大吨位履带起重机液压系统的动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
履带起重机是一种广泛应用于港口、水电、铁路及石油化工等大型工程项目中的移动式起重机械,当前,履带式起重机产品正在向大吨位的方向快速发展。由于大型履带起重机产品均为全液压型起重机,因此液压系统性能的好坏直接影响着履带起重机的整机性能。然而,大型履带起重机的液压系统及元件主要依赖于国外进口,核心技术仍需从国外引进,极大地制约了履带起重机行业的发展。因此,针对履带起重机开展液压系统的动态特性研究具有重要的理论意义和应用价值。
     近年来,随着集成传感技术以及电液比例控制技术的不断发展、完善,液压系统已能够被成熟地应用在大型履带式起重机产品中。借助于以集成电路及微处理器为核心的集成电子控制技术,履带起重机产品已实现了多液压系统的集成控制,操作者通过控制手柄可对行走驱动、起升、回转乃至变幅系统等进行集成控制。为满足大吨位履带起重机产品追求高自动化程度、可实现精细化操作的发展需求,履带起重机产品对液压系统的动态特性提出了更高的要求,设计者必须使液压系统在响应速度、微动性、控制性能以及稳定性等方面均有着更出色的表现才能够满足产品市场的发展需求。
     目前,国内的履带起重机研发机构对液压系统动态特性的研究远远落后于欧美国家。大部分企业在产品的开发过程中仍采用经验类比的方法,对液压系统动态特性研究工作的缺失,使其产品在稳定性、微动性、可控性等方面均与国外先进产品间存在显著差距。本论文结合校企合作“移动式起重机产品整机液压控制回路测试评估系统开发”项目,利用AMESim(Advanced Modeling Environment for Simulations ofengineering systems)软件平台开发出了履带起重机起升系统、行走驱动系统、回转系统等系统的HCD(Hydraulic Component Design)仿真模型,并基于HCD仿真模型对大吨位履带起重机中的典型液压系统的动态特性展开研究。本文研究所得相关结论,可为国内大吨位履带起重机液压系统的设计工作提供理论指导依据,同时也可缩短我国在起重机液压系统研究领域与国外先进技术水平间的差距。
     本文针对大吨位履带起重机液压系统主要进行了以下研究工作:
     1.详细分析国内外大型履带式起重机的发展现状;对大型履带式起重机起升、行走驱动以及回转液压系统分别进行了介绍;阐述目前液压系统仿真的国内外发展状况,确定使用的AMESim仿真软件;确定了本文主要研究内容。
     2.以某大型履带起重机起升系统为研究对象,详细分析该起升系统的组成及工作原理,分别建立了液控先导式平衡阀与恒压变量马达的数学模型,并基于数学模型分析了影响系统性能的主要因素,分析指出减小平衡阀入口处阻尼孔的直径以及主阀芯的开口面积,恒压变量马达最小排量的设定值、恒压设定值以及相关容腔体积等因素均会对起升液压系统性能产生的影响;利用AMESim仿真平台开发了起升液压系统的HCD仿真模型,借助软件模态分析工具对系统在下落工况中易产生压力波动的原因进行了分析,分析指出平衡阀主阀芯面积梯度的变化易导致系统的稳定性变差,马达排量的突变以及恒压阀开启时所引起的流量突变等现象均易引起压力冲击现象;基于仿真平台,提出了改善起升液压系统稳定性的优化方案。
     3.介绍了某型履带起重机负荷传感行走液压系统的组成,并对其工作原理进行了分析,推导出了负荷传感行走液压系统的传递函数,通过对传递函数的分析,指出了负载敏感泵输出功率的主要影响因素;开发了负荷传感行走液压系统的HCD仿真模型,并进行了仿真研究,指出负荷传感技术应用在行走液压系统中时易形成由于功率匹配不佳而引起的发动机熄火现象;基于仿真平台提出了改变负载敏感阀弹簧预紧力、在两个行走多路阀的负载反馈口间串联适当的阻尼、限制多路阀主阀芯位移等三种优化方案,并分别对负荷传感系统在应用以上优化方案后的功率自动调节特性进行了分析。
     4.介绍了某型履带起重机回转液压系统的组成及其工作原理,并建立了其主要组成元件的数学模型;开发了开式回转液压系统的HCD仿真模型,重点研究了回转换向阀阀口形式、回转缓冲阀阀口形式、回转缓冲阀弹簧刚度以及溢流阀开启压力等因素对回转液压系统性能的影响。仿真分析表明:回转换向阀采用在初始阶段变化梯度较大的开口形式对削弱回转系统作业时的压力冲击以及改善调速性能均是有利的;在初始阶段具有较小变化梯度的缓冲阀开口形式对降低系统压力冲击是有利的;选择适当的缓冲阀弹簧刚度可以减缓系统启动和换向时的压力冲击,并能够缩短制动时间。
     5.设计了某大型履带式起重机起升、行走驱动以及回转液压系统性能测试的实验方案,分析了关键液压元件的相关结构参数对系统性能的影响;验证了相关仿真分析结论的正确性以及所提出的系统性能优化方案的可行性。
Crawler Crane is a mobile crane which is widely applied in harbor, hydroelectricity,railway, petrochemical industry and other big projects. At present, it is developing towardslarge tonnage. Because all the large crawler cranes are fully hydraulic cranes, the reliabilityof crawler cranes, to a large degree, is ascribed to the stability of the hydraulic system. Thefact that the hydraulic system and its components are mainly imported from foreigncountries, as well as the core technology, impedes the development of crawler crane industry.Therefore, it is of a great theoretical and practical value to conduct researches on thedynamic characteristics of hydraulic system of crawler cranes.
     In recent years, thanks to the development in integrated sensoring skills and skills ofcontrolling electro-hydraulic proportional system, electronic control skills of hydraulicsystem have been perfectly adopted in crawler cranes. Thanks to integrated electroniccontrol skills based on integrated circuit and micro-processor, crawler crane products haveachieved integrated control of multi-hydraulic system: by controlling handles, operators cancontrol travel drive, lifting, slewing and luffing systems. Since large-tonnage crawler cranesare expected to become highly automated and sophisticated, they pose a higher standard tothe dynamic characteristics of hydraulic system and designers have to improve hydraulicsystem in such aspects as feedback speed, inching, control and stability.
     Currently, at home, research on the dynamic characteristics of hydraulic system haslagged behind European and American counterparts, and most of enterprises still useempirical and analogical methods in exploring products. Compared with advanced foreignproducts, ours need improving in such aspects as stablility, inching, controllability. Thisdissertation, funded by the project——“Development of Design and ManagementPlatform of Hydraulic system of Mobile Crane”, employs AMESim(Advanced ModelingEnvironment for Simulations of engineering systems)software to explore HCD(Hydraulic Component Design)model of hydraulic lifting, travel, slewing systems and does a HDCModel-based research on the typical dynamic characteristics of hydraulic system oflarge-tonnage crawler crane. This dissertation is designed to provide theoretical guidance fordomestic designs of hydraulic system of large-tonnage crawler crane, and meanwhile tonarrow the gap at home and abroad.
     The content of this dissertation is as follows:
     1. It reviews development of large crawler cranes at home and abroad; It introduceslifting, travel drive and slewing hydraulic systems of large crawler crane respectively;illustrates in details the development of simulation at home and abroad and adopts AMEsimsimulation software.
     2. It elaborates the composition and the working theory of lifting system of certain largecrawler crane; It establishes dynamic models of pilot-operated counterbalance valve andvariable displacement motor, and points out the following factors can influence the stabilityof the system: the decrease of the diameter of inlet damping and flow area, the minimumdisplacement, the volume and so on. It employs AMESim simulation platform to deign HCDmodel of hydraulic lifting system; and throug modality analysis, it elaborates the reasons ofpressure fluctuation in falling working state;it points out that changes of several factors caneasily affect system stability: flow area form of counterbalance valve, the motordisplacement, the dynamic characteristics of counterbalance valve and cutoff valve; basedon simulation, it proposes several optimization schemes to improve the stability.
     3. The thesis introduces the composition and working theory of load sensor travelhydraulic system.; it deduces transfer function of load sensor system; and accordinglypoints out major factors to influence output power of load sensing pump; it explores HCDmodel of hydraulic traveling system; makes dynamic simulation analysis; points out thefact that load sensory skills, when used in hydraulic traveling system, usually result inengine failure because of power mismatch; it, based on simulation platform, proposes threeoptimization schemes: to change load sensing valve spring stiffness, to connect damping inseries between two travel multi-way valves’ load feedback interface, to limit multi-way valve flow shifting.
     4. The thesis introduces the composition and working theory of slewing system, andestablishes mathematical model of main components; It explores HCD simulation model ofhydraulic open slewing system; conducts a detailed study on how dynamic characteristicsof hydraulic slewing system are influenced by such factors as reversing valve form, springstiffness of slewing cushion valve, pressure relief pressure and etc. The findings ofsimulation analysis cover the following aspects: reversing valve, used in the flow area formwith bigger gradient in initial stage, contributes to relieve pressure fluctuation and bettercontrol speed; cushioning valve flow area form, with smaller gradient, helps to lessensystem pressure; proper cushioning spring stiffness can lessen pressure fluctuation ofsystem startup and direction-change and decreases braking time.
     5. It designs pilot schemes to test dynamic characteristics of hydraulic lifting, travel,slewing systems of large crawler crane; analyses how the system is influenced by thestructural parameter of key hydraulic components; and proves the validity of simulationanalysis and the feasibility of optimization schemes proposed by this dissertation.
引文
[1]王凤萍、程磊、孙影.国内外履带式起重机的现状及发展趋势[J].工程机械,2006(4)
    [2]王欣、高顺德、屈福政.国内外大型起重机的发展状况[J].建筑机械,2005(2):28-32
    [3]祁冠芳.日本履带起重机液压系统的发展[J].起重运输机械,2006(02):4-5
    [4]王欣、屈福政.国外履带起重机的发展[J].起重运输机械,1999(2):1-3
    [5]履带式起重机[EB/OL].[2009-11-5].http://baike.baidu.eom八iew/1294905.html
    [6]田复兴.全液压履带式起重机的现状及发展[J].现代制造技术与装备,2006(4):l-5
    [7]2010年世界领先履带式起重机生产公司大扫描[EB/OL].(2010-06-7)[2010-08-01].http://ed.100ye.eom/senseshow/1245440.html
    [8] New crawler attachment from Manitowoc[J/OL].[2011-03-01].http://~.cranestodaymagazine.eom/story.asp?storyeode=2055417
    [9]浅析国内外履带式起重机现状及发展趋势[EB/OL].(2010-07-29)[2010-08-01].http://~.eqeldz.en/eontent/101.htm
    [10]刘金江.履带起重机产品现状及发展趋势[J].建筑机械,2009(5):32-3
    [11] Development and R&D of China crawler crane have been to good status[EB/OL].(2010-06-18)[2011-01-12].http://www.hitachi-cat.com/wordpress/2010/06/development-and-r-d-of-china-crawler-crane-have-been-to-good-status/
    [12]司宁博.核危机笼罩下的履带式起重机行业[J].工程机械与维修,2011(5):45-48.
    [13]王凌纹.履带起重机:迎接越来越大的挑战[J].建设机械技术与管理,2006(7):20-25.
    [14]夏文超.Bauma China2010综合报道之工程起重机[J].建筑机械技术与管理,2010(12):42-4
    [15]夏海南,葛建人,陈明宏.液压机械传动在工程机械上的应用[J].工程机械,2000(3):17~19
    [16]徐霖,于今,吕伟华等.液压动力控制系统[M].重庆:重庆大学出版社.1996(3)
    [17]顾银芳,苑士华,安永江.仿真技术的发展与展望[J].河北工业科技,2000(5):36一39
    [18]欧阳娜.液压仿真技术的应用与发展[J].科技广场,2010(1)
    [19]何卉.液压仿真新技术的发展与应用[J].中国高新技术企业,2008(5):105.
    [20] Li Feng,Zhou Zhaofa,Ma Changlin.Research of parameters optimization of the hydraulic controlsystem based on simulation and improved genetic algorithm[J].Computer Measurement&Control,2002,3(14):335.
    [21]刘能宏,田树军.液压系统动特性数字仿真[M].大连:大连理工大学出版社,1993.
    [22]付永领. AMESIM系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006(1)
    [23]王勇,张勇,李从心,黄树槐.液压仿真软件的研究进展[J].系统仿真学报,1998(10):54-57
    [24]罗艳蕾.工程机械中静压传动系统形式及调节原理[J].有色金属,2003(1):36~38
    [25] Manami Ochiai. Recent trend of hydraulic system in excavator[C]. In:SAMOTER96COVEGNOMEETING.Verona,Italy,1996
    [26] Piyoros Jirawattana. Design,simulation,fabrication and testing of a low-speed high-torque (LSHT)pump/motor for a hydrostatic vehicle[M].USA: University of Wisconsin-Madison,2000
    [27]赵璐.大型履带式起重机卷扬液压系统的动态特性研究[D].吉林大学硕士学位论文,2011
    [28]于春宇.履带起重机起升机构闭式液压系统仿真研究[D].大连理工大学硕士学位论文,2008
    [29]刘晓峰.履带起重机起升系统双马达同步控制技术研究[D].吉林大学博士学位论文,2012
    [30]姚怀新.行走机械液压传动与控制[M].北京:人民交通出版社,2002
    [31]王意.行走机械液压驱动技术发展大观[J].液压气动与密封,2000(2):19~28
    [32]王意.行走机械的液压复合传动技术[J].液压气动与密封,2004(1):18~22
    [33]沈绍柳,张家初,边耀刚.行走机械负荷传感系统的研究[J].农业机械学报,1986,3(l):12-1
    [34]王洪祥.履带起重机液压行走驱动系统仿真及实验研究[D].吉林大学硕士学位论文,2011
    [35] Chen Jinshi,Liu Xinhui,Zhang Cui,Dong Quan,Zhao Feng.Dynamic simulation and experimentalstudy of slewing system on80T crane[J]. Source: Proceedings-International Conference onElectrical and Control Engineering, Shanghai, China, ICECE2010, p2332-2335.
    [36]王帮峰,张瑞芳,张国忠.回转起重机吊重摆振的动力学模型与控制[J].中国机械工程,2001,12(11):1214-1216.
    [37]李帅.泵控马达闭式回路调速控制系统特性研究[D].浙江大学硕士学位论文.2010(1)
    [38]王春行.液压伺服控制系统[M].北京:机械工业出版社,1987(2)
    [39]徐元昌.流体传动与控制[M].上海:同济大学出版社,1998(3)
    [40]李肇震,曹苏民等.平衡阀动态性能研究及性能改进措施[J].浙江大学学报(自然科学版),1988,22(增刊1):162-170
    [41]姚平喜,闫志明等.负载敏感平衡阀的性能分析与数字仿真[J].液压气动与密封,2009(2):51-54
    [42]王晋之,曹捷等.一种汽车起重机用液压变量马达的性能分析和优化设计[J].液压气动与密封,2008(5):33-37
    [43]胡涛,曹捷等.具有压力截断功能的先导压力控制变量柱塞马达[J].流体传动与控制,2005,10(3):34-35
    [44] DORF R C,BISHOP R H. Modern control systems[M].Beijing:Seience Press,2002
    [45] KARMEL A M. Dynamic modeling and analysis of the hydraulic system of automotive automatictransmissions[C].Proeeedings of the1986Ameriean Control Conference,June1986:273-278
    [46] FAVENEC G, ALIRND M,LEBRUN M. Optimal response of pressure reducer and stabilityinfluence of the downstream line dynamics[J]. The2ndFluid Power Net Int. PhDSymposium,Modena,Italy,July2002:1-10
    [47] MUHAMMAD M R,JOSE L F P. Numerical simulation and animation of oscillating turbulent flowin a counterbalance valve[C].Energy Conversion Engineering Conference,IECEC-97, Proeeedings ofthe32ndIntersociety,Honolulu,Hl,USA,1997,2:1525-1530
    [48] LIN Z C,HUANG C J. Study of estimation of damping coefficient and angular displacement for airmotor rotation experiment[J].Journal of the Chinese Soeiety of Mechanical Engineers,2008,29(4):271-280
    [49] QU J Y,REN C B,et al. Parameters optimization method for variable displacement pump/motor andtransmission of hydraulic braking energy regeneration system[J]. International Forum on ComputerScience-Technology and Applications,2009,3:19-22
    [50] AHN K W,HYUN J H. optimization of double loop control parameters for a variable displacementhydraulic motor by genetic algorithms[J].JSME,International Journal Series C-Mechanical SystemsMachine Elements and Manufacturing,2005,48(1):81-86
    [51] RUSEK A. Model for computer simulations of asynehronous induction motor taking into accountsaturation and current displacement[J]. PRZEGLAD ELEKTRO TECHNIC ZNY.2010,86(12):127-130
    [52] CHAPPLE P J. Dynamic aspects of controlled displacement hydraulic motors [C]. The6thInternational Fluid Power symposium, Cambridge, England, April l981:332-341
    [53]张景中,杨路.求多项式根的2-n阶劈因子法[J].计算数学,1952(4):417-42
    [54] И.П.梅索夫斯基赫,冯果忱.关于解代数方程的劈因子法的收敛性[J].吉林大学学报(理学版),1958(1);17-25
    [55]资新运,郭锋,王琛,邓成林.电液比例变量泵控定量马达调速特性研究[J].工程机械,2007(7):45~48
    [56] I.T.Hong, E.C.Fitch. Hydraulic System Modeling and Simulation-Compendiums and Prospects[C].Proceeding of the fourth International Symposium on Fluid Power Transmission and Control (ISFP2003):30~137
    [57] Rexroth. The Drive&Control CoMPany Technical Information[S].2007
    [58] IMAGINE SA: Hydraulic Component Design Library version8.0A [S]. June2008
    [59] IMAGINE SA: AMESim version8.0A [S]. June2008
    [60] CHAUFOUR P,MILLET G,etal. Advanced modeling of a heavy-truekunit-injector system and itsapplications in the engine design proeess[C]. SAE paper2001-01-0020,2001
    [61]沈绍柳,张家初,边耀刚.行走机械负荷传感系统的研究[J].农业机械学报,1986,3(l):12-14
    [62]游明琳,吴永闯.液压系统功率匹配与节能技术的研究[J].机械工程与自动化,2010,6(3):167-168
    [63]王丽卿.基于功率匹配的液压挖掘机节能技术研究[D].长安:长安大学机械学院,2007
    [64]王炎,胡军科,杨波.负载敏感泵的动态特性分析与仿真研究[J].现代制造工程,2008(12):84-88
    [65]张文杰,杨桂莲.液阻在液压系统中的应用分析[J].铸造设备研究,2002(2):21-33
    [66]乔丰立,解海滨.负载传感变量泵系统的静态特性理论分析[J].兰州理工大学学报,2006,6(3):59-62
    [67] Jae Gyu Lee. Development of a new Hydraulic servo cylinder with mechanical feedback[J]. ControlEngineering Practice.1999(7):327-334
    [68] Leonhard E Benold. Simulation of Nonsteady Construction Processes[J].ASCE.2007(2):163-178
    [69]郝鹏,何清华,张大庆.负载敏感系统测试及特性分析[J].中国工程机械学报,2006(3):317-320
    [70]方旭东.液压挖掘机中负荷传感系统的分析与计算[J].同济大学学报,2001(9):109-1100
    [71]刘长年,袁子荣.液压控制系统导论[M].北京:北京科学技术出版社.1987(12)
    [72] J W.霍夫罗著,陈鹰译.液压元件及系统的动态仿真[M].浙江:浙江大学出版社,1998
    [73]陈晋市,刘昕晖,王同建,赵璐,张举.平衡阀对起重机起升系统抖动现象影响因素的研究[J].中国工程机械学报,2010,8(1):38-42
    [74] A.GALLREIN, M.BACKCER. CDTire: a tire model for comfort and durability applications[J].Vehicle System Dynamics Vol.45, Supplement,2007:69-77.
    [75] Murizina G B. Mathematical simulation of the induction of long-term depression incerebellarPurkinje cells[J].Neuroseience and Behavioral Physiology.2004(2):115-121
    [76] Shohei Ryu, Masami Ochiai, Katsumi Ueno, et al. Analysis of flow force in valve with notches onspool[J]: In Proceedings of the6th International Conference on Fluid Power Transmission andControl,2005:435~438.
    [77]王帮峰,张瑞芳,张国忠.回转起重机吊重摆振的动力学模型与控制[J].中国机械工程,2001,12(11):1214-1216
    [78] Sun Guangfu,Kleeberger Michael. Dynamic responses of hydraulic mobil crane with considerationof the drive system[J]. Mechanism and Machine Theory,2002,38(12):1489-1508
    [79]张明辉.大型履带起重机回转液压系统仿真研究[D].大连理工大学硕士学位论文,2006
    [80] B. Jerman,P. Podr aj,J. Kramar. An investigation of slewing-crane dynamics during slewingmotion-development and veri&cation of a mathematical model[J]. International Journal ofMechanical Sciences,2004,46:729-750
    [81] V h P,Voutilainen DO. Dynamics of a closed kinematic Chain Crane with a suspended Load[J].S hk-Electricity and Electronics,1988,61(6):42-61.
    [82] Abdel-Rahman EM,Nayfeh AH,Masoud ZN. Dynamics and control of cranes: a review[J]. Journalof Vibration and Control,2003,9:863-908
    [83]杜钧,赵堂春.节流阀阀口结构与功能辨析[J].液压与气动.2010年第2期:52-54
    [84] JI Hong, FU Xin, YANG Huayong. Analysis and Calculation on Typical Shape Orifice areas inHydraulic Valves[J]. Machine Tool and Hydraulics.2003(5):14-16
    [85]冀宏,张继环,王东升,张玮,刘小平.滑阀矩形节流槽阀口的流量系数[J].第六届全国流体传动与控制学术会议.2005:74~77
    [86] AMIRANTER, VESCOVOG, LIPPOLISA. Evalution of the flow force on an open centredirectional control valve by means of a computational fluid dynamic analysis[J]. Energy Conversionand Management.2006,47:1748-1760.
    [87]周会,邓斌,刘恒龙.液压组合阀口过流面积计算及特性分析[J].机械研究与应用.2008(11):80-85
    [88]周会.液压滑阀阀口的特性研究[D].西南交通大学,2009
    [89]那成烈.三角槽节流口面积的计算[J].甘肃工业大学学报.1993(6):45~48
    [90]闻德生,李永安,张月忠,孙江波,杜利斌.锥形阀口滑阀的特性研究及流场数值模拟[J].机床与液压,2010(11):49~51
    [91]吴晓明,要继业,李伟,翟瑞超,赵燕. U+K节流槽滑阀的数值模拟[J].流体传动与控制.2010(9):13~15
    [92]盛敬超.液压流体力学[M].北京:机械工业出版社,1980.
    [93]冀宏.液压阀芯节流槽气穴噪声特性的研究[D].浙江大学,2004
    [94] Kazuhiko Terashima,Ying Shen,Kenichi Yano. Modeling and optimal control of a rotary craneusing the straight transfer transformation method[J]. Control Engineering Practice,2007,15:1179-1192
    [95] Jacek K osiński. Swing-free stop control of the slewing motion of a mobile crane[J]. ControlEngineering Practice,2005,13:451-460
    [96]力士乐A4VG变量泵服务手册[DB/OL]. http://www.boschrexroth.com/
    [97]雷天觉.新编液压工程手册[M].北京:机械工业出版社,2005.
    [98]郭勇,陈勇,何清华,罗伟.小型液压挖掘机节流系统主阀芯节流口计算[J].液压液力,2006(9):80-83
    [99]张海平.测试是液压的灵魂[J].液压气动与密封,2010(6):1~5
    [100]赵宏强,谢武装,蒋海华.采用AMEsim的潜孔钻机回转液压系统的动态仿真与试验研究[J].现代制造工程,2009(2):69-73
    [101]曾平,程光明,张军,常颖.回转机械转动惯量和动摩擦力矩测试方法[J].农业机械学报,1999,30(5):68-71
    [102]王志洲.汽车起重机回转液压系统动态特性仿真与实验研究[D].吉林大学硕士学位论文,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700