沥青路面多孔蓄盐集料化—力耦合效应及析盐特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国云贵川高原山区冬季潮湿多雨,极易形成“冻雨”,凝聚在低温路面便产生路面凝冰,使路面抗滑能力大幅下降,容易发生交通事故。传统的抑制路面凝冰和除冰雪的方法,主要是人工作业和撒布融雪剂,除冰效果差且污染环境,不适用于清除路面凝冰。本文主要研究一种新型主动抗凝冰路面技术—多孔蓄盐集料技术,首先运用化学动力学理论研究了多孔蓄盐集料析盐的可行性,然后通过室内试验研究了多孔蓄盐集料的制备工艺、析盐抗冰冻性能、沥青蓄盐封层抗凝冰效果及多孔抗凝冰填料沥青混合料的路用性能和抗凝冰效果,并运用Material Studio材料模拟软件分析了多孔蓄盐集料析盐降冰点及盐分吸附扩散的微观作用机理,最后研究了基于质量扩散定律的多孔蓄盐集料的化学-力学耦合效应。
     本文的研究工作主要包括以下几个方面:
     (1)运用化学动力学的分子碰撞理论,研究了蓄盐集料内部盐分离子的碰撞动力学过程、蓄盐抗凝冰的碰撞能量、蓄盐分子非弹性碰撞过程的能量转换以及蓄盐组分碰撞过程中的Cl-解离过程,分析了多孔蓄盐集料能够析出盐分抗凝冰的作用机理,为多孔蓄盐集料的室内制备试验提供了定性的可行性结论。
     (2)研究了多孔蓄盐发泡水泥石的制备工艺、吸盐特性、析盐持续可释性及抗压强度,确定了多孔蓄盐发泡水泥石集料的掺盐种类、掺盐方式、掺盐量及其配合比范围,并将蓄盐水泥石集料掺入沥青封层进行了抗凝冰检验。研究了多孔蓄盐填料沥青混合料的配合比设计,并检测其路用性能及抗凝冰性能。室内制备的新型多孔蓄盐发泡水泥石集料具有良好的释盐性,在-5℃条件下的抗凝冰效果良好。
     (3)利用MS材料计算软件模拟研究了液态水的凝冰机理和凝结过程,研究表明,液态水凝冰是由于低温下的水分子氢键相互连接,形成了致密的六环水分子构型的网状体冰晶,并渗透至体系的整个三维空间,直至液态水分子全部凝冰。
     (4)通过构建冰盐溶液共存体系,研究了盐分降低凝冰点的微观作用机理,盐分能够降低液态水凝冰点是因为在盐分氯离子的周围,水-水之间的氢键构型大大减少,水-氯离子氢键结构同时形成,分子间的距离和键角都在发生变化,氯离子的加入破坏了固有的水冰共存体结构并减缓了氢键结构的动态形成过程。
     (5)运用MS材料计算软件模拟了多孔蓄盐发泡水泥石集料吸附扩散盐分的动态作用过程,研究了盐分不断迁移、扩散的微观作用机理,其本质上是能量不断转换得以平衡的过程,得到了盐分在集料内部吸附扩散与温度、压力的相关关系:蓄盐载体能够将盐分中的氯离子吸附在其表面和内部,盐分的吸附扩散受温度、压力的影响较大,尤其是高温下的Cl-吸附扩散能力均较强。
     (6)从宏观领域的微观角度,研究了基于质量扩散定律的多孔蓄盐集料盐分扩散特性以及由于盐分离子扩散引起化学损伤所导致的结构内部的化学-力学耦合效应,多孔介质力学-化学相互作用的本质就是物理能与化学能之间能量转换的平衡过程,提出了蓄盐集料盐分氯离子、钠离子的扩散方程,最后研究了基于钙离子消散引起的力学损伤数学关系,初步建立了多孔蓄盐集料的化学损伤-力学损伤之间复杂的耦合效应的本构数学关系。
     本文以多孔蓄盐抗凝冰材料作为研究对象,通过室内试验研究得到了多孔蓄盐发泡水泥石集料的最佳配合比,且在-5℃具有良好的抗凝冰效果,适用于路面早期抗凝冰;研究了多孔蓄盐填料沥青混合料的配合比、路用性能及抗凝冰效果,其在-4℃~0℃下具有良好的析盐性,除冰效果明显;研究了蓄盐组分的吸附扩散性能及其除冰性能的微观机理,盐分的吸附扩散性能受到温度、压力、浓度的影响作用较大,盐分能够有效降低凝冰点是由于盐分离子破坏了固有的水+冰共存体结构并减缓了冰晶结构的形成过程;研究了多孔蓄盐集料化学-力学耦合效应,建立了蓄盐集料盐分离子的扩散方程,初步建立了基于盐分离子消散引起的化学损伤-力学损伤之间复杂耦合效应的本构数学关系。
     本文研究结论对于后续新型抗凝冰材料的研发及推广应用、蓄盐路面技术设计理论的建立、抗凝冰性能评价体系的建立、蓄盐材料的抗凝冰本质机理探索、蓄盐抗凝冰材料化学-力学损伤本构数学模型的完善等方面,均具有重要的理论指导意义和实践应用价值。
It is wet and rainy in winter on the plateau mountain of China's Yunnan-Guizhou-Sichuan area, which is easy to form "frozen rain". The road will generate road condensate ice at a low temperature and the pavement skid resistance will be dropped significantly, easily creating vicious traffic accidents. The traditional ways to restrain road condensate ice and get rid of the snow and ice are mainly manual work and sprinkle salt, which is unfavorable in deicing and environmental protection and not applicable for clearing the road condensate ice. A new technology of active anticoagulation ice road--porous storage salt aggregate technology is studied in this paper. The feasibility of salt precipitation in porous storage salt aggregate is firstly studied by using Chemical Kinetic Theory, and then the preparation technology of porous storage salt aggregate, anticoagulation ice performance, anticoagulant ice effect of asphalt storage salt seal, the pavement performance and anticoagulation ice effect of asphalt mixture containing anticoagulation ice filler are studied through laboratory experiments. By using the material Studio materials simulation software, the micro-mechanism which the porous storage salt aggregate dissolve out salt to drop the freezing point and salt sorption-diffusion has been analyzed. Finally based on the law of mass diffusion, the chemical and mechanical coupling effect of the porous storage salt aggregate is studied.
     The study mainly includes the following aspects:
     (1) Through the application of chemical kinetic molecular collision theory, the paper studies collision dynamics process of the storage salt aggregate internal salt ion, the anticoagulation ice collision energy, the storage salt molecular inelastic collision energy conversion and the chlorine ion dissociation process during storage salt component collision. The acting mechanism of the porous storage salt aggregate to precipitate salt anticoagulant ice is analyzed. All of that provide qualitative feasibility conclusion for indoor preparation test of the porous storage salt aggregate.
     (2) The preparation technology, the salt absorption characteristics, the characteristic of continuous release of salting-out agent and compressive strength of the porous storage salt foamed cement pastes have been studied. Their aggregates, including the type, the way, the amount and the mixture ratio range of adulteration with salt, have been determined. The storage salt foamed cement pastes have been filtered into bituminous seal for the test of the anticoagulation ice. The mixing design of porous asphalt mixture containing storage salt filler has been studied, and the pavement performance and anticoagulant ice properties of the storage salt filler asphalt mixture have also been tested. The new porous storage salt foamed cement pastes aggregate which is prepared indoor has good precipitation of salt, and has a good anticoagulant ice effect at the temperature of-5℃.
     (3) The condensate ice mechanism and condensation process of liquid water have been studied in the use of MS Materials Calculation Software, which show that the reticular ice six-ring water molecules in dense configuration are formed by interconnecting hydrogen bonding of water molecules in the low temperature, and it will penetrate to the entire three-dimensional space of the system until all of the liquid water molecules are frozen.
     (4) The ice-salt solution coexisting system has been constructed to study microscopic mechanism of salt to reduce the condensate freezing point. Salt can reduce the freezing point of liquid water because that water-water hydrogen bonds have been greatly reduced around the salt chloride ion at the same time that water-chloride ion-hydrogen bonding structure has been formed, and the distance and angle of molecular have been changed. The chlorine ion broken inherent water ice structure in the coexistence and slow the dynamic formation of hydrogen bond structure.
     (5) The dynamic acting process of salt adsorption and diffusion within the porous storage salt foamed cement pastes aggregates has been simulated by using MS materials simulated calculation software, and the microscopic acting mechanism of the continuous migration and diffusion of Salt is also studied. The essence is the equilibrium process of energy continuous conversion. The correlation of temperature and pressure of salt adsorption and diffusion within the aggregate has been gained. The chloride ion of salt will be absorbed to the surface and internal part of storage salt carrier, and the salt adsorption and diffusion will be influenced greatly by temperature and pressure, especially the adsorption capacity and diffusion of chloride ion are stronger in high temperatures.
     (6) From the micro-angle of macro-areas, the paper studies salt diffusion characteristics of porous storage salt aggregate based on mass diffusion law as well as chemical-mechanical coupling effect within the structure cased by chemical damage due to the diffusion of salt ions. The essence of the mechanical-chemical interactions of porous media is exactly the equilibrium process of energy conversion between physical and chemical energy. Then, the diffusion equations of chloride ion and sodium ions in the porous storage salt aggregate are proposed in the paper. At last, the mathematical relationships of mechanical injury caused by the dissipation of calcium ions is studied, and the constitutive mathematical relationships of the complex coupling effect between the chemical injury-mechanical damage of the porous storage salt aggregate are built at the preliminary step.
     The porous storage salt anticoagulation ice materials are the objects of study in this paper. The best mixing design of porous storage salt foamed cement pastes aggregates is gained according to the conclusions from indoor test, and has a good anticoagulant ice effect at the temperature of-5℃which could be used in the early period anticoagulant ice; the mixing design of porous storage salt filler asphalt mixture, the pavement performance and anticoagulant ice properties have been studied, which shows a good precipitate salt property and a good anticoagulant ice effect when the temperature between-4℃and0℃; the microscopic acting mechanism of the continuous migration and diffusion of storage salt and anticoagulation ice properties have been studied, the salt adsorption and diffusion will be influenced greatly by temperature, pressure and concentration, the salt ion broken inherent water ice structure in the coexistence and slow the dynamic formation of ice crystal structure which decrease the condensate freezing point effectively; the diffuse equation of storage salt aggregate have been established from the chemical and mechanical coupling effect of the porous storage salt aggregate, and the constitutive mathematical relationships of the complex coupling effect between the chemical injury-mechanical damage of the salt ion diffuse are built at the preliminary step.
     The study conclusions of this paper have great theoretical guiding significance and practical application value for the development and expansion application of subsequent new anticoagulation ice material, the establishment of storage salt pavement technical design theory, the establishment of anticoagulation ice performance evaluation system, the exploration of anti-icing essential mechanism for storage salt material and the improvement of chemical-mechanical damage constitutive model of storage salt and anticoagulation ice materials, etc.
引文
[1]金松寿.化学动力学[M].上海:上海科学技术出版社,1959.
    [2]侯文华.化学动力学的建立与发展战略[J].大学化学,2007,22(3):28-36.
    [3]Levine R.D., Bernstein R.B.. Molecular Reaction Dynamics and Chemical Reactivity[M]. New York:Oxford,1987.
    [4]德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987
    [5]R.D.Levine, R.B.Bernstein, (陶愉生译).分子反应动力学[M].北京:科学出版社,1986.
    [6]文玉华,朱如增等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.
    [7]陈正隆.分子模拟的理论与实践教材.2002.
    [8]Schiotz J, Tolla F D D,Jacobsen W. Softening of nanocrystalline metals at very small grain size[J]. Nature,1998,391:561-563.
    [9]Swygenhoven H.V. Caro A. Molecular dynamics computer simulation of nanophase Ni: structure and mechanical properties [J]. Nanostructured Materials,1997,9:669-672.
    [10]Faux D A. Molecular dynamics studies of sodium diffusion in hydrated Na-Zeolite-4A[J]. Journal of Physics Chemistry B,1998,102:10658-10662.
    [11]Wen Yuhua, Zhou Fuxin, Liu Yuewu. Molecular dynamics simulations of Microstructure of nanocrystalline Copper[J]. Chinese Physics Letters,2001,31(3):411-413.
    [12]A.N.Terzaghi. Theoretical Soil Mechanics[J]. Wiley, NewYork.1943:368-430.
    [13]M.A. Biot. General Theory of Three-dimensional Consolidation[J]. J. Appl Phys.1941.12: 155-164.
    [14]M.A. Biot, Theory of Elasticity and Consolidation for a Porous Anisotropic Solid[J]. J.Appl Plays,1955,26:182-185.
    [15]M.A.Blot. Mechanics of Deformation and Acoustic Propagation in Porousmedia[J]. J.Appl Phys,1963,33:1482-1498.
    [16]R.M.Bowen. Incompressible Porous Media Models by Use of the Theory of Mixtures[J]. Int. J. Eng. Sci.1980,18:1129-1148.
    [17]R.M.Bowem. Compressible Porous Media Models by Use of the Theory of Mixtures [J].Int. J.Eng.Sei.1982,20:697-735.
    [18]Lai W M, Hou J S, Mow V C A. A triphasic theory for the swelling and deformation behaviours of articular cartilage[J]. ASME Journal of Biomechanical Engineering,1991, 113:245-258.
    [19]Ma C M. Hueckel T. Effects of interphase mass transfer in heated clays:a mixture theory[J]. International Journal of Engineering Science,1992,30(11):1567-1582.
    [20]Hueckel T. Water-mineral interaction in hygro-me-chanics of clays exposed to environmental loads:a mixture approach[J]. Canadian Geotechical Journal.1992a,29:1071-1086.
    [21]Hueckel T. On effective stress concepts and deformation in clays subjected to environmental loads[J]. Canadian Geotechical Journal.1992b,29:1120-1125.
    [22]Snijders H, Huyghe J M, Janssen J D. Triphasic fi nite element model for swelling porous media[J].In ternational Journal for Numerical Methods in Fluids.,1995,20:1039-1046.
    [23]Loret B, Simoes, Fermando M F. Articular cartilage with intra- and extrafibrillar waters:a chemo-mechanical model[J]. Mechanics of Materials,2004,36:515-541.
    [24]Loret B, Gajo A, Fernando M F, et al. A note on the dissipation due to generalized diffusion with electro-chemo-mechanical couplings in heteroionic clays[J]. European Journal of Mechanics A/Solids,2004,23:763-782.
    [25]Yang Q.S. A variational principle and MFE formula for thermo-electro-chemo-mechanical behavior of conducting polymer[C].Sina—Singapore Seminar for Computational Mechanics, Feb.2-7,2004,Journal of Beijing University of Technology,2004,30 supp:127-132.
    [26]石端学.基于钙离子侵析的混凝土化学损伤和力学损伤研究[D].河海大学硕士论文,2006.
    [27]张研,宋智通.水泥基材料的化学-力学耦合作用[J].计算力学学报,2009,26(5):697-702.
    [28]李大珍.化学动力学基础[M].北京:北京师范大学出版社,1989.
    [29]张玉军.物理化学[M].北京:化学工业出版社,2008.
    [30]Kauzmann,W. Kinetic Theory of Gases[M]. New York:Benjamin,1965.
    [31]Goldstein,H. Classical Mechanics[M].New York:Addison-Wesley,1950.
    [32]Johnston,H.S. Gas Phase Recation Rate Theory[M]. New York:Ronald,1966.
    [33]王琪.化学动力学导论[M].吉林:吉林人民出版社,1982.
    [34]McDaniel,E.W., Cermak,V., Dalgarno,A., and Ferguson,E,W.Ion-Molecule Reac-tions[M]. New York:Wiley,1970.
    [35]Maier,W.B. Ⅱ. J.Chem.Phys.,1964,41;2174.
    [36]Dence,J,B., Gray,H.B., and Hammond.G.B. Chemical Dynamics[M]. New York:Benjamin, 1968.
    [37]Weston,R.E.Jr., and Schwarz,H.A. ChemicalKinetics[M]. New Jersey:Prentice -Hall,1972.
    [38]Beuhler,R.J., Bernstein,R.B., and Kramer,K.H. J.Am.Chem.Soc.,1966,88:5331.
    [39]Hirschfelder,J,O.,Curtiss,C.F.,and Bird,R.B. Molecular Theory of Gases and Liquids[M]. New York:Wiley,1964.
    [40]康捷.抗凝冰沥青混合料技术研究[D].重庆交通大学硕士论文,2011.
    [41]崔龙锡.蓄盐类沥青混合料研究[D].重庆交通大学硕士论文,2010.
    [42]王峰,韩森,张洪伟,徐鸥明等.盐化物融冰雪沥青混合料的应用研究[J].公路,2009,3:176-179.
    [43]中华人民共和国行业标准JTJ E30-2005公路工程水泥及水泥混凝土试验规程[S].北京:电子工业出版社,2005.
    [44]中华人民共和国行业标准.MT/T-201-1995煤矿水中氯离子的测试方法[S].北京:煤炭工业出版社.
    [45]张丽娟.盐化物融雪沥青混合料研究[D].长安大学硕士论文,2010.
    [46]中华人民共和国行业标准.JTJ 052-2000公路工程沥青及沥青混合料试验规程[S].北京,人民交通出版社,2000.
    [47]曾德亮,马志君.抗凝冰涂料应用技术研究[J].新型建筑材料,2011:55-57.
    [48]Anderson H C. Molecular dynamics simulations at constant press and/ or temperature[J]. J Chem Phys,1980,72:384-2391.
    [49]B.J.Alder, T.E.Wainwright. Phase transition for a hard sphere system[J]. J.Chem.Phys., 1957,27:1208-1209.
    [50]A.W.Lees, S.F.Edwards. The computer study of transport process under extreme conditions [J]. J.Phys.C,1975,C5:1921-1929.
    [51]崔守鑫,胡海泉等.分子动力学模拟基本原理和主要技术[J].聊城大学学报,2005,18(1):30-34.
    [52]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2004.
    [53]V.Buch. P.Sandler. J.Sadlej. Simulations of H2O Solid Liquid,and Clusters,with an Emphasis on Ferroelectric Ordering Transition in Hexagonal Ice[J]. J.Phys.Chem.B,1998,102(44): 8641-8653.
    [54]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007.
    [55]杨萍,孙益民.分子动力学模拟方法及其应用[J].安徽师范大学学报,2009,32(1):51-54.
    [56]殷开梁.分子动力学模拟的若干基础应用和理论[D].浙江大学博士论文,2006.
    [57]B R.Brooks,et al, J.Comp.Chem.,1983,106:187.
    [58]Dauber-Osguthorpe P, RobertsV A, OsguthorpeD J, Wolff J, Genest M, Hagler A T. Pr oteins:Structure, Function and Genetics,1988,4:31.
    [59]H.Sun. J.Phys.Chem. B1998,102:7338.
    [60]Sun H, Mumby S J, Maple J R J,Hagler A T. J.Am.Chem.Soc.1994,116:2978.
    [61]Gill P E, Murray W. Practical Optimization[M]. Academic Press, London,England,1980.
    [62]Allinger N L. Adv. Phys.Org. Chem.,1976,13:1
    [63]Brooks B, Karplus M. Proc, Nat. Acad. Sci. USA,1983,80:6571
    [64]N.Metropolis A.W. Rosenbluth M.N. Rosenbluth A.H. Teller E. Equation of atate calculations by fast computing machines[J]. J.Chem.Phys.1953,21:1087-1092.
    [65]Allin M P, Tildesley D J. Computer Simulation of Liquids[M]. Clarendon Press, Oxford, England,1987.
    [66]Van Gunsteren W F, Berendsen H J C. Ahgew. Chem. Int. Ed.,1990,29:990.
    [67]Leach A R. Molecular Modeling[M]. Addison Wesley Longman Limitted, England,1996.
    [68]Lubos V. Pavel J. Homogeneous Freezing of Water Starts in the Subsurface[J]. J.Phys.Chem. B.2006,110(37):18126-18129.
    [69]Verlet L. Computer'experiments'classical fluids.I.Thermodynamical properties of Lennard-Jonesmolecules[J]. Physical Review,1967,159:98-103.
    [70]Honeycutt R W.The potential calculation and some applications [J].Methods in Computational Physics,1970,9:136-211.
    [71]Beeman D. Some multistep methods for use in molecular dynamics calculations [J]. Journal of Computational Physics,1976,20:130-139.
    [72]Gear C W. Numerical initial value problems in ordinary differential equations[M]. Englewood Cliffs, NJ:Prentice-Hall,1971.
    [73]Frenkel & Smit,汪文川等译.分子模拟—从算法到应用[M].北京:化学工业出版社,2002.
    [74]Van Gunsteren W F, Berendesn H J C. Mol. Phsy.,1977,34:1311.
    [75]Anderson H C. J. Chem. Phys.,1980,72(4):2384.
    [76]Chen C L. Review Article[M]. Chmistry,2002.
    [77]Jorgensen W L, Binning Jr R C, Bigot B. J. Am. Chem. Soc.,1981,103:4393.
    [78]Tolleaneare, et al. Forcefield-based Simulations[M]. MSI, San Diego, USA,1997.
    [79]Berendsen H J C, Postma J P M, Van Gunsteren W F, DiNola A, Haak J R. J. Chem. Phys., 1984,81:3684.
    [80]创腾科技有限公司Materials Studio培训教程.2006.
    [81]代亚东Materials Studio 5.5新功能及其在材料科学中的应用.创腾科技有限公司,2011.
    [82]Sigurd B, Peter U, Victoria B, Lubos V, Pavel J. J. Monitoring Ice Nucleation in Pure and Salty Water via High-Speed Imaging and Computer Simulations[J].Phys.Chem.C2008,112: 7631-7636.
    [83]Masakazu Matsumoto, Shinji Saito, Lwao Ohmine. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J].NATURE,2002,416:409-413.
    [84]M.Matsumoto, S. Saito, and I. Ohmine. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J].Nature,2002,416:409-413.
    [85]Ohmine, I. Tanaka, H. Fluctuation, relaxation and hydration in liquid water. Hydrogen-bond rearrangement dynamics[J].Chem. Rev.1993,93:2545-2566.
    [86]Ohmine, I., Tanaka, H. Wolynes, P. G. Large local energy fluctuation in water[J].J. Chem. Phys.1988,89:5852-5860.
    [87]Ohmine, I. Liquid water dynamics; collective motions, fluctuation and relaxation[J].J. Phys. Chem.1995,99:6767-6776.
    [88]Ohmine, I., Saito, S. Water dynamics:fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement[J].Acc. Chem. Res.1999,32:741-749.
    [89]Sasai, M. Instabilities of hydrogen bond network in liquid water[J].J. Chem. Phys.1990,93: 7329-7341.
    [90]Matsumoto,M. Ohmine, I. New approach to dynamics of hydrogen bond network in liquid water[J].J. Chem. Phys.1996,104:2705-2712.
    [91]Abraham, F. F. Homogeneous Nucleation Theory[M].Academic, New York,1974.
    [92]Mishima,O. Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature[J].1998,396:329-335.
    [93]Sastry, S., Debenedetti, P. G, Sciortino, F. Stanley, H. E. Singularity-free interpretation of the thermodynamics of supercooled water[J]. Phys. Rev.1996,E 53:6144-6154.
    [94]Lubos V. Pavel J.Molecular dynamics simulations of freezing of water and salt solutions[J]. Journal of Molecular Liquids,2007,134:64-70.
    [95]彭勇.多孔材料中的吸附和扩散[D].浙江师范大学硕士论文,2009.
    [96]DO D D. AdsorPtion analysis:equilibria and kinetics[M]. London:ImPerial College Press,1998.
    [97]Schuring D. Diffusion in zeolites:towards a microscopic understanding[J].Eindhoven: Eindhoven University of Technology,2002.
    [98]Ruthven D M. Brandani S. Measurement of diffusion in Porous solids by Zero Length Column(ZLC) methods[M]//KANELLOPOULOS N K. Recent advances in gas separation by microporous ceramic membranes. The Netherland:Elsevier,2000:187-212.
    [99]王泽新,郝策,张积树等.氢原子在Ni(100),在Ni(111),在Ni(1010)面上吸附扩散势能面的结构[J].化学学报,1993,51:417-423.
    [100]周宏建.有机分子模板控制下的三氧化二铁的矿化结晶及机理研究[D].江苏科技大学硕士论文,2010.
    [101]Andrew R L. Molecular Modeling:Principle and Practice[J].Berlin Heidelberg:Springer-Verlag,1996,357-359.
    [102]邬小波.蒸汽凝结的分子动力学研究[D].重庆大学硕士论文,2010.
    [103]Sigurd B. Peter U. Victoria B. Lubos V. Pavel J. Monitoring Ice Nucleation in Pure and Salty Water via High-Speed Imaging and Computer Simulations[J].J.Phys.Chem.C2008, 112:7631-7636.
    [104]Vrbka, L. Jungwirth, P. J. Mol. Liq.2007,134:64.
    [105]俞勇强.微孔中流体扩散系数的分子动力学模拟[D].浙江大学硕士论文,2006.
    [106]A.R. Leach. Molecular Modelling Principles and Applications[J].Addison Wesley Longman, 1996,333-342.
    [107]廖瑞金,朱孟兆等.油纸复合介质中水分子扩散行为的分子动力学模拟[J].物理化学学报,2011,27(4):815-824.
    [108]Biot MA. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941,12:155-164.
    [109]Biot MA.Theory of propagation of elastic waves in fluid saturated porous solid[J]. J. Acoust. Soc.America,1956,28:168-191.
    [110]Zienkiewicz OC, Shomi T.Dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution[J].International Journal for Numerical and Analytical Methods in Geomechanics,1984,8:71-96.
    [111]Li XK, Zienkiewicz OC, Xie YM. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution[J]. International Journal for Numerical Methods in Engineering,1990,30(6):1195-1212.
    [112]Thomas HR, Li CLW. Modeling transient heat and moisture transfer in unsaturated soils using a parallel computing approach[J].International Journal for Numerical and analytical Methods in Geomechanics,1995,19:345-366.
    [113]Thomas HR, He Y,Onofrei C. An examination of the validation of a model of the hydro/ thermo/mechanical behaviour of engineered clay barriers[J].International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:49-71.
    [114]Thomas HR,Ferguson WJ. A fully coupled heat and mass transfer model incorporating contaminant gas transfer in an unsaturated porous medium[J].Computers and Geotechinics, 1999,24:65-87.
    [115]Schrefler BA. F.E in environmental engineering:Coupled thermo-hydro-mechanical processes in porous media including pollutant transport[J].Archives of Computational Methods in Engineering,1995,2&3:1-54.
    [116]Li Xikui, Wu Wenhua, Charlier R.Numerical simulation of thermo-hygro-mechanical behavior with pollutant transport in engineered clay barrier. Proceedings of Int[J].Workshop on Environmental Geo-mechanics, Switzerland, June 30-July 5,2002:377-398.
    [117]武文华,李锡夔.热-水力-力学-传质辐合过程模型及工程土降数值模拟[J].岩土工程学报,2005,25(2):188-192.
    [118]武文华.非饱和土中热-水力-力学-传质祸合过程模拟及土坡环境工程中的应用[D].大连理工大学博士论文,2002.
    [119]Hueckel T. Borsetto M. Thermoplasticity of saturated soils and shals:constitutive equations [J]. Jonrnal of the Geotechnical Engineering, ASCE.1990,116(12):1765-1777.
    [120]Hueckel T, Baldi G Thermoplasticity of saturated clays:experimental constitutive study[J]. Janrnal of the Geotechnical Engineering,ASCE,1990,116(12):1778-1796.
    [121]Baldi G,Hueckel T,Pellegrini R.Thermal volume changes of the mineral-water system in low porosity clay soils[J].Canadian Geotechnical Journal,1988,25:807-825.
    [122]Chenmin M,Hueckel T. Stress and pore pressure in saturated clay subjected to heat from radioactive waste:a numerical simulation [J]. Canadian Geotechnical Journal,1992,29: 1087-1094.
    [123]Hueckel T. Pellegrini R Effective stress and water pressure in saturated clays during heating-cooling circles[J].Canadian Geotechnical Journal,1992,29:1095-1101.
    [124]Wu WH., Li XK, Charlier R, Collin F. A thermo-hydro-mechanical constitutive model for unsaturated soils[J].Computers and Geotechnique,2004,31:155-167.
    [125]Liu Z, Boukpeti N, Li X, Collin F, Radu J-P, Hueckel T, Charlier R. Modelling chemo—dydro-mechanical behaviour of unsaturated clays:a feasibility study[J]. International Journal for Numerical and analytical Methods in Geomechanics,2005, 29:919-940.
    [126]Hueckel T. Chemo-plasticity of clays subjected to stress and flow of a single contaminant [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21: 43-72.
    [127]Boukpeti N, Charlier R, Hueckel T. Modelling contamination of clays[M]. Ⅶ International Conferance on Computational Plasticity, Owen DRJ, Onate E, Suarez B(eds), Barcelona,2003.
    [128]Loret B., Hueckel T, Gajo A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J].International Journal of Solids and Structures,2002,30:2773-2806.
    [129]Nova R,Castellanza R,Tamagnini C.A constitutive model for bonded geomaterials subject to mechanical and / or chemical degradation[J].International Journal for Numerical and Analytical Methods in Geomecbanics,2003,27:705-732.
    [130]Seetharam SC, Thomas HR, Cleall PJ. Coupled thermo/dydro-chemical/machanical model for unsaturated soils-numerical algorithm[M].International Journal for Numerical Methods in Engineering, in press,2007.
    [131]Mesri G, Olson RE. Mechanisms controlling permeability of clays[J]. Clays and Clay Minerals,1971,19:151-158.
    [132]Daniel DE, Anderson Dc,Boyton SS. Fixed wall versus fexible wall permeameter, in Hydraulic Barriers in Soils and Rocks[J].ASTM,1985,874:107-125.
    [133]Anderson DC, Brown KW, Thomas JC. Conductivity of compacted clay soils to water and organic liquids[J].Waste Management Research,1985,3:339-349.
    [134]Biot MA. Mechanics of deformation and acoustic propagation in porous media [J]. Appl. physic.J.Appl. physic., Bd Ⅲ/Ⅰ, Springer Verlag,1960.
    [135]刘泽佳.多孔介质中化学-热-水力-力学耦合分析与混合元方法[D].大连理工大学博士论文,2005.
    [136]洪广言.无机固体化学[M].北京:科学出版社,2002:215-236.
    [137]H.Sinijde.J M Huyghe and J.D. Janssen Triphasic Finite Element Model for Swelling Porous Media[J]. InL J.Nm.Meth. Fluids,1995,20:1039-1046.
    [138]A.Maroudas.Physicochemical properties of Articular Cartilage [J]. Adult Articular Cartilage. 2nd Edition.M.R. Freeman, PiTman Medieal.1979:215-290.
    [139]B.R.A. Simon.J.S.S. Wu,W. M. Carlton, J.H,Evan and L.E.Kazarian. Structural Models for Human Spinal Motion Segmeats Based on a Poroelastic View of the Intervertebral disc[J]. ASME J.Biomech Eng.,1985,107:327-335.
    [140]I.N.Levine.Physical Chemistry[M]. NewYork:Fifth Edition,McGraw Hill,2002:457-589.
    [141]P.Sofronis and R,M. McMeeking. Numerical Analysis of Hydrogen Transport near a Blunting Crack Tip[J]. Journal of Mechanics and Physics of Solids,1989,37(3):317-350.
    [142]林銮.化学-力学耦合行为的有限元模拟[D].北京工业大学硕士论文,2007.
    [143]林銮,杨庆生.离子聚合物胶体的电化学-力学耦合模型及数值方法[J].宇航材料工艺,2008,1:31-34.
    [144]Wallmersperger T, Kroplin B, Gulch R. Coupled chemo-electromechanical formulation for ionic polymer gels—numerical and experimental investigations[J]. Mechanics of Materials, 2004,36:411-420.
    [145]王立鹏.混凝土材料钙离子侵析模拟及损伤研究[D].河海大学硕士论文,2008.
    [146]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [147]蒋欣,李辉,张林绪.混凝土的腐蚀性分析与研究[J].建筑技术,2004,35(4):250-251.
    [148]Gerard B, Pijaudier-Cabot G Laborderie C. Coupled diffusion-damage modeling and the implications on failure due to stain localization[J]. International Journal of Solids and Structures,1998,35:4107-4120.
    [149]张子明,张研,宋智通.水化热引起的大体积混凝土墙温度分析[J].河海大学报,2002,30(4):22-27.
    [150]张子明,郭兴文,杜荣强.水化热引起的大体积混凝土墙应力与开裂分析[J].河海大学学报,2002,30(5):12-16.
    [151]张子明赵吉坤,倪志强.混凝土拉伸断裂的细观力学模拟[J].河海大学学报,2005,33(3):287-290.
    [152]Zhang Ziming, Zhao Jikun, Wu Hao. Numerical simulation of mesoscopic damage for concrete[J]. Journal of Hohai University,2005,33(4):422-425.(in Chinese)
    [153]Neville A M, Dilger W H, Brooks J J. Creep of Plain and Structural Concrete[J]. London and New York:Construction Press,1983,151.
    [154]Wittmann F H. Surface tension, shrinkage and strength of hardened cement paste[J], Mater. Struct.,1968,1(6):547-552.
    [155]张研,张子明,邵建富.混凝土化学-力学损伤本构模型[J].工程力学,2006,23(9):153-156.
    [156]Bentz,.DP., Garboczi.,EJ.. Modeling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity[J]. Material and Statures,1992,2(25):523-533.
    [157]Delagrave,A. Study of ingress mechanisms of chloride ions in ordinary and high Performance concretes[M]. Ph.D. Thesis,Laval University, Quebec City,Canada,1996.
    [158]陈国荣.弹性力学[M].南京:河海大学出版社,2002.
    [159]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社.2004.
    [160]Gerard B,Bellego C,Le,Bernard O. Simplified Modeling of Calcium Leaching of Concrete in Various Environments [J] Journal of Material and structures,2002:58-78.
    [161]Gerard B, Pijaudier-Cabot G, Borderie C La. Coupled diffusion—damage modeling and the implications on failure due to strain 10calization[J].Intemational Journal of Solids and Structures,1998,35:4107-4120.
    [162]张研,张子明,宋智通.混凝土化学-力学耦合作用的非局部损伤模型[J].固体力学学报,2007,28(2):172-177.
    [163]Shao J F, Zhu Q Z, Su K. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics,2003,30:549-555.
    [164]Bourgeois F, Shao J F, Ozanam O. An lastoplastic model for unsaturated rocks and concrete [J]. Mechanics Reasearch Communications,2002,29:383-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700