燕麦种质资源遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燕麦(Avena)属于禾本科(Gramineae)、燕麦族(Aveneae D.)、燕麦属(Avena L.)。燕麦是我国高寒山区特有的一种优势杂粮作物,是粮饲兼用兼备食疗功能的作物。研究和评价燕麦种质资源的遗传多样性,对探讨燕麦的起源和进化,种质资源的考察搜集,燕麦种质资源遗传多样性保存措施的制定,以及燕麦资源新基因的挖掘和种质创新利用均具有重要意义。本研究在内蒙古阴山南北麓2种生态条件下对74份燕麦种质资源的形态多样性、蛋白质多样性和DNA多样性等方面进行了综合评价,并对3个不同层次的遗传多样性研究进行了比较。主要结果如下:
     1.对74份燕麦种质资源在2种不同生态环境下的形态多样性研究结果表明,燕麦种质资源各形态性状具有丰富的多样性,质量性状平均多样性指数为1.07;2试点数量性状平均多样性指数分别为1.90和1.65,平均变异系数为24.14%和27.66%。
     2.燕麦形态性状的主成分分析和判别分析表明,供试燕麦种质的形态多样性主成分明显,呼市试点燕麦的主穗粒重、千粒重和单株粒重是造成燕麦种质形态变异的主要因素;而武川试点燕麦的主穗粒重、单株粒重和主穗小穗数是造成燕麦种质形态变异的主要因素。
     3.基于形态性状聚类分析,将74份燕麦种质划分为五大种质群,供试燕麦种质类型丰富,可选到类型差异较大的不同种质材料。其中呼和浩特市试点种质群Ⅰ的材料可作为选育大粒、高产型品种的亲本,种质群Ⅱ的材料可作多穗型品种的亲本。武川试点种质群Ⅰ的材料可作为选育大粒,种质群Ⅴ的材料可作选育高产或多穗型品种的亲本,种质群Ⅲ的材料可作选育矮杆型品种的亲本。
     4.利用酸性聚丙烯酰胺凝胶电泳(Acid-polyacrylamide gel electrophoresis, A-PAGE)检测与分析表明,74份燕麦醇溶蛋白位点存在丰富的等位变异,共检测到73种燕麦醇溶蛋白图谱。等位基因平均遗传多样性指数为0.5229,其醇溶蛋白带纹遗传相似系数在0.1667~1.000之间,平均遗传相似系数为0.4964。供试材料共分离出19种迁移率不同的醇溶蛋白带纹,醇溶蛋白的带纹多态性为100%。基于燕麦醇溶蛋白聚类分析将74份材料分为六类,分类结果中部分供试材料与其地理来源有一定的相关性。
     5.对2个不同生态环境下74份燕麦种质资源3种营养成分进行了测定,结果表明不同种质材料之间品质性状含量存在着较为丰富的变异,呼和浩特市试点3个营养品质性状的平均变异系数和多样性指数为18.43%和1.84,武川试点3个营养品质性状的平均变异系数和多样性指数为17.32%和1.74。对其品质性状进行稳定性分析,其中编号为24、25、46、48、69、70的蛋白质含量,47、48、54的β-葡聚糖含量,13、24、25、27、71的赖氨酸含量在2试点表现含量高且稳定。并筛选出一批品质优异的燕麦资源,其中呼和浩特市32份,武川35份。
     6.不同种质基因型间的蛋白质、β-葡聚糖和赖氨酸含量均达到极显著差异水平;武川试点的蛋白质和β-葡聚糖的平均含量显著高于呼和浩特市试点。裸燕麦的3个品质性状含量极显著高于皮燕麦。β-葡聚糖含量与蛋白质、赖氨酸含量呈显著正相关,蛋白质含量与赖氨酸含量均呈正相关,但不显著。
     7.利用聚类分析的方法,对供试种质在2个试点的3种营养成分含量进行分类,使供试种质在不同类群间营养品质性状含量差异显著。
     8.利用植物基因组试剂盒提取较高质量的燕麦DNA,其纯度高、质量好,符合燕麦AFLP分析。本研究选用核心引物3’末端添加3个选择性核苷酸的PstⅠ和MseⅠ引物,扩增出的谱带多态性比率高,效果好。
     9.筛选出的10个引物组合,对74份燕麦种质的基因组进行片断多态性扩增,共扩增出784条清晰可辨的可记录带,其中760个位点具有多态性,多态性位点比率为96.91%。表明各供试材料的AFLP多态性丰富,利用AFLP标记评价燕麦种质的遗传多样性具有较高的检测效率。
     10. AFLP分子标记的遗传多样性分析结果表明,燕麦种质的平均Nei'基因指数(H)为0.382,平均Shannon's信息指数为0.573,表现出较高的遗传多样性。74份燕麦品种间遗传相似系数在0.2881-0.9106之间。
     11.基于AFLP分子标记的聚类分析结果,74份燕麦种质可以分为五类,分类结果与地理来源及皮裸性有相关性。
Oat (Avena sativa L.) belonging to genus Avena, tribe Aveneae, family Gramineae, was a Chinese dominated coarse crops in arid areas, and it was also an important plant of grain and forage and had food therapy function. Study and evaluation on genetic diversity of germplasm resources of oat (Avena sativa L.), which was important to the study of the origin and evolution, the investigation of germplasm resources, making protection measures for genetic diversity, new genes identification and germplasm innovation and utilization for oat. Therefore, DNA and morphological diversity and protein polymorphism of 74 oat germplasm resources were comprehensive evaluated at the northern and southern foot of Yinshan Mountain in Inner Mongolia, and compared to the study of genetic diversity of three different levels in this paper. The results were as follows.
     1. Morphological diversity of 74 oats germplasm resources were studied in the two kinds of different ecological environment. The results showed that oat germplasm had rich diversity of morphological characters, with diversity index of qualitative character in average of 1.07. The average diversity index of quantitative character of two experimental sites was 1.90 and 1.65, respectively, and the average coefficient was 24.14% and 27.66%.
     2. By using the principal component analysis and discrimination analysis of morphological characters of oat, the results indicated that principal components were obviously and the morphological variation of oat germplasm was caused by main spike grain weight, 1000-grain weight, grain weight per plant and seed shape at Huhhot experimental site, however, it was caused by main spike grain weight, grain weight per plant and spikelet number of main spike at Wuchuan experimental site.
     3. 74 oats germplasm at two experimental sites were divided into five groups by using cluster analysis on morphological characters of oat, and the different oat germplasm with great difference in groups was selected due to very multiplicity. At Huhhot experimental site, the groupΙcan be used as parent material to select big grain and high-yield varieties, whereas the groupПcan be used as parent material to select multi spike cultivars. At Wuchuan experimental sites, as parent material, the groupΙcan be selected big varieties, the groupⅤcan be selected high-yield varieties, the groupⅤcan be selected multi spike cultivars and the groupⅢcan be selected dwarf varieties.
     4. By acid-polyacrylamide gel electrophoresis (A-PAGE) analysis, the high allelic variation of gliadin alleles of 74 oats were observed, and 73 types of gliadin patterns were also detected. The average gentic diversity index of allele was 0.5229, genetic similarity coefficient of gliadin ploymorphism varied from 0.1667 to 1.000, and average genetic similarity coefficient was 0.4964. The results showed that 19 bands of gliadin were separated from materials and the gliadin ploymorphism was up to 100%. Gliadin of 74 oats were divided into six groups by cluster analysis and some of materials had related to the geographical origins including naked and covered oat.
     5. Three of nutritional compositions of 74 oats germplasm resources were determined under two different ecological environments and high genetic variation in quality characteristics among different materials were observed. The average coefficient variation and diversity index of three nutritional quality characteristics was 18.43% and 1.84, respectively, at Huhhot experimental site. However, at Wuchuan experimental site, the average coefficient variation and diversity index was 17.32% and 1.74, respectively. Stability of quality characteristics were analyzed under two experimental sites, the results showed that the content of protein numbered 24, 25, 46, 48, 69 and 70,β-glucan content numbered 47, 48 and 54 and lysine content numbered 13, 24, 25, 27 and 71 was high and stable, moreover, a batch of superior quality germplasms resources were selected including 32 samples at Huhhot experimental site and 35 samples at Wuchuan experimental site.
     6. The content of protein,β-glucan and lysine among different genetics of germplasm were significantly difference, and the average content of protein andβ-glucan at Wuchuan site was significantly higher than those of Huhhot site. The content of three of nutritional compositions in naked oat was significantly higher than covered oat. There was significant positive correlation between the content of protein and lysine andβ-glucan content, and there was also correlation between the content of protein and lysine, but there was not significant difference.
     7. Three of nutritional compositions content of oats germplasm resources at two experimental sites were analyzed by cluster analysis and the results showed that there were significant differences in nutritional quality among different groups.
     8. Extracting of high quality genome DNA from plant using plant genome kit accorded with AFLP analysis due to high purity and quality. The percentage of polymorphic bands were higher by appending Pst ? and Mse ? primer of three selective nucleotide to 3′termini of core primer in this study and had high effects.
     9. 74 oats germplasm were studied by amplified fragment length polymorphism and 10 AFLP primer pairs were selected, moreover, 784 of the primers set produced clear bands and 760 of them showed polymorphism, the percentage of polymorphic bands reached to 96.91%. Results indicated that evaluating the genetic diversity of oat using AFLP marker had higher testing efficiency due to high AFLP polymorphism.
     10. The results of analysis showed high genetic diversity of AFLP marker, and the average Nei’s index and Shannon's information index was 0.382 and 0.573, respectively. The variance range of genetic similarity coefficient of 74 oat varieties were 0.2881 ~ 0.9106.
     11. By AFLP marker, 74 oat germplasm resources were divided into five groups by using cluster analysis, which seemed related to the geographical origins and naked or covered oat.
引文
1钱迎倩,马克平.生物多样性研究的原理与方法[M].中国科技出版社,北京,1994, 13-36
    2 McNeely J.A., Miller, K.R., Conserving the World's Biological Diversity [M]. Washington, D. C and Gland, Switzerland: IUCN, WRI, WWF, World Bank, l990
    3施立明,贾旭,胡志昂.遗传多样性.见陈灵芝主编:中国的生物多样性[M],科学出版社,北京,1993,99-113
    4赵丽娟.荞麦种质资源遗传多样性分析[D].中国农业科学院,硕士学位论文,2006
    5贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10
    6 Allard, R.W. et al. The genetics of inbreeding populations[J]. Adv.Genet.1968, 14: 55-131
    7 Price,S.C. etc. Estimates of population differentiation obtained from enzymes polymorphisms and quantitative characters[J].J. Hered,1984,75:141-142
    8洪德元.植物细胞分类学[M].北京:科学出版社,1990
    9 Dobrhansky. T. (谭家祯等译).遗传学和物种起源[M].北京:科学出版社,1964
    10贺学勤.中国甘薯地方品种的遗传多样性分析[D].北京:中国农业大学,博士学位论文,2004
    11周光宇.有关同工酶分析的几个问题[J].植物生理学通讯,1983,(1):1-4
    12 Yamashita, M. Abe, J. Shimamoto-variation and differentiation of allelic frequencyds of isozyme loci in perennial ryegrasss (Lolium perenne)[J]. Journal of Japanese Society of Grassland Science, 1993, 38 (4): 459-468
    13 Osborne, T.B. The Vegetable Proteins [M]. Longman Green London, 1907
    14 O'Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. [J]. Biol.Chem. 1975, 250: 4007
    15王赞.柠条锦鸡遗传多样性研究[D].北京:中国农业大学,博士学位论文,2005
    16辛业芸.分子标记技术在植物学研究中的应用[J].湖南农业科学,2002,(4):9-12
    17米福贵.分子标记技术在植物育种中的应用[J].草原与草坪,2000,(2):3-7
    18周延清. DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005
    19 Hiromi, K. Tomotoshi, S., et al. Effective production of RFLP Markers between closely related varieties of rice genomic subtraction [J]. Japan Breeding Science, 1996, 46 (4): 387-391
    20 Grardiner, J.M., Coe, E.H., et al. Development of acore RFLP mapin maize using an immortalized F2 population [J]. Genetics, 1993, 134: 917-930
    21 Young, N.D., Tanksley, S.P. Restriction fragment length polymorphism analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding [J]. Theoretical and Applied Genetics, 1989, 77: 353-359
    22 Gebhardt, C., Ritter, E., et al. RFLP analysis and linkage mapping in solanum tuberosum [J]. Theoretical and Applied Genetics, 1989, 78: 65-75
    23 Blair, M.W., Panaud, O., et al. Inter-simple sequence repeat (ISSR) amplication for analysis of microsatellite motif frequence and fingerprinting in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 1999, 98: 780-792
    24 Dirlewanger, E., Pronier, V., et al. Genetic linkage map of peach (Prunus persica L.) using morphological and molecular markers [J]. Theoretical and Applied Genetics, 1998, 97: 888-895
    25 Esselman, E.J., Li, J.Q., et al. Clonal diversity in the rare Calamagrastis porter issp. insperata (Poaceae): comparative results for allozymes and RAPD and ISSR markers [J]. Mol Ecol 1999, 98 (8): 443-451
    26 Gilbert, J.E., Lewis, R.V., et al. Developing an appropriate strategy to assess genetic variability in plant germplasm collections [J]. Theoretical and Applied Genetics, 1999, 98: 1125-1131
    27 Godwin, L.D., Aitken, E.A., et al. Application of inter-simple sequence repeats (ISSR) to plant genetics [J]. Electrophoresis, 1997, 18: 1524-1528
    28邱丽娟,常汝镇,王文辉等.大豆抗抱囊线虫种质rhg和Rhg4位点的单核苷酸多态性(SNPs )[J].植物遗传资源学报,2003,4(2):89-93
    29李宏伟,刘曙东,高丽锋,等,小麦EST-SSRs的通用性研究[J].植物遗传资源学报,2003,(3):252-255
    30章文波,陈红艳.实用数据统计分析及SPSS12.0应用[M].北京:人民邮电出版社,2006,248-251
    31《中国植物志》[M].第九卷,第三分册
    32杨海鹏,孙泽民.中国燕麦[M].北京:农业出版社,1989
    33陆大彪.燕麦分类的商榷[A].全国莜麦育种栽培协作组编莜麦(裸燕麦)科技论文资料选编[M]. 1984,31-37
    34叶福均.燕麦属Avena分种问题的研究[A].全国莜麦育种栽培协作组.莜麦(裸燕麦)科技论文资料选编[M].1984,38-47
    35 Rajhathv, T. Evidence and an hvpothesis for the origin of the C genome of hexaploid Avena [J]. Can J Genet Cytol, 1966, 8: 774-779
    36马晓刚,任有成,王显萍.发展燕麦生产在青海经济和生态建设中的作用[J].作物杂志,2004,(5):9-11
    37赵秀芳,戎郁萍,赵来喜.我国燕麦种质资源的收集和评价[J].草业科学,2007,24(3):36-40
    38齐雅坤,安迎新.我国燕麦品种资源的蛋白质与脂肪含量的初步研究[J].内蒙古农业科技,19(2):4-7
    39萧安民.美国燕麦及其制品[J].粮食与油脂,1994,(1):24-26
    40田长叶,郝瑞秀.燕麦营养与医疗价值及其保健食品开发[J].张家口农专学报,2003,12(4):9-12
    41王晓星.浅谈内蒙古燕麦资源的开发利用[J].中国水土保持,1990,25(3):14-15
    42黄艾样,肖蓉.燕麦及其营养食品的研究开发[J].粮食与饲料工业,2000,(9):49-50
    43周建新.大有开发前途的燕麦保健食品[J].食品科技,1999,(6):55-56
    44田养池.燕麦在我国保健食品工业中的开发现状[J].商业科技开发,1997,(2):26-27
    45中国农科院作物品种资源所主编.中国燕麦品种资源目录[M].北京:中国农业出版社,1996
    46马得泉,田长叶.中国燕麦优异种质资源[J].作物品种资源,1998,(2):4-6
    47王柳英.燕麦品种性状变异的研究[J].草业科学,1998,15(3):19-22
    48付晓峰,刘俊青,刘建国,等.国外引入燕麦种质资源在裸燕麦新品种选育中的应用[J].内蒙古农业科技,1999,4(2):14-15
    49石德军.北欧4种燕麦在果洛地区的引种栽培试验[J].青海畜牧兽医杂志,1999,(29):2
    50吴学明,杜军华,曾阳.青海省燕麦品种资源分析[J].西北植物学报,2002,22(1):158-162
    51张伦.黑龙江野燕麦、栽培燕麦的核型分析及比较研究[J].贵州科学,1991,9(2):109-116
    52李浩兵,姚景侠.八倍体节节麦一燕麦部分双二倍体的细胞遗传学鉴定[J].江苏农学院报,1998,19(3):1-5
    53俞益,陈佩度,刘大钧.莜麦与野红燕麦杂交的细胞遗传学研究[J].南京农业大学学报,1998,21(4):1-6
    54江龙,张庆勤.黑麦与光稃野燕麦杂交后代的减数分裂研究[J].种子,2003, (128)2:37-38
    55孙敬一,路铁刚,王显林,等.筱麦与玉米的远缘杂交[J].植物学报,1995,37(4):255-258
    56张海清,何觉民,刘海伦.普通小麦与野生燕麦杂交的研究[J].湖南农学院学报,1994, 20(2):101-105
    57罗桂花,李有忠,吴学明.青海皮燕麦农家品种的同工酶分析[J].青海师范大学学报,1997,(4):36-39
    58周青平,石德军,杨力军.几种高产燕麦品种酯酶同工酶分析[J].中国草地,2002 ,24(4):15-18
    59王茅雁,齐秀丽.利用RAPD标记研究燕麦属不同种的遗传差异[J].华北农学报,2004,19(4):24-28
    60刘欢.燕麦AFLP标记的遗传多样性分析[D],甘肃农业大学,硕士学位论文,2007
    61 Long, J., Holland, J.B., et al. Responses to selection for partial resistance to crown rust in oat [J]. Crop Sci. 2006 , 46 (3): 1260-1265
    62 Zhou, X., Jellen, E.N., et al. Murphy.Progenitor Germplasm of Domesticated Hexaploid Oat [J]. Crop Sci. 1999, 39: 1208-1214
    63 Hua, J., Dormer, L.L. et al. Combined AFLP and RFLP mapping in two hexaploid oatrecombinant inbred populations [J]. Genome, .2000, 43: 94-101
    64 Caballero, R., Goicoechea, E.L., et al. Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch [J]. Field Crops Res. 1995, 41: 135-140
    65 Rives, H.W., Gengenbach, B.G., et al. M itochondrial DNA diversity in oat cultivars and species [J]. Crop Sci, 1988, 28: 171-176
    66 Goffreda, J.C., Burnquist, W.B., et al. Application of molecular markers to assess genetic relationships among accessions of wild oat, Avena sterilis [J]. Theor Appl Genet, 1992, 85: 146-151
    67 O’Donoughue, L.S., Kianian, S.F., et al. A molecular linkage map of cultivated oat [J]. Genome, 1995, 38: 368-380
    68 Prasanta, K., Subudhi, N.P., et al. An AFLP-based survey of genetic diversity among accessions of sea oats (Uniola paniculata, Poaceae) from the southeastern Atlantic and Gulf coast states of the United States [J]. Theor Appl Genet, 2005, 111: 1632-1641
    69 Yong B.F., Gregory W., Peterson, D.W., et al. Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm [J]. Theor Appl Genet, 2005, 111: 530-539
    70 Eduardo, G., Bernard, R.B., et al. Development of an identification scheme for Canadian registered oat cultivars using RAPDs [J]. Can J Plant Sci, 1998, 78: 605-610
    71 O’Donoughue, L.S., Wang, Z., et al. An RFLP-baset linkage map of oat based on a cross between two diploid taxa (Avena atlantica×A.hirtula) [J].Genome, 1992, 35: 765-771
    72 Jin, H., Dormer, L.L., et al. Combined AFLP and RFLP mapping in two hexaploid oat recombinantin bred populations [J].Genome, 2000: 43: 94-101
    73 Narinder Pal,Jagdeep S. Sandhu,et al. Development and Characterization of Microsatellite and RFLP-Derived PCR Markers in Oat[J].Crop Sci, 2002,42:912-918
    74 Kianian, S.F., Phillips, R.L., et al. Quantitative trait loci influencing ?-glucan content in oat (Avena sativa, 2n=6x=42) [J]. Theor Appl Genet, 2000, 101: 1039-1048
    75 De Koeyer, D.L., Tinker, N. A. A molecular linkage map with associated QTLs from a hulless×covered spring oat population [J]. Theor Appl Genet, 2004, 108: 1285–1298
    76 Cheng, D.L., Brian, G.R., et al. Tracing the Phylogeny of the Hexaploid Oat Avena sativa with Satellite DNAs [J]. Crop Sci, 2000, 40: 1755-1763
    77 Zhou, X., Jellen, E.N., et al. Murp.Progenitor Germplasm of Domesticated Hexaploid Oat [J]. Crop Sci, 1999, 39: 1208-1214
    78 Jellen, E.N., Rines, H.W., et al. Characterization of Sun II oat monoso-mics through C-banding and identification of eight new Sun II monosomics [J]. Theor. Appl Genet, 1997, 95: 1190-1195
    79佘跃辉.小豆种质资源研究[D].雅安:四川农业大学,博士学位论文,2005
    80张玲丽.中国小麦地方品种遗传多样性与遗传异质性研究[D].杨凌:西北农林科技大学,博士学位论文,2006
    81张礼凤,李伟,王彩洁,等.山东大豆种质资源形态多样性分析[J].植物遗传资源学报,2006,6(4):450-454
    82郝黎仁,樊元,郝哲欧,等. SPSS实用统计分析[M].北京:中国水利水电出版社,2002,280-285
    83代寿芬,颜泽洪,魏育明,等.西藏小麦资源在都江堰试种的表现及评价[J].植物遗传资源学报,2003,4(2):166-170
    84徐黎黎,李伟,郑有良.东方小麦主要农艺性状分析[J].麦类作物学报,2006,25(6):15-20
    85熊丽娟.马卡小麦农艺性状与种子贮藏蛋白的遗传多样性研究[D].雅安:四川农业大学硕士学位论文,2006
    86庄萍萍,李伟,颜泽洪,等.波斯小麦农艺性状相关性及主成分分析[J].麦类作物学报,2006,26(4):1 1-14
    87张小英,李伟,庄萍萍,等.密穗小麦农艺性状分析[J].四川农业大学学报,2005,23(4):398-401
    88许海涛,许波,王友华,等.玉米主要农艺性状的遗传变异、相关性和主成分分析[J].湖南农业科学,2007,(1):16- 18
    89高金锋,张慧成,高小丽,等.西藏苦荞种质资源主要农艺性状分析[J].河北农业大学学报,2008,31(2):1-5
    90李继洪,刘晓辉,李淑杰,等.主成分分析在甜高粱育种中的应用[J].杂粮作物,2007,27(1):17-18
    91王勋陵,王静.植物形态结构和环境[M].兰州:兰州大学出版社,1988,57-148
    92国际种子检验协会,国际种子检验规程[M].北京:中国农业出版社,1986
    93颜启传.国际农作物品种鉴定技术[M].中国农业科学技术出版社,2004
    94唐慧慧,丁毅,胡耀军.中国近缘野生大麦醇溶蛋白的遗传多态性研究[J].武汉植物学研究,2002,20(4):251-257
    95张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J].中国农业科学,1995,28(4):25-32
    96颜启传,黄亚军,徐媛.试用ISTA推荐的种子醇溶蛋白电泳方法鉴定大麦和小麦品种[J].作物学报,1992,18(1):61-68
    97兰秀锦,魏育明,王志容,等.中国节节麦与中东节节麦的醇溶蛋白遗传多样性比较研究[J]. 四川农业大学报,1999,17(3):245-248
    98 Zhang, Q.F, Allard, R.W. Sampling variance of the genetic diversity index [J]. The Journal of Heredity, 1986, 77; 54-55
    99鲍晓明,黄百渠,李松涛,等.用RAPD技术鉴定两个小冰麦易位系[J].遗传学报,1993,20(1):81-87
    100杨瑞武,周永红,周有良,等.波兰小麦醇溶蛋白遗传差异及其与新疆稻麦的关系[J].麦类作物学报,2000,20(4):1-5
    101堪小燕,俞志隆,黄培忠.我国大麦醇溶蛋白多肽的多态性研究[J].遗传学报,1991,18(3):252-262
    102丁虹.小麦醇溶蛋白的研究[J].遗传,1988,10(6):39-41
    103刘华,王宇生,张辉,等.小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用[J].作物学报,1999,25(6): 674-682
    104张玉良,张晓芳,舒卫国.小麦醇溶蛋白电泳技术及应用[J].作物品种资源,1994,12(6):33-34
    105湛小燕.大麦醇溶蛋白研究概况[J].遗传,1990,12(6):35-38
    106 Draper, S.R. ISTA vatiety committee report of the working group for biochemical tests for cultivar identification 1983-1986 [J]. Seed Science Technology, 1987, 15: 431-434
    107 Metakovsky, E.V. Gliadin allele identification in common wheat II .Catalogue of gliadin alleles in common wheat [J]. J Genet Breed, 1991, 45: 325-344
    108 Nei, M., Li, W. Mathematical model for studying genetic variation in terms of restriction endonucleases [J]. Proc. Natl. Acad. Sci. USA, 1979, 76: 5269-5273
    109 Rohlf, F.J. NTSYS-pc version 1.80. Distribution by Exeter Software, Setauket,New York. 1993
    110刘华,王宇生,张辉,等.小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用[J].作物学报,1999,25(6):674-682
    111 Pogna, N.E., Borghi, B., et al. Electrophoresis of gliadins for estimating the genetic purity in bread wheat seed production [J]. Genetic Agriculture, 1986, 40: 201-212
    112 Cox, T.S., Lookhart, G.L., et al. Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide gel electrophoretic patterns [J]. Corp Sci. 1985, 25: 1058-1063
    113张学勇,杨欣明,董玉深.醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J].中国农业科学,1995, 28(4) :25-32
    114徐黎黎,李伟,魏台明,等.东方小麦醇溶蛋白遗传多样性分析[J].植物遗传资源学报,2005,6(2):195-199
    115罗桂花,李有忠,吴学明.青海皮燕麦农家品种的同工酶分析[J].西北植物学报,1998,18(6):84-87
    116罗桂花,马继雄,花立民,等.青海燕麦农家品种的醇溶蛋白电泳分析[J].草业学报,2004,13(2):112-114
    117 Zabeau, M., Vos, P. Selective restriction fragment amplification:a general method for DNAfingerprinting. European Patent Application number 92402629.7,Publication number 0535858 Al. European Patent office,Paris, 1993
    118 Vos, P., Hogers, R., et al. AFLP:a new technique for DNA fingerprinting [J]. Nucleic Acids Research, 1995, 23: 4407-4414
    119 Mackill, D.J., Zhang, Z., et al. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, 1996, 93: 969-977
    120 Paul, S., Wachira, F., et al. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia Sinensis (L) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet, 1997, 94: 255-263
    121 Qi, X., Stam, P., et al. Use of locus-specific AFLP markers to construct a high-density molecular map in barley [J]. Theor.Appl.Genet, 1998, 96: 376-384
    122 Margues, C.M., Araujo, J.A., et al. AFLP genetic maps of Eucalyptus globules and tereticornis [J]. Theor. Appl. Genet, 1998, 96: 727-737
    123 Meksem, K., Leister, D., et al. A highresolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers [J]. Mol. Gen. Genet, 1995, 249 (1): 74-81
    124 Thomas, C.M., Vos, P., et al. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato of gene for resistance to chdosporium fulvum [J]. The Plant Journal, 1995, 8 (5): 785-794
    125王述民,张赤红.利用AFLP标记鉴定小豆种质遗传多样性[J].植物遗传资源科学,2002,3(1):1-5
    126 International plant genome conferenceⅢJanuary [C]. San Diego USA, 1995
    127 Barrett, B.A., Kidwell, K.K. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest [J]. Crop Science, 1998, 38(5): 1261-1271
    128 Mirostaw TYRKA. A simplified AFLP method for fingerprinting of common wheat (Triticum aestivum L.) cunltivars [J]. J. Appl. Genet., 2002, 43(2): 131-143
    129 Hiromi, K., Tomotoshi, S., et al. Effective production of RFLP Markers between closely related varieties of rice genomic subtraction [J]. Japan Breeding Science, 1996, 46(4): 387-391
    130李志琪.应用AFLP标记技术研究甘蓝类蔬菜遗传多样性及亲缘关系[D].中国农业科学院,硕士学位论文,2003
    131 Barrett, B.A., kidwell k k. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest[J]. Crop Science,1998,38(5):1261-1271
    131 Wu, Y.Q., Huang, Y.H., et al. Genetic diversity of sorghum accessions resistant to greenbugs as assessed with AFLP markers [J]. Genome, 2006, 49(2): 43-149
    132 Hongtrkul, V., Huestis, G.M., et al. Amplified fragment length polyrnorphisms as a tool forDNA fingerprinting sunflower germplasm:Genetic diversity among oilseed inbred lines [J]. Theor Appl Genent, 1994, 89: 9-13
    133马艳红.几种小麦族禾草远缘杂交后代育性恢复研究[D].呼和浩特:内蒙古农业大学,博士学位论文,2007
    134郝晨阳,王兰芬,董玉琛,等.我国西北春麦区小麦育成品种遗传多样性的AFLP分析[J].植物遗传资源学报,2003,4(4):285-291
    135杜金友,黎裕,王天宇,等. SSR和AFLP分析玉米遗传多样性的研究[J].华北农学报,2003,18(1):59-63
    136陈亮,梁春阳,孙传清,等. AFLP和RFLP标记检测水稻亲本遗传多样性比较研究[J].中国农业科学,2002,35(6):589-595
    137唐梅,何光华,裴炎.中籼杂交水稻亲本多态性的AFLP分析[J].遗传,2002,24(4):439-441
    138蔡健,兰伟,李飞天,等.利用AFLP标记和形态性状检测皖北小麦主栽品种的遗传多样性[J].核农学报,2007,21(2):116-119
    139刘杰,刘公社,齐冬梅,等.向日葵品种鉴定和纯度分析的AFLP研究[J].植物学通报,2002,19(4):441-451
    140郭晶心,周乃元,马荣才等.白菜类蔬菜遗传多样性的AFLP分子标记研究[J].农业生物技术学报,2002,10(2):138-143
    141 Yong, B.F., Solomon, K.K., et al. Amplified fragment length polymorphism analysis of 96 Canadian oat cultivars released between 1886 and 2001 [J]. Can.J. Plant Sci, 2004, 84: 23-30
    142 O’Donoughue, L.S., Souza, E., et al. Relationships among North American oat cultivars based on restriction fragment length polymorphisms [J]. Crop Sci, 1994, 34: 1251-1258
    143李伶利,陈学好.高等作物主要品质性状遗传研究进展[J],种子,2004,23(4):52-56
    144杨玉芳.蛋白质含量测定方法[J].明胶科学与技术,2007,27(2):98-101
    145张娟,杜先锋,饶砚琴.刚果红法测定燕麦中β-葡聚糖含量的研究[J].安徽农业大学学报,2007,34(1):23-26
    146李桂玲,李欢庆,刘从彬.谷物中赖氨酸含量测定方法的探析[J].河南工业大学学报,2006,27(5):66-80
    147李鸿恩.中国小麦种质资源主要品质鉴定[M].西安:陕西科学技术出版社,1992
    148申瑞玲,姚惠源.谷物β-葡聚糖提取和纯化[J].粮食与油脂,2003,7:19-20
    149 Steve, W.C. Cerealnon-starch polysaccharide I (1→3)(1→4)-β-D-glucans Polysaccharide Gums from Agricultural Prouducts. [C].Steve W.Cui.,2001, 103-166
    150邓万和,王强,吕耀昌,等.品种和环境效应对燕麦β-葡聚糖含量的影响[J].中国粮油学报,2005,20(2):30-32
    151刘三才,李为喜,刘方,等.苦荞麦种质资源总黄酮和蛋白质含量的测定与评价[J].植物遗传资源学报,2007,8(3):317-320
    152赵惠贤,张战风,吴磊,等.小麦品质性状与一些生化性状的典型相关及逐步回归分析[J].麦类作物学报,2004,24(4):5 8-61
    153陈锦新,张国平.大麦籽粒发育期β-葡聚糖含量动态及与气象因子的关系[J].应用生态学报,2002, 13(4):417-420
    154 Ellis, R.P., Swanston, J.S., et al. The development ofβ-glucanase and dlegradeaLion ofβ-glucan in barlev grow in Scotland and Spain [J]. Cereal Sci, 1997, 26: 75-82
    155 Fastnaught, C.E., Berglund, P.T., et al. Genetic and environmental variation in bete-glucan content and quality parameters of barley for food [J]. Crop Sci, 1996, 36 (4): 941-946
    156马昭才.一粒系小麦种质资源分子生物学研究[D].雅安:四川农业大学,博士学位论文,2006
    157武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性[J].遗传学报,2001, 28(11):1040-1050
    158邱芳,伏健民,金德敏.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700