秦川牛胰岛素诱导基因的克隆、组织表达及遗传变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素诱导诱导基因(Insulin induced gene INSIG)包括INSIG1基因和INSIG2基因两个成员,参与机体脂质代谢,抑制胆固醇合成,同时也参与能量平衡和体重的调节。本试验以INSIG1基因和INSIG2基因为候选基因,以秦川牛为研究对象,采用RT-PCR法成功克隆了秦川牛生长和胴体性状候选基因INSIG2,并对其进行了生物信息学分析;采用实时荧光定量PCR技术研究了秦川牛INSIG1基因和INSIG2基因在不同组织中的表达规律;采用PCR-RFLP、PCR-SSCP技术和DNA测序技术相结合,研究了秦川牛INSIG1基因和INSIG2基因在秦川牛群体中的遗传多样性及其与生长和胴体性状的相关性,主要结果如下:
     1.秦川牛INSIG2基因的克隆及生物信息学分析
     分别以三头20±2月龄的秦川牛肝脏组织为材料,成功克隆得到秦川牛INSIG2基因完整编码区序列,大小为362bp,提交GenBank获得登录号JQ951942,该片段开放阅读框包括351个核苷酸,共编码116个氨基酸,对INSIG2基因编码蛋白质的生物信息学分析发现该蛋白相对分子质量12.8kD,等电点为7.73;INSIG2蛋白蛋白质疏水性预测结果显示疏水值最大为2.444,位于第54和第55个氨基酸处,疏水值最小为-1.533,位于第40个氨基酸处;跨膜结构预测显示该蛋白可能有三个由内向外的跨膜螺旋,分别位于第22~39aa处、45~65aa处和76~97aa处;在该蛋白第16、44和第78个氨基酸处,可能有三个蛋白质磷酸化位点;信号肽区域预测发现该蛋白没有信号肽锚定位点;
     2.秦川牛INSIG1、INSIG2基因组织表达规律
     采用用实时荧光定量技术研究了3头20±2月龄秦川牛INSIG1基因和INSIG2基因在肝脏、肺脏、脾脏、瘤胃、心脏、腹脂、肌肉以及小肠8个组织中的相对表达量。结果发现:秦川牛INSIG1基因在肝脏中高度表达,在其他7个组织中表达量很低;秦川牛INSIG2基因在8个组织中均有表达,在肝脏中表达量最高,其次是在肺脏中,在其他6个组织中表达量较少。
     3.秦川牛INSIG1基因多态性及其与生长和胴体性状的关联分析
     利用DNA测序技术和PCR-RFLP技术研究了215头20±2月龄秦川牛INSIG1基因多态性及其与生长和胴体性状的关联分析,发现了INSIG1基因A4366G、T4534C、T5001C和A5235G四个突变位点,遗传多样性分析结果表明四个位点均为中度多态位点;分别研究了各位点与秦川牛生长和胴体性状的相关性,从研究结果可以看出,部分基因型个体在生产性能方面要优于其他基因型个体,在A4366G位点,GG型个体腰角宽和胴体重显著高于AA型个体(P<0.05),而GG型个体宰前活重极显著高于AA型个体(P<0.01),不同基因型之间体高和体长间差异不显著;在T4534C位点,CC型个体体长和腰角宽显著高于TT型个体(P<0.05),而CC型个体和TC型个体在体高方面极显著高于TT型个体(P<0.01),;在T5001C位点,CC型个体体长显著高于TT型个体(P<0.05),在体高、宰前活重、胴体重和腰角宽方面,各基因型之间差异不显著。在A5235G位点,各基因型之间生长和胴体性状无显著差异,总体上来说,AA型个体在各个性状上要优于AG型个体和GG型个体(P>0.05)。
     4.秦川牛INSIG2基因多态性及其与生长和胴体性状的关联分析
     利用DNA测序技术和PCR-SSCP技术研究了215头20±2月龄秦川牛INSIG2基因多态性及其与秦川牛肉质和胴体性状的关联分析,发现了秦川牛INSIG2基因T15570C突变位点,遗传多样性分析结果表明该位点为中度多态位点;关联分析结果显示TT型个体体高显著高于TC型个体(P<0.05),TT型为优势基因型个体,在其他性状上不同基因型与生产性状之间无显著相关(P>0.05)。
     本研究成功克隆获得秦川牛INSIG2基因完整编码区序列并对其进行了生物信息学分析,为进一步研究INSIG2基因在秦川牛生长发育过程中的作用奠定了理论基础。并对INSIG1基因和INSIG2基因在秦川牛不同组织中的表达规律进行了研究,为进一步研究相关性状的表达提供了科学依据。对秦川牛INSIG1基因和INSIG2基因SNP位点进行检测,并对其与生长和胴体性状的相关性进行了研究,部分位点发现了显著相关,为进一步开展秦川牛本品种选育工作提供了理论依据。
There are two members in insulin induced gene family: INSIG1and INSIG2, both ofthem involved in lipogenesis, cholesterol metabolism and the regulation of energy and bodyweight. In this experiment, we take both INSIG1and INSIG2as candidate gene to study thefunction of them in Qinchuan beef cattle. In this study, we collected the liver samples ofQinchuan cattle to clone the INSIG2gene, using bioinformatics methods to predict thestructure and function of this gene. Analyzed the expression pattern in different tissues ofQinchuan cattle by real-time fluorescent quantitative PCR. Used PCR-RFLP, PCR-SSCP andDNA sequencing to detect the SNP of the two genes in Qinchuan cattle and their associationwith the growth and carcass traits. The main results were showed as following:
     1. Cloning and bioinformatics analysis of the INSIG2gene in Qinchuan cattle
     The362bp of INSIG2gene was cloned by RT-PCR, including completely CDS region.We submitted it to GenBank and obtained the accession number of the sequence(JQ951942).The ORF of INSIG2gene including351bp nucleotides, encoding116amino acids. The relativemolecular mass and PI of INSIG2protein are12.8kD and7.73, respectively. The maximum hydrophobicityvalue is2.444and minimum value is-1.533, located at54th,55th and40th amino acids. Three strongtransmembrane helices located at22-39aa,45-65aa and76-97aa. Three phosphorylation sites are located at16th,44th and78th amino acids. No signal peptide domain was found in INSIG2protein.
     2. Expression pattern of the INSIG1and INSIG2genes in Qinchuan cattle
     Expression pattern of INSIG1and INSIG2genes in liver, luang, spleen, stomach, heart,abdominalfat, muscle and intestine of Qinchuan cattle by real-time fluorescent quantitativePCR. The results showed that the expression of INSIG1mRNA was highest in liver and alllower levels in other seven tissues. For INSIG2gene, the expression of liver was the highestand then lungs, the expression of the other6tissues were all lower than the two tissues.
     3. Effects of polymorphisms of INSIG1gene on growth and carcass traits of bovine
     We used the PCR-RFLP and DNA sequencing to detect the SNPs in INSIG1gene of21520±2month age Qinchuan cattle, and the association between the polymorphisms and growthand carcass traits were analyzed. A total of4SNPs were found, they were A4366G, T4534C,T5001C and A5235G, respectively. Genetic diversity results showed all of them were mediumpolymorphism. The associations between the mutation at locus A4366G with the growth andcarcass traits showed that genotype had a significant effect on hip width, slaughter weight and carcass weight(P<0.05). The genotypes at locus T4534C had a significant effect on bodylength, wither height and hip width(P<0.05).. The genotypes at locus T5001C had asignificant effect on hip width(P<0.05).. In addition, there were no significant differencesbetween genotypes at locus A5235G(P>0.05).
     4. Effects of polymorphisms of INSIG2gene on growth and carcass traits of bovine
     PCR-SSCP and DNA sequencing were used to detect the SNPs in INSIG12gene of21520±2month age Qinchuan cattle. A SNP of T15570C was found. Genetic diversity resultsshowed it was medium polymorphism. The association study showed that TT genotype hadsignificant taller body height than TC genotype(P<0.05), there are no significant differencesin other traits(P>0.05).
     In conclusion, we successfully cloned the INSIG2gene of Qinchuan cattle, it is usefulfor the further research on the function of this gene in the growth process of Qinchuan cattle.The expression patterns of INSIG1and INSIG2genes analysis provide a scientific theory onthe expression of relative traits. The purpose of this study is to settle the theory foundationson the native breeding work of Qinchuan beef cattle.
引文
韩瑞华,昝林森,杨大鹏等.2008.秦川牛IGF2基因SNPs检测及其与胴体、肉质性状的相关性.遗传,30(12):1579-1584.
    黄锡霞.2005.超细型细毛羊优化育种规划的研究.[硕士学位论文].北京.中国农业大学
    黄永震,贺花,陈宏.2011.动物转基因技术研究新进展及其在牛育种上的应用.中国牛业科学,37(4):35-40,51.
    贾祥捷,王长法,杨桂文等.2011.中国荷斯坦牛POU1F1基因与PRL基因的多态性及其聚合效应对产奶性状的影响.遗传,33(12):1359-1365.
    蒋洪茂,徐丽君,史利民等.1993.我国秦川牛等四品种屠宰试验报告.黄牛杂志,(2):17-22.
    蒋洪茂.2008.高档(价)牛肉生产技术(上).科学种养,9:34-35.
    鞠志花,李秋玲,王红梅等.2008.中国荷斯坦奶牛κ-酪蛋白基因第四外显子多态性与产奶性状的关联分析.遗传,30(10):1312-1318.
    孔保华,陶菲,刁新平.2002.中国肉牛产业的现状和发展趋势.肉类研究,1:10-13.
    李菜娥,马月辉,叶绍辉.2007.生物信息学在畜禽基因组研究中的应用.中国畜牧兽医,34(2):79-81.
    李玮姿.2011.基于图像处理技术的牛肉大理石纹自动分级研究.[硕士学位论文].南京:南京理工大学.
    李武峰,许尚忠,曹宏鹤等2004三个杂交牛中H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析.畜牧兽医学报.35(3):252-255.
    刘文,翟之歌.1999.加快秦川牛肉用品种的培育.黄牛杂志,25(1):48-49.
    刘卓萌.2007.吉林省牛肉流通体系分析.[硕士学位论文].长春:吉林农业大学.
    马腾壑,许尚忠,王兴平等.2007.奶牛TLR2基因遗传便于与乳房炎体细胞评分的相关研究.畜牧兽医学报,38(4):332-336.
    马妍,贾晋,张毅等.2009.荷斯坦牛GHR基因多态性与产奶性状关联分析.畜牧兽医学报,40(8):1186-1190.
    牛伟萍,刘晶,张金玉等.2011.草原红牛IGF2基因外显子4的遗传多态性及遗传效应分析.吉林农业大学学报,33(3):324-326,331.
    浦宇,王芝祥.2004.蛋白质层析用离子交换和输水作用层析介质的发展概况.生物工程学报,(6):975-982.
    邱怀,王科.1995.秦川牛选育、保种、改良及开发利用工作总结,黄牛杂志,76:17-22.
    邱怀.1993.“秦川牛选育和导入外血效果研究”:十年工作简报.黄牛杂志,19(1):59-62.
    邱怀.1999.秦川牛选育工作的过去、现在和未来.黄牛杂志,25(1):1-6.
    桑国俊.2012.肉牛DNA标记辅助选择育种技术.畜牧兽医杂志,31(01):41-43.
    史明艳,昝林森,李保兰等.2005.牛Myostatin基因单核苷酸多态性分析.中国农学通报,21(6):24-25.
    孙少华,李雪梅,魏学蕊等.2001.牛肌肉生长抑制素(MSTN)基因的检测分型研究.中国农业科技导报,3(6):66-67.
    田璐.2005.MyoD和DGAT1基因对牛胴体性状影响的分析[硕士学位论文].山西太原:山西农业大学。
    王芳霞.2006.“秦川牛胴体评定分割及牛肉质量跟踪追溯技术研究”成果达到国际先进水平.36(10):2022.
    王海俊,张衡,张伋等.2010超重肥胖儿童的脂代谢异常与INSIG2基因的关联研究.中华流行病学杂志,6:650-654.
    王洪程,昝林森,宋付标等.2011.秦川牛微卫星基因位点遗传多样性分析.中国农学通报,27(11):10-14
    王雅琴,康峰.2006生物信息学及其在育种工作中的应用.畜禽业,02:10-11.
    王卓.2008.秦川牛H-FABP、A-FABP和E-FABP基因SNPs及其与部分肉用性状关联分析[硕士学位论文].杨凌:西北农林科技大学.
    吴常信,李宁.2002.分子生物技术在中国动物育种中的应用,中国家禽,24(13):6-9.
    吴昕彦,张庆华,陈竺.2000.单核苷酸多态性研究及应用.中华医学遗传学杂志,17(1):57-59.
    吴艳.2008.肉鸭脂肪性状相关候选基因的克隆、表达及其与生长和脂肪性状的关联分析[博士学位论文].杨凌:西北农林科技大学.
    徐阿娟,刘小林,郭家中等.2010. TNF-α基因多态性及其与奶牛乳房炎的相关性分析.遗传32(9):929-934.
    徐秀容.2004. DGAT1和DGAT2基因多态性与牛部分经济性状相关性的研究[博士学位论文].杨凌:西北农林科技大学.
    昝林森,刘小林,王洪宝.2011.秦川牛肉用选育改良及其产业化开发.畜牧兽医学会养牛学分会2011年学术研讨会论文集.
    昝林森.2008.肉牛、奶牛遗传改良及产业化.中国科技奖励,07:14-15.
    张衡,王海俊,马军等.2009.青少年肥胖及代谢异常与INSIG2基因多态性.中国公共卫生.5:537-540.
    张桐.2001.我国牛肉生产消费与世界的比较.中国食物与营养,2:32-33.
    张沅.2001.家畜育种学.北京:中国农业出版社.
    张争锋,陈宏,李秋玲等.2007.南阳牛IGF2基因第2外显子多态性及其与生长发育相关性研究.畜牧兽医学报,38(1):8-13.
    赵春江,李宁,邓学梅.2003.应用创造性酶切位点法检测单碱基突变.遗传,25(3):327-329
    赵伟,李莉,向太和等.2000.生物信息学初探.安徽农业科学,28(1):116-118.
    A. Benitez paze, S. Cardenas Brito, et al.2010. Bioinformatics in Colombia: state of art and perspectives.Biomedica,30(2):170-177
    Bachl J, Olsson C, Chitkara N, Wabl W.1998. The Igmutator is dependent On the presence,posifionandofitentafion of the large inffon enhancer. ProcNatlAcadSci USA,5:2396-2399.
    Bassas L, Lesniak M A, Serrano J.1988.Developmental regulation of insulin and type I insulin-like growthfactor receptors and absence of type II receptors in chicken embryo tissues.Dabetes,37(5):637-644.
    Bellinge RH, Liberles DA, Iaschi SP, O'brien PA, Tay GK.2005. Myostatin and its implications on animalbreeding: a review.Anim Genet,36(1):1-6.
    Bonzón-Kulichenko E, Schwudke D, Gallardo N, et al.2009. Central leptin regulates total ceramidecontent andsterol regulatory element binding protein-1C proteolytic maturation in ratwhite adiposetissue. Endocrinology,150(1):169–78.
    Brown MS, Goldstein JL.1999. A proteolytic pathway that controls the cholesterol content of membranes,cells, and blood.ProcNatlAcadSci USA,96(20):11041–11048.
    Brym P, Kamiński S, Wójcik E.2005. Nucleotide sequence polymorphism within exon4of the bovineprolactin gene and its associations with milk performance traits. J Appl Genet,46(2):179-185.
    Burg JS, Powell DW, Chai R, Hughes AL, Link AJ, Espenshade PJ.2008. INSIG regulates HMG-CoAreductase by controlling enzyme phosphorylation in fission yeast. Cell Metab,8(6):522–31.
    Byrne P.F. and McMullen M.D.1996. Defining genes for agricultural traits: QTL analysis and thecandidate gene approach. Probe,7:24–27.
    Cargill M, Altshuler D, Ireland J, et al.1999.Characterizati on of sing l enucleotidepolymorphisms incoding regions of human genes.Nat Genet,22:231-238.
    Cervino AC, Li G, Edwards S, Zhu J, Laurie C, Tokiwa G, et al.2005. Integrating QTL and high-densitySNP analyses inmice to identify INSIG2as a susceptibility gene for plasma cholesterol levels.Genomics,86(5):505–17.
    Chin S, RamirezS, Greenbaum L E, Naji A, and Taub, R.1995. Blunting of the immediate-early andmitogenic response in hepatectomized type1diabetic animals. Am. J. Physiol.269:E691–E700.
    Commerford SR, Peng L, Dubé JJ, O’Doherty RM.2004. In vivo regulation of SREBP-1c inskeletalmuscle: effects of nutritional status, glucose, insulin, and leptin. Am J PhysiolRegulIntegrComp Physiol,287(1): R218–27.
    DeChiara TM, Robertson EJ, Efstratiadis A.1991. Parental imprinting of the mouse insulin-like growthfactorⅡgene. Cell,64:849849.
    Dong X Y, S Q Tang, et al.2010. Insulin-induced gene: A new regulator in lipid metabolism. Peptides,31:2145-2150.
    Dybus A, Grzesiak W.2006. GHRH/HaeⅢ gene polymorphism and its associations with milk productiontraits in Polish Black-and-White cattle. Arch TierzDummerstorf,49:434-438.
    E M Smith, Y Zhang, et al.2010. INSIG1influences obesity-related hypertriglyceridemia in humans. J.Lipid Res,51:701-708.
    Engelking LJ, Kuriyama H, Hammer RE, Horton JD, Brown MS, Goldstein JL, et al.2004. Overexpressionof INSIG-1in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulatedlipogenesis. J Clin Invest,113(8):1168–75.
    Espenshade PJ, Hughes AL, et al.2007. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet,41:401–27.
    Fang H., J. Xu, D. Ding, et al.2010. An FDA bioinformatics tool for microbial genomics research onmolecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinformatics,11Suppl6: S4.
    Feramisco JD, Goldstein JL, Brown MS.2004. Membrane topology of human INSIG-1, a protein regulatorof lipid synthesis. J BiolChem,279(9):8487–96
    Fernández-Alvarez A, Alvarez MS, Cucarella C, Casado M.2010. Characterization ofthe human insulininduced gene2(INSIG2) promoter: the role of ETS-binding motifs. J BiolChem,285(16):11765–74.
    Florini JR, Ewton DZ, Falen SL, Van Wyk JJ.1986. Biphasic concentration dependeney of stimulation ofmyoblast differentiation by somatomedins. Am J Physiol,250(5): C771C778.
    Florini JR, Magri KA, Ewton DZ, James PL, Grindstaff K, Rotwein PS.1991.“Spontaneous”differentiation of skeletal myoblast is dependent upon autocrine secretion of insulin-like growthfactor-Ⅱ. J BiolChem,266(24):1591715923.
    Flury I, Garza R, Shearer A, Rosen J, Cronin S, Hampton RY.2005. INSIG: a broadly conservedtransmembrane chaperone for sterol-sensing domain proteins. EMBO J,24(22):3917-26.
    Foufelle F, Ferré P, et al.2002. New perspectives in the regulation of hepatic glycolytic andlipogenic genesby insulin and glucose: a role for the transcription factor sterolregulatory element binding protein1c.Biochem J,366:377–91.
    Fuchs R.2002. From sequence to biology: the impact on bioinformatics.Bioinformatics,18:505-506.
    Gasteiger E, Gattiker A, Hoogland C, et al.2003. ExPASY: the proteomics server for in-depth proteinknowledge and analysis. Nucleic Acids Res,31(13):3784-3788.
    Gerbens F, van Erp AJ, Harders FL, et al.1999. Effect of genetic variants of the heart fatty acid bindingprotein gene on intramuscular fat and performance traits in pig.J AnimSci,77:846-852.
    Girbau M, Comez J A, et al.1987. Insulin-like and IGF-1both stimulate metabolism and growth in theposmeurula chick embryo.Endocrinol,121:1477-1482.
    Goldstein JL, Brown MS, et al.1990. Regulation of the mevalonate pathway. Nature,343:425–430.
    Goldstein JL, DeBose-Boyd RA, Brown MS.2006. Protein sensors for membrane sterols. Cell,124(1):35–46
    Goldstein JL, Rawson RB, BrownMS, et al.2002. Mutantmammalian cells as tools to delineate the sterolregulatory element-binding pathway for feedback regulation of lipid synthesis. Arch BiochemBiophys,397:139–48.
    Gong Y, Lee JN, BrownMS, Goldstein JL, Ye J.2006a.Juxtamembranous aspartic acid in INSIG-1andINSIG-2is required for cholesterol homeostasis. ProcNatlAcadSci USA,103(16):6154–9.
    Gong Y, Lee JN, Lee PC, Goldstein JL, Brown MS, Ye J.2006b. Sterol-regulated ubiquitination anddegradation of INSIG-1creates a convergentmechanismfor feedback control of cholesterol synthesisand uptake. Cell Metab,3(1):15–24.
    Gong Y.2002. Eleven single nucleotide polymorphisms (SNPs) at hypervariable locus on pig chromosome6. Animal Genetics,33:80-81.
    Grobet L, Martin L J, Poncelet D, et al.1997. A deletion in the bovine myostatin gene causes thedouble-muscled phenotype in cattle. Nat Genet,17:71-74.
    Hall D H, T Rahman, P J Avery, et al.2006.INSIG2promoter polymorphism and obesity relatedphenotypes: association study in1428members of248families. BMC medical Genetics,7(83).
    Lyon H N, V Emilsson, AHinney, et al.2007.The association of a SNP Upstream of INSIG2with BodyMass Index is Reproduced in Several but Not All Cohorts. Plos Genetics,4(3):627-633.
    Haber B A., NajiL, Cressman DE, and Taub R.1995.Coexpression of liver-specific and growth-inducedgenes in perinatal and regenerating liver: Attainment and maintenance of the differentiated stateduring rapid proliferation. Hepatology,22:906–914.
    Han LQ, Li HJ, Wang YY, Zhu HS, Wang LF, Guo YJ, et al.2010. mRNA abundance and expression ofSLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1gene isoforms in mouse mammary glandsduring the lactation cycle. Genet Mol Res,9(2):1250–7
    Hellard S Le, Theisen F M, Haberhausen M, et al.2009. Association between the insulin-induced gene2(INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients:perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects. MolecularPsychiatry,14:308-317.
    Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al.2006. A common genetic variant isassociated with adult and childhood obesity. Science,312(5771):279-83.
    Horton JD, Goldstein JL, Brown MS.2002. SREBPS: activators of the completeprogram of cholesterol andfatty acid synthesis in the liver. J Clin Invest,109(9):1125–1131.
    Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al.2003.Combined analysisof oligonucleotide microarray data from transgenic andknockout mice identifies direct SREBP targetgenes.ProcNatlAcadSci USA,100:12027–32.
    Huang W, Hines H, Davis M, et al.2005. Association of single nucleotide polymorphisms in bovinesomatostatin and somatostatinRecetor2genes with growth traits in divergent IGF-1selection lines ofcattle. J AnimSci,(1):13.
    Hubbert ML, Zhang Y, Lee FY, Edwards PA.2007. Regulation of hepatic INSIG-2by the farnesoid Xreceptor. MolEndocrinol,21(6):1359–69.
    Ikeda Y, Demartino GN, Brown MS, Lee JN, Goldstein JL, Ye J.2009. Regulated endoplasmicreticulum-associated degradation of a polytopic protein: p97recruits proteasomes to INSIG-1beforeextraction frommembranes. J BiolChem,284(50):34889–900.
    Iritani N, Fukuda H, andMatsumaraY.1993.Lipogenic enzyme gene expression in rat liver duringdevelopment after birth.J.Biochem,113:519-525.
    Janowski B A.2002. The hypocholesterolemic agent LY295427up-regulates INSIG-1, identifying theINSIG-1protein as a mediator of cholesterol homeostasis through SREBP. ProcNatlAcadSci USA,99(20):12675–80.
    Jedrzejczak M, Szatkowska I, Zych S, et al.2006. Evaluation of associations of the polymorphism in theplacenta specific promoter1.1of the CYP19gene in Black-and-White and Jersey cattle with milkproduction traits.Arch TierzDummerstorf,49:311-314.
    Ka SO, Kim.KA, Kwon KB, Park JW, Park BH.2009.Silibinin attenuates adipogenesis in3T3-L1preadipocytes through a potential upregulation of the INSIG pathway. Int J Mol Med,23(5):633–7.
    Kakuma T, Lee Y, Higa M, Wang Z, Pan W, Shimomura I, Unger RH.2000. Leptin, troglitazone, and theexpression of sterol regulatory element binding proteins in liver and pancreaticislets.ProcNatlAcadSci U S A,97(15):8536–41.
    Kambadur R, Bishop A, Aalerno M S, et al.2004. Role of myostatin in muscle growth.Muscledevelopment of livestock animals: physiology, genetics and meat quality.297-316.
    Kast-Woelbern HR, Dana SL, Cesario RM, Sun L, de Grandpre LY, Brooks ME, et al.2004. Rosiglitazoneinduction of INSIG-1in white adipose tissue reveals a novel interplay of peroxisomeproliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulationof adipogenesis. J BiolChem,279(23):23908–15.
    Keeton AB, Bortoff KD, Franklin JL, Messina JL.2005. Blockade of rapid versus pro-longedextracellularly regulated kinase1/2activation has differential effects on insulin-induced geneexpression. Endocrinology,146(6):2716–25.
    Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang Y M and Rosa G J M.2007.The Association of BovinePPARGC1A and OPN Genes with Milk Composition in Two Independent Holstein Cattle Populations.J Dairy Sci,90(06):2966-2970.
    Knoll A, Putnova L, Dvorak J, et al.2000.ANciI PCR-RFLP within intron2of the porcine insulin-likegrowth factor2(IGF2) gene. Anim Genet,31:150-151.
    KocamisH, keller K, Klandorf H, et al.1998.In Ovo administration of recombinant human insulin-likegrowth factor-1alters postnatal growth and development of the broiler chicken. Poultry Sci,77:1913-1919.
    Konfortov B L.1999. Re-sequencing of DNA from a diverse panel of cattle reveals a high level ofpolymorphism in both intron and exon. Mammalian Genome,10:1142-1145.[136]
    Kovacs WJ, Tape KN, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, et al.2009. Peroxisomedeficiency causes a complex phenotype because of hepatic SREBP/INSIGdysregulationassociatedwithendoplasmic reticulumstress.J BiolChem,284(11):7232–45.
    Krapivner S, Chernogubova E, Ericsson M, Ahlbeck-Glader C, Hamsten A, van’tHooft FM, et al..2007.Human evidence for the involvement of insulin-induced gene1in the regulation of plasma glucoseconcentration. Diabetologia,50(1):94–102.
    Krapivner S, Popov S, Chernogubova E, HelléniusML, Fisher RM, Hamsten A, etal.2008. Insulin-inducedgene2involvement in human adipocyte metabolism and body weight regulation. JClinEndocrinolMetab,93(5):1995–2001.
    Lai X S, Lan X Y, Chen H, et al.2009. A novel SNP of the Hesx1gene in bovine and its association withaverage daily gain.Mol Bio Rep,36(07):1677-1681.
    Landegren U, Nillson M, Kwok P. Reading bits of genetic information: methods for single-nucleotidepolymorphism analysis. Genome Research,1998,8:769-776.
    Lee JN, Gong Y, Zhang X, Ye J.2006a. Proteasomal degradation of ubiquitinatedINSIG proteins isdetermined by serine residues flanking ubiquitinatedlysines. ProcNatlAcadSci USA,103(13):4958–63.
    Lee JN, Song B, DeBose-Boyd RA, Ye J.2006b. Sterol-regulated degradation of INSIG-1mediated by themembranebound ubiquitin ligase gp78. J BiolChem,281(51):39308–15.
    Lee JN, Ye J.2004.Proteolytic activation of sterol regulatory element-binding protein induced by cellularstress through depletion of INSIG-1. J BiolChem,279(43):45257–65.
    Lee JN, Zhang X, Feramisco JD, Gong Y, Ye J.2008. Unsaturated fatty acids inhibit proteasomaldegradation of INSIG-1at a postubiquitination step. J BiolChem,283(48):33772–83.
    Lee S, Lee DK, Choi E, Lee JW.2005. Identification of a functional vitamin D responseelement in themurine INSIG-2promoter and its potential role in the differentiation of3T3-L1preadipocytes.MolEndocrinol,19(2):399-408.
    Li J, Takaishi K, CookW,McCorkle SK, Unger RH.2003. INSIG-1brakes lipogenesis in adipocytes andinhibits differentiation of preadipocytes. ProcNatlAcadSci USA,100(16):9476–81.
    Li J, Yu X, PanW, Unger RH.2002. Gene expression profile of rat adipose tissue at the onset ofhigh-fat-diet obesity. Am J Physiol,282: E1334-41
    Li N, Zhao YF, Xiao L, Zhang FJ, Chen YZ et al.1998. Candidate gene approach for identification ofgenetic loci controlling litter size in swine. Proceedings of the6th World Congress on GeneticsApplied to Livestock Production,26:183-190.
    Liu G L, Jiang S W, Xiong Y Z, et al.2003. Association of PCR-RFLP polymorphisms of IGF2gene withfat deposit related traits in pig resource family. Yi ChuanXueBao,30:1107-1112.
    Liu GL, Jiang SW, Xiong YZ, Qu YC.2002.The character of heredity and biological function ofinsulin-like growth factor2.Hereditas(Beijing),24(2):211-213.
    Liu Y X, Zhou X and Li D Q, et al.2010.Association of ATP1A1gene polymorphism with heat tolerancetraits in dairy cattle.Genet. Mol. Res,9(2):891-896.
    Livak K J and Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitativePCR and2-ΔΔCtmethod. Methods,25:402-408.
    Ma KL, Varghese Z, Ku Y, Powis SH, Chen Y, Moorhead JF, et al.2010.Sirolimusinhibits endogenouscholesterol synthesis induced by inflammatory stress in human vascular smooth muscle cells. Am JPhysiol Heart CircPhysiol,298(6): H1646–51.
    Mathews L S, Hammer R L, Bchringer R R, et al.1988.Growth enhancement of transgenic miceexpressinghuman insulin-like growth factor-I. Endocrinology,123(6):2827-2833.
    Matsuda M, Korn BS, Hammer RE, Moon YA, Komuro R, Horton JD, et al.2001. SREBP cleavageactivating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesteroldeprivation and insulin elevation. Genes Dev,15:1206–1216.
    N.Nwankwo, H. Seker, et al.2010.A signal processing based bioinformatics approach to assessing drugresistance: human immunodeficiency virus as a case study. ConfProc IEEE Eng Med Biol Soc,1836-1839.
    Neibergs H L, Settles M L, Whitlock R H and Taylor J F.2010. GSEA-SNP Identifies genes associatedwith Johne’s disease in cattle. Biomedical and Life Sci,21(7):419-425.
    Nobuyoshi M, Lin XH, Takimoto Y, Deual TF and Wang ZY.1997.Transcription regulation of thePDGFA-chain gene by first intron elements. BiochemBioPHys Res Commtm,3:569-572.
    Nogalska A, Sucajtys-Szulc E, Swierczynski J.2005.Leptindecreaseslipogenic enzyme gene expressionthrough modification of SREBP-1c gene expression in white adipose tissue of aging rats.Metabolism,54(8):1041–7.
    Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ.2000. Regulated step in cholesterolfeedback localized to budding of SCAP from ER membranes. Cell,102:315–323.
    Ockner R K, Manning J A, Poppenhausen R B, et al.1972. A binding protein for fatty acid in cytosol ofintestinal mucosa, liver, myocardium and other tissues. Science,177(43):576-578.
    Orlando C, Pinzani P, Pazzagli M, et al.1998.Developments in quantitative PCR. Clinical Chemistry andLaboratory Medicine,36:255-269.
    Pablo F, Henri L R, Trinidad C, et al.1991.Insulin-like growth factor-1and insulin as growth anddifferentiation factors in chicken embryogenesis. Poultry Sci,70:1790-1796.
    Page B T, Casas E, HeatonM P, et al.2002.Evaluation of single nucleotide polymorphisms in CAPN1forassociation with meat tenderness in cattle. J A nimSci,80:3077-3085
    Parra G, Agarwal P, Abril JF, et al.2003. Comparative gene prediction in human and mouse. Genome Res,13:108-117.
    Peng Y, Schwarz EJ, Lazar MA, Genin A, Spinner NB, Taub R.1997. Cloning, humanchromosomalassignment, and adipose and hepatic expression of the CL-6/INSIG1gene. Genomics,43(3):278–84.
    Qin X, Xie X, Fan Y, Tian J, Guan Y, Wang X, et al.2008. Peroxisome proliferator-activated receptor-deltainduces insulin-induced gene-1and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology,48(2):432–41
    Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL.2007. Sterol-regulated transport ofSREBPS from endoplasmic reticulum to Golgi: oxysterols block transport by binding to INSIG.ProcNatlAcadSci USA,104(16):6511–8.
    Roth A, Looser R, KaufmannM, Bl ttler SM, Rencurel F, HuangW, et al.2008. Regulatory cross-talkbetween drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane Xreceptor increase INSIG-1expression. MolPharmacol,73(4):1282–9.
    Roy R, Ordovas L and Zaragoza P, et al.2006.Association of polymorphisms in the bovine FASN genewith milk-fat content.Animal Genetics,37(03):215-218.
    Sailer M, Beekmann JS.1990. Molecular Mapping of quantitative genes. The second meeting of AppliedGenetics to Animal Production,93-96.
    Sakai J, Duncan EA, Rawson RB,Hua X, BrownMS, Goldstein JL,et al.1996. Sterol-regulatedrelease ofSREBP-2fromcellmembranes requires two sequential cleavages, onewithin a transmembrane segment.Cell,85(7):1037–1046.
    Schenkel F S, Miller S P, Jiang Z, et al.2006. Association of a single nucleot ide polymorphism in thecalpastatingene with carcass and meat quality traits of beef cattle. J AnimSci,84:291-299.
    Sever N, Song BL, Yabe D, Goldstein JL, Brown MS, DeBose-Boyd RA.2003a.INSIG-dependentubiquitination and degradation of mammalian3-hydroxy-3-methylglutaryl-CoA reductase stimulatedby sterols and geranylgeraniol. J BiolChem,278(52):52479–90.
    SeverN, Yang T, BrownMS,Goldstein JL,DeBose-Boyd RA.2003b.Accelerated degradation of HMG CoAreductasemediated by binding of INSIG-1to its sterol-sensing domain. Mol Cell,11(1):25–33.
    Sewter C, Berger D, ConsidineRV,Medina G, Rochford J, Ciaraldi T, et al.2002. Human obesity and type2diabetes are associated with alterations in SREBP1isoform expression that are reproduced ex vivo bytumor necrosis factor-alpha. Diabetes,51(4):1035–41.
    Shimoda N, Tashiro T, Yamamori H, et al.1997. Effects of growth horm one and insulin-like growthfactor-1on protein metabolism, gut morphology and cell-mediated immunity in burned rats. Nutrition,13(6):540-546.
    Sun LP, Li L, Goldstein JL, Brown MS,et al.2005.INSIG required for sterol-mediated inhibition ofSCAP/SREBP binding to COPII proteins in vitro. J BiolChem,280(28):26483–90
    Sun LP, Seemann J, Goldstein J L,BrownMS,et al.2007. Sterol-regulatedtransport of SREBPS fromendoplasmic reticulumto Golgi: INSIG renders sorting signal in SCAP inaccessible to COPII proteins.ProcNatlAcadSciUSA,104(16):6519–26.
    Szopa M. Meirhaeghe A, Luan J,Moreno LA, Gonzalez-GrossM, Vidal-Puig A, etal.2010. No associationbetween polymorphisms in the INSIG1gene and the risk oftype2diabetes and related traits. Am JClinNutr,92(1):252-7.
    Taylor R C.2010. An overview of the Hadoop/MapReduce/HBase framework and its current applicati onsin bioinformatics. BMC bioinformatics.11Suppl12: S1.
    Tan T. W., J.C. Tong, A M Khan, et al.2010. Advancing standards for bioinformatics activities: persistence,reproducibility, disambiguation and Minimum Information About a Bioinformaticsinvestigation(MIABi). BMC Genomics,11Suppl4: S27.
    The International SNP Map Working Group.2001.A map of human genome sequence variation containing1.42million single nucleotide polymorphisms. Nature,409:928-933.
    The U. S. Human Genome Project: The First Five Years FY1991-1995, by NIH and DOE.
    Tiwari AK, ZaiCC,Meltzer HY, Lieberman JA,Müller DJ, Kennedy JL.2010. Association study ofpolymorphisms in Insulin InducedGene2(INSIG2)with antipsychotic-induced weight gain inEuropean and African-Americans chizophreniapatients. HumPsychopharmacol,25(3):253-9.
    Tobe K, Suzuki R, Aoyama M, Yamauchi T, Kamon J, Kubota N, et al.2001. Increased expression of thesterol regulatory element-binding protein-1gene in insulin receptor substrate-2/mouse liver. JBiolChem,276(42):38337–38340.
    V. Niranjan, R. Seenivasagam, G. Sivakumar.2010. A systematic bioinformatics approach for selection oftarget and screening of ligand for malignant tumours suppressing APG4A gene on Xq22.1. Int JCompitBiol Drug Des,3(4):271-286.
    Vaiman D, Mercier D, Moazami-Goudarzi K, et al.1994.A set of99cattle microsatellites characterizationsynteny mapping and polymorphism. Mammalian genome,5(5):288-297.
    Vallett SM, Sanchez HB, Rosenfeld JM, Osborne TF, et al.1996. A direct role for sterolregulatory elementbinding protein in activation of3-hydroxy-3-methylglutarylcoenzyme Areductase gene. J BiolChem,271:12247–12253.
    Venter JC, Mark D, Adam S, et al.2001.The sequence of the Human Genome.Science,291:1304-1351.
    Verschool C P, Pant S D, Schenkel F S, et al.2009. SNPs in the bovine IL-10receptor are associated withsomatic cell score in Canadian dairy bulls. Biomedical and Life Sci,20(&):447-454.
    Wang X P, S Z Xu, X Gao, et al.2007. Genetic Polymorphism of TLR4Gene and Correlation withMastitis in Cattle. J Genetics and Genomics,34(5):406-412.
    Weikard R, Kühn C and Goldammer T, et al.2005. The bovine PPARGC1A gene: molecularcharacterization and association of an SNP with variation of milk fat synthesis. PhysiologicalGenomics,21(01):1-13.
    White S N, Casas E, W heeler T L, et al.2005. A new single nucleot ide polymorphism in CAPN1extendsthe current tenderness marker test to include cattle of Bosindicus, Bostaurus, and crossbred descent. JAnimSci,83:2001-2008.
    Xie YH, Mo ZH, Chen K, Yang YB, Xing XW, Liao EY.2008. Effect of different glucose concentrations onthe expressions of INSIG-1and INSIG-2mRNA during the differentiation of3T3-L1cells. Zhong NanDa XueXueBao Yi Xue Ban,33(3):238-44.
    Yabe D, Brown MS, Goldstein JL, et al.2002. INSIG-2, a second endoplasmic reticulum protein that bindsSCAP and blocks export of sterol regulatory element-bindingproteins. ProcNatlAcadSci USA,99(20):12753–12758.
    Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS.2003. Liver-specific mRNA for INSIG-2down-regulated by insulin: implications for fatty acid synthesis. ProcNatlAcadSci USA,100(6):3155–60.
    Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al.2002Crucial step in cholesterolhomeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitatesretention of SREBPS in ER. Cell,110(4):489–500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700