混合动力汽车机电复合制动制动力分配与稳定性控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电机回馈制动能量回收技术作为混合动力汽车提高燃油能量利用率的一种手段被广泛采用。这是因为在制动的过程中,电动机作为发电机来使用,车辆行驶的部分动能被转化为电能存储到电池中,这部分能量又可以重新作为驱动能量使用从而提高了燃油能量利用率。
     与传统汽车制动减速过程不同的是,混合动力汽车由于电机施加回馈制动力矩于动力传动系统中,其机电复合制动系统就施加了两种不同的制动力矩:一种是由电机系统提供的电机回馈制动力矩;另一种是由液压制动系统提供的液压制动力矩。因此,传统汽车的制动理论在混合动力汽车机电复合制动系统中的应用就需要进行新的研究与分析。
     通过依托我国混合动力轿车产业化研究课题,按照系统开发的一般流程,本文针对混合动力汽车机电复合制动系统的制动力分配与稳定性控制策略进行了如下的研究。
     第一,建立了混合动力汽车机电复合制动系统的整车动力学模型。该模型的建立主要是为了满足理论研究与系统分析的需要,其主要包括车辆动力学、轮胎、液压系统、电机系统和电池系统等模型。作为制动系统控制策略开发的重要组成部分,该模型直接关系到制动系统控制器的开发效率和精度。建模过程采用了实验建模与理论建模相结合的方法,其中对轮胎、液压系统和电机系统模型进行了较为深入地研究。为获取必要的模型计算参数,设计了试验方案并进行了相应的试验。
     第二,对混合动力汽车机电复合制动制动力分配策略进行了研究。由于车辆前、后轴的制动力分配显著影响着车辆的制动稳定性和安全性,因此,在对混合动力汽车机电复合制动系统进行动力学分析与建模的基础上,从液压制动系统的前、后轴制动器制动力分配关系入手,提出并建立了机电复合制动的制动力分配系数控制方程并设计了制动力分配曲线。对液压制动的利用附着系数以及制动效率等制动特性进行了分析。最后,制定了机电复合制动的制动力分配策略,并对其进行了仿真试验,试验结果表明该策略是可行且有效的。
     第三,进行了混合动力汽车机电复合制动稳定性控制策略的研究。首先,对影响电机回馈制动力矩输出的电机发电特性、电池安全保证以及充电特性等多方面因素进行了分析。通过对这些影响因素的分析,在制动力分配控制策略基础之上,制定了电机回馈制动与液压制动的机电复合协同防抱死制动稳定性控制策略。在控制方法上,提出了防抱死制动前电机介入延续回馈制动控制的方法,并对液压制动系统的滞后与电机回馈制动如何协同控制的方法进行了论述。基于前馈补偿和模糊控制方法,以车辆横摆角速度和质心侧偏角为反馈输入变量,进行了混合动力汽车侧向制动稳定性控制的研究。相关仿真试验结果表明制动稳定性控制策略是可行且有效的。
     第四,对制动控制系统进行了实车道路试验。首先,设计了制动控制软、硬件系统。最后,通过进行相关制动试验,对控制策略进行了进一步的分析。实车制动试验结果表明,电机回馈制动和液压制动之间能够协同工作,车辆制动安全性与稳定性良好,部分制动能量被回馈储存,控制策略与方法有效。
     作为混合动力汽车控制核心技术之一,本文的研究对于开发具有我国自主知识产权的混合动力汽车,加快其产业化步伐具有重要意义。
Regeneration during braking is an important technique for hybridelectric vehicles to improve their fuel economy and extend their drivingrange. During braking course, the electric motor acts as generator, theregenerative kinetic energy of vehicle stores in battery as electrical energyfor future use. Energy regeneration is a wide used technique for enhancethe fuel economy.
     Different from the traditional vehicle, electric motor adds theregenerative braking torque to the power line during deceleration.Therefore, hybrid electric vehicle has two different braking torques, oneis regenerative braking torque which is offered by electric motor; theother is hydraulic braking torque which is provided by hydraulic brakingsystem. Based on conventional passenger vehicle’s braking theory, thebraking theory of hybrid electric vehicle’s electro-mechanical hybridbraking system should to be added new researched and analyzed content.
     Based on the financially supported national project of HEVindustrialization, the electro-mechanical hybrid braking force distributionand stability control strategies were researched according to the R&Dflow of system, as following.
     First, considering the needs of theory research and system analysis, adynamic model for HEV electro-mechanical hybrid braking system hasbeen built up as one important part of design of braking system controlstrategy, it has strong influence on the efficiency and effectiveness ofdeveloped controller. The vehicle system dynamic model main consists ofvehicle dynamic model, tire model, hydraulic system model, electricmotor model, battery model. The modeling course using theoreticalmodeling approach combined with empirical modeling. This dissertationmake a deep insight into the tire model, hydraulic system model andmotor model in order to get the needed model calculation parameters,design the experiments schedule and make the related experiments.
     Second, HEV electro-mechanical hybrid braking force distribution control strategies were researched. Because the braking force distributionto the front and rear axles has great influence on the braking stability andsafety, based on the research of HEV electro-mechanical hybrid brakingstability control system and hydraulic braking force distribution to thefront and rear axles, the control equation of braking force distributioncoefficient was built and its braking force distribution curves were alsodescribed. Meanwhile, available adhesion coefficient, braking efficiencyand other braking characteristics of HEV hydraulic braking wereanalyzed. And, the electro-mechanical braking force distribution controlstrategies were presented. The braking force distribution simulationresults show that the control strategies are feasible and effective.
     Third, HEV electro-mechanical hybrid braking stability controlstrategies were researched. Many influential factors to regenerativebraking torque, such as motor characters of generating electricity, batterysafty and its charging characters were analyzed. Based on analysis of theinfluential factors to regenerative braking torque, the electro-mechanicalhybrid antilock braking control strategies were researched, which werethe extension of electro-mechanical hybrid braking force distributioncontrol strategies. The idea that motor intervention control was springedbefore antilock braking is triggered was presented. Meanwhile, the motorregenerative braking control method which aims at offseting the hydraulicbraking hysteresis was presented. Based on feed forward compensationand fuzzy logic control, using yaw rate and slid slip angle as the statefeedback, the lateral braking stability were presented. Simulation resultsshow that the braking stability control strategies are feasible andeffective.
     Lastly, real vehicle test for braking control system was executed.Through the software and hardware design of real vehicle braking controlsystem and real vehicle test, the control strategies were analyzed. Theresults from experiment show that harmonious coordination betweenregenerative and hydraulic braking function, braking safty and stability ofthe vehicle is good, a amount of braking energy can be recovered and theproposed control strategy and method are effective.
     As one of the key techniques, braking control strategies play theimportant roles in the development of HEV with domestic independentintellectual property, and it is significant to propel the industrialization ofHEV.
引文
[1] William F.Powers and Paul R.Nicastri. Automotive vehicle control challenges in the21stcentury. Control Engineering Practice,2000(8):605-618.
    [2] Daniel K.Ward and Harold L.Fields. A vision of the future of automotive electronics. SAETechnical Paper2000-01-1358.
    [3] Sanket Amberkar and Joseph G.D. A system-safety process for by-wire automotive systems.SAE Technical Paper2000-01-1056.
    [4] Uwe Kiencke and Lars Nielsen. Automotive control system. Berlin: Springer-Verlag BerlinHeidelberg New York,2000.
    [5]余志生.汽车理论.北京:机械工业出版社,1989.
    [6] ABS株式会社著.李朝禄、刘荣华译.汽车制动防抱装置(ABS)构造与原理.北京:机械工业出版社,1995.
    [7]何宇平,伦景光.国外轿车制动法规的评述.北京:汽车工程,1994,16(3):182-191.
    [8] Takeshi Naito and Hiroaki Takeuchi. Development of four solenoid ABS. SAE TechnicalPaper960958.
    [9]刘彩志,陈思忠.直接横摆力矩控制汽车的操纵稳定性研究.湖北汽车工业学院学报,Vol.16No.2June2002.
    [10]管西强,屈求真,张建武,刘延庆.四轮转向汽车的模型跟踪便结构控制,机械工程学报, Vol.38No.3Mar.2002.
    [11] Aleksander Hac and Mark O. Bodie, Improvements in Vehicle Handling Through IntegratedControl of Chassis System, Int. J. of Vehicle Design, Vol.29, Nos.1/2,2002.
    [12] YOSHIMI FURUKAWA and MASATO ABE. Advanced chassis control systems for vehiclehandling and active safety. Vehicle System Dynamics,1997(28):59-86.
    [13] Youssef A. Ghoneim, William C. Lin, David M. Sidlosky Hsien H. Chen, Yuen-KwokChinand Michael J. Tedrake, Integrated chassis control system to enhance vehicle stability,Int. J.Vehicle Design, Vol.23, Nos.1/2,2000.
    [14]王勇,等.电动车及其应用技术,电机技术,1997年1月,1997(1),47~49.
    [15]陈清泉,电动汽车-清洁有效的城市交通工具,电工技术杂志,1999年2月,1997(2),5-8.
    [16]王慧君,电动汽车的开发与普及,山东交通科技,1998年1月,1998(1),28-29.
    [17]徐江林,电动汽车与代用燃料的开发和应用前景,汽车研究与开发,1995年4月,1995(4),45-49.
    [18]刘权彬,电动汽车发展的背景及面临的关键问题,电机技术,1998年4月,1998(4),35-37.
    [19]詹宜巨,陈清泉,电动车技术发展及前景展望,电气传动,1997年5月,1997(5),40-44.
    [20]王军,等,国内外混合动力电动汽车开发动态及发展趋势,公路交通科技,,2000年1月,17(1),71-74.
    [21]李槟,陈全世,开展混合动力汽车的研究刻不容缓,汽车技术,1997年5月,1997(5),59-63.
    [22] Niels J. Schouten, Mutasim A.Salman, Naim A.Kheir. Energy management strategies forparallel hybrid vehicles using fuzzy logic. Control Engineering Practice,2003, Vol.11:171-177.
    [23] K.T.Chau, Y.S.Wong. Overview of power management in hybrid electric vehicle. EnergyConversion and Management,2002, Vol.43:1953-1968.
    [24] Nissan Motor Co.,Ltd. Development of high-performance hybrid electric vehicle “Tinohybrid”. The16th International Electric Vehicle Symposium and Exposition. Beijing, China,1999.
    [25]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势.公路交通科技.2002,Vol.17(1):11-14.
    [26]陈汉明,梁志锋.混合动力汽车的研究与发展.机电工程技术,2001年第30卷第5期.
    [27]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势.重庆大学学报,2001, Vol.24(6):28-31.
    [28] Koichi Fukuo, Akira Fujimura, Masaaki Saito, Kazuhiko Tsunoda, Shiro Takiguchi.Development of the ultra-low-fuel-consumption hybrid car-INSIGHT. JSAE Review,2001,Vol.22:95-103.
    [29] TOYOTA Motor Corporation. Development of electric motors for the Toyota hybridvehicle“PRIUS”. The16th International Electric Vehicle Symposium and Exposition.Beijing, China,1999.
    [30] Motomu Hakiai, Toshio Taichi, Masahiko Shoda, Takashi Koizumi, Tadashi Ashikaga,Hiroshi Shimizu. Brake system of “Eco-Vehicle”. The14th International Electric VehicleSymposium and Exposition, Orlando, USA,1997.
    [31] S. R. Cikanek, K. E. Bailey. Electric vehicle braking systems. The14th International ElectricVehicle Symposium and Exposition, Orlando, USA,1997.
    [32] Masami Ogura, Yasushi Aoki. The HONDA EV PLUS regenerative braking system. The14th International Electric Vehicle Symposium and Exposition, Orlando, USA,1997.
    [33]陆刚.汽车制动控制新技术及其未来.电子技术,2005/5:43-47.
    [34]孟嗣宗,崔艳萍.现代汽车防抱死制动系统和驱动系统.北京:北京理工大学出版社,1997年.
    [35]司利增.汽车防滑控制系统-ABS与ASR.北京:人民交通出版社,1997年.
    [36]宋传学,周云山等.防抱制动系统控制算法的仿真研究.汽车工程,1998, Vol.20(1):24-29.
    [37]李衽,石晓明.汽车电子防抱制动系统仿真的研究.汽车工程,1996, Vol.18(5):290-296.
    [38]程军.防抱制动系统防抱逻辑的研究.汽车工程,1995, Vol.17(1):1-11.
    [39]王志煌. MK20I汽车防抱死制动系统.汽车研究与开发,1998, No.3:28-33.
    [40]鹿笑冬,童毅,欧阳明高.汽车动力系统的滑模控制.汽车工程,2001, Vol.23(5):344-348.
    [41]余卓平,管迪华.汽车防抱制动过程仿真计算模型及其参数的系统辨识.汽车工程,1997, Vol.19(3):129-133.
    [42]程军.车辆动力学控制的模拟.汽车工程,1999, Vol.21(4):1999-205.
    [43] A.B.Will, S. Hui, S.H. Zak. Sliding mode wheel slip controller for an anti-lock brakingsystem. Int. J. Vehicle Design,1998, Vol.19(4):523-539.
    [44] Taketoshi Kawabe, Masao Nakazawa, Ikuro Notsu. A sliding mode controller for wheel slipratio system. Vehicle System Dynamics,1997, Vol.27:393-408.
    [45] George F. Mauer. A fuzzy logic controller for ABS braking system. IEEE Transaction onFuzzy Systems,1995, Vol.3(4):381-388.
    [46] Jeffery R. Layne, Stephen Yurkovich. Fuzzy learning control for anti-skid braking systems.Proceedings of the31st Conference on Decision and Control, Tucson, Arizons, USA,1992.
    [47] Christian Sobottka, Tarunraj Singh. Optimal fuzzy logic control for anti-lock braking system.Proceedings of the1996IEEE International Conference on Control Applications, Dearborn,USA,1996.
    [48] Chen Fu-Wei, Liao The-Lu. Nonlinear linearization controller and genetic algorithm-basedfuzzy logic controller for ABS systems and their comparison. Int. J. Vehicle Design,2000,Vol.24(4):334-349.
    [49] Georg F. Mauer. Fuzzy logic continuous and quantizing control of an ABS Braking system.SAE Technical Paper, No.940830.
    [50] Mazumdar S K. The application of neural networks to anti-skid brake design. Proc. IEEE Int.Conf. on Neural Networks. Perth, Australia,1995.
    [51] R.Somakumar, J.Chandrasekhar. Intelligent anti-skid brake controller using neural network.Control Engineering Practice,1999, Vol.7:611-621.
    [52] Tomohiro Fujita, Compact ABS modulator with small-solenoid-valves. SAE Technical Paper920647.
    [53]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究.[博士学位论文].长春:吉林工业大学,2000.
    [54]程军.车辆防抱系统鲁棒控制的研究.北京:汽车工程,1998,20(1):17-23.
    [55]张陵,诸德培.车轮防抱死制动滑移模式控制率的理论研究.北京:汽车工程,1996,18(1):1-6.
    [56]殷承良.车辆防抱死制动系统(ABS)实用化技术控制逻辑与实车试验研究.博士后工作报告.上海:上海交通大学,2002年5月.
    [57] Martin Maler, Klaus Muller. ABS5.3: The New and compact ABS5unit for passenger cars.SAE Technical Paper, No.950757.
    [58] BOSCH. Vehicle safety systems for passenger cars. Electronics stability program technicalinstruction. Edn, Berlin, Germany,1999.
    [59]徐霖,于今等著.液压动力控制系统.重庆:重庆大学出版社,1996.
    [60]李玉璇.防抱死制动系统(ABS)的仿真、性能评价与参数选择.[硕士学位论文],长春:吉林工业大学,1999.
    [61] Qingyuan Li, Keith W. Beyer and Quan Zheng. A model-based brake pressure estimationstrategy for traction control system. SAE Technical Paper, No.2001010595.
    [62]王正茂,阎治安,崔新艺,苏少平,电机学,西安,西安交通大学出版社,2000年9月.
    [63]徐艳平,钟彦儒,于宏全,基于MATLAB的永磁同步电机直接转矩控制的仿真建模,微电机,2005年3月,38(3),27-31.
    [64]谢运祥,卢柱强,基于MATLAB/Simulink的永磁同步电机直接转矩控制仿真建模,华南理工大学学报(自然科学版),2004年1月,32(1),19-23.
    [65]李三东,薛花,纪志成,基于Matlab永磁同步电机控制系统的仿真建模,江南大学学报(自然科学版),2004年4月,3(2),115-126.
    [66]黄斐梨,王耀明等.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究.电工技术学报,1995, No.3:28-31.
    [67]张俊智,卢青春,王丽芳.汽车混合动力传动的能量流动与比较.机械科学与技术,2001, Vol.20(9):47-51.
    [68] Akihiro Kimura, Tetsuya Abe, Shoichi Sasaki. Drive force control of a parallel-series hybridsystem. JSAE Review1999, Vol.20:337-341.
    [69] Chitoshi Yokota, Yoshimori Nakamura, Shigeru Yada. Development of the2001year modelCivic. JSAE Review2002, Vol.23:387-399.
    [70] Takashi Yanase, Nobuaki Takeda, Yuta Susuki, Sadao Imai. Evaluation of energy efficiencyin series-parallel hybrid vehicle. The18th International Electric Vehicle Symposium andExposition. Berlin, Germany,2001.
    [71] Bailey, K. E., Cikanek, S. R. Comparison of energy recovery capability of electric vehiclebraking systems. Proceedings of the AVEC International Symposium of Advanced VehicleControl, Aachen, Germany,1996.
    [72] Bailey, K. E., Powell, B. K., A hybrid electric vehicle powertrain dynamic model.Proceedings of the American Control Conference, Seattle, Washington, USA,1995.
    [73] Cikanek, S. R., Bailey, K. E., Powell, B. K. Parallel hybrid electric vehicle dynamic modeland powertrain control. Proceedings of the American Control Conference, New Mexico,USA,1997.
    [74] Hauer K-H. Analysis tool for fuel cell vehicle hardware and software (controls) with anapplication to fuel economy comparisons of alternative system designs. PhD. Dissertation,University of California Davis, USA,2001.
    [75] Johnson V H. Battery performance models in ADVISOR. Journal of Power Sources,2002,Vol.110(2):321-329.
    [76] ANTHONY B.WILL and STANISLAW H.ZAK. Modeling and control of an automatedvehicle. Vehicle System Dynamics,1997(27):131-155.
    [77]王伟玮. ESP电磁阀执行机构结构与性能分析.[综合论文训练].北京:清华大学,2006.
    [78]张洪欣.汽车系统动力学.上海:同济大学出版社,1996.
    [79] Egbert Bakker and Lars Nyborg. Tyre Modeling for use in vehicle dynamics studies. SAETechnical Paper870421.
    [80] H.B.PACEJKA and I.J.M.BESSELINK. Magic Formula Tyre Model with TransientProperties. Vehicle System Dynamics,1997(27):234-249.
    [81] J.J.M. Van Oosten and E.Bakker. Determination of magic tyre model parameters.Proceedings1st Tyre Colloquium, Delft, Oct.1991, Suppl. to Veh. Sys. Dyn.1993(21):20-57.
    [82] A. Ghazizadeh, A. Fahim and M.EI-Gindy. Neural networks representation of a vehiclemodel: neuro-vehicle (NV). Int. J. of vehicle design,1996,17(1):55-75.
    [83] Paul J.TH. VENHOVENS and KARL NAAB. Vehicle dynamics estimation using Kalmanfilters. Vehicle System Dynamics,1999(32):171-184.
    [84] M.C.BEST, T.J.GORDON and P.J.DIXON. An extended adaptive Kalman filter for real-timestate estimation of vehicle handling. Vehicle System Dynamics,2000(34):57-75.
    [85] Palkovics, L., and EI-Gindy, M. Modeling of the cornering characteristics of tyre on unevenroad surface: a dynamic version of the Nero-Tyre. Int. J. of Vehicle Design,1994,15(1/2):189-215.
    [86] J.L Harned, L.E. Johnston, and G.Scharpf. Measurement of tire brake force characteristics asrelated to wheel slip (Anti-lock) control system. SAE Technical Paper940831.
    [87] Laura R. Ray. Nonlinear tire force estimation and road friction identification: simulation andexperiments. Automatica,1997,33(10):1819-1833.
    [88] Laura R. Ray. Experimental determination of tire forces and road friction. Proceedings of theAmerican Conference. Philadelphia, Pennsylvania. June1998:1843-1847.
    [89] P.BOLZERN, F.CHELI and G.FALCIOLA. Estimation of the Non-linear suspension tyrecornering forces from experimental road test data. Vehicle System Dynamics,1999(31):23-34.
    [90] Egbert Bakker. A new tire model with an application in vehicle dynamics studies. SAETechnical Paper890087.
    [91]郭孔辉.汽车操纵动力学.长春:吉林科学出版社,1991.
    [92] Qingyuan Li, Keith W. Beyer, Quan Zheng. A model-based brake pressure estimationstrategy for traction control system. SAE Technical Paper, No.2001-01-0595.
    [93] Konghui Guo, Lei Ren. A unified semi-empirical tire model with higher accuracy and lessparameters. SAE Technical Paper1999,1-4March.
    [94] Konghui Guo, Qing Liu. Theoretical model of non-steady state tire cornering properties andits experimental validation. SAE Technical Paper, No.973192.
    [95] Konghui Guo. A unified tire model for braking, driving and steering simulation. SAETechnical Paper, No.891189.
    [96] Qing Liu, Konghui Guo. Simulation of tire cornering properties in non-steady stateconditions. SAE Technical Paper, No.980254.
    [97]吕廷秀.混合动力轿车再生制动与防抱死集成控制系统研究.[硕士学位论文].长春:吉林大学,2007.
    [98]李君,喻凡,张建武,冯金芝.车辆转向制动防抱死系统仿真研究.系统仿真学报,2001,13(6):791-793.
    [99] Mokhiamar O and Abe M. How the Four Wheels should share Forces in an OptimumCooperative Chassis Control. Control Engineering Practice,2006,14:295-304.
    [100]殷承良,彭栋.混合动力电动汽车制动能量回馈系统分析.电动车辆专业委员会第10届学术年会,北京,2002.
    [101]王会义,汽车防抱死制动系统模糊控制方法的应用及其仿真试验台的构建.[博士后出站报告],长春:吉林工业大学,1998.
    [102]丁海涛.制动防抱死系统模糊控制的初步研究.[硕士学位论文].长春:吉林工业大学,1999.
    [103]范刚.汽车防抱死制动系统控制逻辑的仿真研究.[硕士学位论文].华南理工大学,1997.
    [104]刘训忠,王一玲,夏群生.汽车防抱死制动系统(ABS)轮速算法研究.汽车电器,2001(1):7-10.
    [105]厉朴,宋健,于良耀. ABS轮速信号抗干扰处理方法.汽车技术,2001(5):15-18.
    [106]陈在峰,宋健,于良耀.汽车防抱死制动系统轮速传感器信号处理.汽车工程,2000,22(4):282-285.
    [107]殷承良.控制逻辑与软件开发技术总结报告.上海:上海交通大学汽车工程研究所内部资料,2001.
    [108]殷承良.控制方案研究总结报告.上海:上海交通大学汽车工程研究所内部资料,2001.
    [109]邓建中,葛仁界,程正兴.计算方法.西安:西安交通大学出版社,1985.
    [110]王忠良著.制动防抱死系统维修技术.石家庄:河北科学技术出版社,1999.
    [111] Jong Hyeon Park etc. Wheel slip control system for vehicle stability. Vehicle SystemDynamics,1999(31):262-278.
    [112]潘定海.汽车稳定性控制.讲学报告,地点:长春吉林工业大学.
    [113]王德平,郭孔辉.车辆动力学稳定性的控制原理与控制策略研究.北京:机械工程学报,2000,36(3):97-99.
    [114]郭孔辉,轧浩,宗昌富.横摆角速度反馈汽车转向控制的理论研究.武汉:中国机械工程学报,2000,11(1-2):62-64.
    [115] YOSHIMI FURUKAWA and MASATO ABE. Advanced chassis control systems for vehiclehandling and active safety. Vehicle System Dynamics,1997(28):59-86.
    [116] Masato Abe, Yoshio Kano and Kazuasa Suzuki. Side-slip control to stabilize vehicle lateralmotion by direct yaw moment. JSAE Review,2001(22):413-419.
    [117] Masato Abe and Yoshio Kano. Improvement of vehicle handling safety with vehicle side slipcontrol by direct yaw moment. Vehicle System Dynamics,1999(33):665-679.
    [118] Takatoshi Nishimaki, Naohiro Yuhara and Yasuji Shibahata. Two-degree-of-freedomhydraulic pressure controller design for direct yaw moment control system. JSAE Review,1999(20):517-522.
    [119] Kaoru Savase and Yoshiaki Sano. Application of active yaw control to vehicle dynamics byutilizing driving/brake force. JSAE Review,1999(20):289-295.
    [120] Tamio Kano and Katsutoshi Horinouch. Study of braking in turn stability. Technical Notes/JSAE Review,2000(21):241-263.
    [121] Yuji Hisaoka and Masaki Yamamoto. Closed-loop analysis of vehicle behavior duringbraking in a turn. JSAE Review,1999(20):537-542.
    [122] Shingo Kawalami and Jiro Okuda. Dynamic performance evaluation of a vehicle equippedwith a stability control system. Technical Notes/JSAE1999(20):421-438.
    [123] MotoKi Shino, Masao Nagai. Yaw-moment control of electric vehicle for improvinghandling and stability. JSAE Review,2001(22):473-480.
    [124] David E, Mohammed F, Robert K and Bert H. Fuzzy Anti-Lock Brake System. Arizona:Intel Corporation, Automotive operation,1994.
    [125] Benbouzid M, Diallo D, Zeraoulia M and Zidani F. Active Fault-tolerant Control ofInduction Motor Drives in EV and HEV against Sensor Failures Using a Fuzzy DecisionSystem. International Journal of Automotive Technology,2006,7:729-739.
    [126]李士勇,模糊控制·神经控制和智能控制论,哈尔滨,哈尔滨工业大学出版社,1998年9月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700