, no.1, pp:117-120.
    [130] B.M.Kolundzija, B.D.Popovic, Entire domain Galerkin Method for Analysisof Generalised Wire Antennas and Scatterers, IEE Proceedings-H, February1992, vol.139, no.1, pp:17-24.
    [131] B. M. Kolundzija, J. S. Ognjanovic, T. K. Sarkar, WIPL: A Program forElectromag-netic Modeling of Composite-Wire and Plate Structures, IEEEAntennas and Propagation Magazine, vol.38, No.1, February1996.
    [132] E. Jorgensen, J. L. volakis, P. Meincke, Higher Order Hierarchical LegendreBasis Functions for Electromagnetic Modeling, IEEE Transactions onAntennas and Propagation, November2004, vol.52, no.11, pp:2985-2995.
    [133] Zhang, Y., Taylor, M., Sarkar, T., Moon, H., and Yuan, M.,“Solving largecomplex problems using a higher-order basis: parallel in-core and out-of-coreintegral-equation solvers”, IEEE Antennas and Propagation Magazine, Vol.50, Issue4, Aug.2008, pp.13-30.
    [134] Wang, M., C.-H. Liang, and Y. Zhang, Combining UTD with MM for patternprediction of the antenna in complex environment," Chinese Journal of RadioScience, Vol.22, No.3,508-512,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700