钢厂废水再生的反渗透膜污染控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁厂每天会排放出大量的循环冷却排污水,用膜分离技术将该废水处理并补给循环冷却水系统,意义重大。膜污染是反渗透技术应用中所面临的重要问题,它不仅直接影响膜的高效连续运行,还会增加运行费用,缩短膜的使用寿命。要使膜组件能够长期稳定的运行,就必须根据废水的水质情况,制定出合理的预处理方案;针对废水中污染物质的种类与特性,通过试验得出最佳工艺参数。基于此,本文开展了钢厂废水再生的反渗透膜污染控制策略的研究。
     首先进行水质分析,结果表明废水有结垢倾向;悬浮物含量严重超标;油、总铁也超过了允许值;此外,废水中有机物会引起反渗透膜的微生物污染。最后确定了以多介质过滤-活性炭过滤-微滤-反渗透为主的技术路线来处理该废水。
     从降低废水中悬浮物和胶体的角度出发确定混凝剂、盐酸、杀菌剂的最佳用量。结果表明,经过加药获得理想混凝过滤效果后,出水浊度值平均为0.2NTU,SDI<3,满足反渗透膜对悬浮物和胶体的进水要求,pH值在7左右时的加药量:混凝剂PAC为15mg/L;杀菌剂NaClO为6mg/L。继续投加PAM,出水的浊度和SDI值又分别升高了,原因是水中产生了胶体再稳现象,建议在该系统中停止使用PAM。
     通过臭氧投加量和CODMn的去除率之间的关系,确定了臭氧投加量为1.5mg/L。全面考察臭氧活性炭工艺去除色度、有机物、油、铁、锰的效果。结果表明,臭氧活性炭工艺对上述污染物质均有很高的去除率,对色度的去除率为70%;对CODMn的去除率为67%;对油的去除率为87.5%;对Fe2+的去除率为85.7%;对Mn2+的去除率为62.5%。臭氧的强氧化作用可使有机物不饱和键断开,苯环开环,将大分子有机物转化为小分子有机物,再通过活性炭对有机物的吸附,达到控制的目的。
     通过对阻垢剂的中试试验,考察阻垢剂是否能够有效防止膜表面结垢。结果表明,在使用该阻垢剂后,系统在后期产生碳酸钙结垢,证明该阻垢剂不能有效的起到阻垢作用,建议更换,并提出膜清洗的专项策略。采用0.5%(w) HCl清洗液清洗后,系统各项指标恢复到原始状态,达到了预期目的。
Iron and steel works let off much circulate cooling wastewater everyday,it is worth to treat and reuse it as circulate cooling make-up water.Membrane fouling is one of big problem in the application of membrane technology. In order to keep the long-term and stable run effect of membrane parts, it's necessary to analyse the quality of wastewater, to make acceptable pretreatment technology, to find the best parameter.The control of RO membrane fouling for regenerate wastewater from iron and steel works were systematically studied in the paper.
     In this paper, the quality of wastewater was analyzed.Based on the results of water quality analysis, the wastewater has scaling tendency;suspended substance、oil、Fe、Mn were overproof;and organic matter in the water can cause microorganism pollute.The SF(sand filter)-GAC(granular activates carbon)-MF (microfiltration)-RO(reverse osmosis)system was adopted to treat the wastewater.
     The optimum dosing amount of PAC、HCl、NaClO were determined from the angle of decreasing suspended substance and colloid. The result showed that the optimum dosing amount of medicament which made the perfect coagulate, the average turbidity is 0.2NTU,silt density index (SDI) is less than 3, which could meet the requirements of RO feed. The dosage of PAC is 15mg/L;the dosage of NaClO is 6 mg/L.If continued dosing PAM, turbidness and SDI of the wasterwater were increasing,the reason of the phenomenon is colloid stabilization.So stopping dosing PAM was suggested.
     Through the variation of CODMn with the dosage of O3,the dosage of O3 was defined as 1.5mg/L.The writer made an overall observation on the effectiveness of O3-GAC process of removing colourity、CODMn、UV254、oil、Fe、Mn. The result showed that O3-GAC filters have high removal efficiency of such contaminant which could meet the requirements of RO feed. The remove rate of colourity is 70%; the remove rate of CODMn is 67%; the remove rate of oil is 87.5%; the remove rate of Fe2+ is 85.7%; the remove rate of Mn2+ is 62.5%. The strong oxidizing action of the O3 can broke the unsaturated bond, open benzene ring, transform macromolecule to micromolecule, then through the adsorption of the GAC to remove the pollutant.
     To test the dependability of adding scale inhibitor technology, the experiment of scale inhibitor was conducted.The result showed that RO membrane was scaling fast. It is proved that the scale inhibitor can not inhibit scale effectively.So it is necessary to change scale inhibitor. In the end,the special membrane cleaning method is presented.
引文
[1] 邵青.水处理及循环再利用技术[M].北京:化学工业出版社,2003
    [2] 肖锦.城市污水处理及回用技术[M].第一版 .北京:化学工业出版社,2002
    [3] 娄建军.节约水资源与中水回用系统[J].云南环境科学,2001,20(4):15~16
    [4] 王湛.膜分离技术基础[M].北京:化学工业出版社,2000
    [5] 邵刚.膜法水处理技术[M].北京:冶金工业出版社,2000
    [6] P.Hillis.Membrane Technology in Water and Wastewater Treatment[M].England:The Royal Society of Chemistry,2000
    [7] Richard W.Baker .Memberane Technology and Applications[M].California : Membrane Technology and Research,Inc,2004
    [8] 王学松.反渗透膜技术及其在化工和环保中的应用[M].化学工业出版社,1988
    [9] 冯逸仙.反渗透水处理工程[M].北京:中国电力出版社,2000
    [10] 蔡虹.超滤膜和微滤膜在生活污水回用处理中的应用研究[D] .西安:西安建筑科技大 学,2002
    [11] Mark C Porter.Handbook of Industral Membrane Technology[M].New Jersey : Noyes Publications,1988
    [12] 时钧,袁权,高从楷.膜技术手册[M].北京:化学工业出版社,2001
    [13] 冯伯华.化学工业手册[M].第四分册.北京:化学工业出版社,1989
    [14] 刘禄生,武江津,刘国信.三废处理工程技术手册[M].化学工业出版社,2000
    [15] J.E. Cadotte, Evaluation of Composite Reverse Osmosis Membrane, Materials Science of Synthetic Membranes[M]. Washington,DC:American Chemical Society,1985
    [16] 翟莹雪.膜法水处理技术及研究进展[J].环境保护科学,2002,28(112):18~44
    [17] 吴存永.反渗透膜技术在污水回用中的应用[D].南京:南京理工大学,2002
    [18] 张光斗.地下水反渗透脱盐优化设计和工程应用[D].四川:四川大学,2003
    [19] 刘荣娥.膜分离技术[M].北京:化学工业出版社,2000.10~11
    [20] Mike Jenkins,Matthew B.Tanner,Operational experience with a new fouling resistant reverse osmosis membrance[J].Desalination.1998(119):243~250
    [21] L.D.Nghiem , et . al . Adsorptive interactions between membranes and trace contaminants[J].Desalination.2002(147):269~274
    [22] 许振良.膜法水处理技术[M].北京:化学工业出版社,2001,19~20
    [23] 杨艾花.反渗透处理技术在太钢生产废水回用中的应用[J].冶金动力.2005(107):69~77
    [24] 韦贵菊.膜集成技术处理鄂尔多斯羊绒集团生产废水的研究[D].天津:天津工业大学.2005
    [25] 徐厚道.有害离子对反渗透阻垢剂的影响[J].化学工业与工程技术.2005(26):10~12
    [26] 徐腊梅.反渗透系统中浓差极化的影响[J].工业水处理.2004(24):63~65
    [27] 王晓琳.膜的污染和劣化及其防治对策[J].工业水处理.2001,21(9):1~5
    [28] 黄敢林.反渗透膜污染分析及清洗研究[J].化学世界.增刊
    [29] 严煦世,范瑾初.给水工程[M].第四版 .北京:中国建筑工业出版社,1999
    [30] 曾玉凤.污水处理中膜污染控制的研究[J].玉林师范学院学报(自然科学). 2003,(24):58~59
    [31] Takao Hasegawa et al.Method and flocculant for water treatment[P],US 4923629,1996
    [32] M.Asami,T. Aizawa and Y.Magara.Bromate Ion Formation Inhibition by Coexisting Organic Matters in Ozonation Process[J]. J. Jpn. Soc. Water Environ. 1996,Vol.19: 930±936
    [33] M.Asami,N.Hashimoto,T.Aizawa and Y.Magara.Determination of Bromate Ions in Ozonated Water by Ion Chromato Graphy : Analytical Conditions and Application[J].J.Jpn.Water Works Assoc. 1997,66(4):34±42
    [34] 王晓昌.臭氧处理的副产物[J].给水排水.1998, 24(12):75~77
    [35] 张晖.水中臭氧分解动力学研究[J].环境科学研究.1999,12(1):17~19
    [36] 张淑琪.臭氧氧化自来水生物稳定性研究[J].环境科学.1998,19(5):34~36
    [37] 范翊,陆坤明.水厂臭氧系统的实践[C].中国土木工程学会水工业分会给水委员会第八次年会.2001:15~20
    [38] 王晓昌.臭氧用于给水处理的几个理论和应用问题[J].西安建筑科技大学学报.1999,30(4):307~311
    [39] Gonce N and Voudrais E.A.Removal of Chlorite and Chlorate Ions from Water Using Granular Activated Carbon[J].Water Res.2001,Vol.28:1059±1069
    [40] 李伟光,安东,马放等.生物增强技术在饮用水深度处理中的应用[C].城镇饮用水安全保障技术研讨会论文集.2004:310~315
    [41] 王琳,王宝贞,王欣泽等.活性炭与超滤组合工艺深度处理饮用水[J].中国给水排水.2002.Vol.18:25~28
    [42] 范洁.臭氧-生物活性炭深度处理饮用水安全技术研究[R].博士后研究报告.2003:26~27
    [43] F.R.Kolb and P.A.Wilderer.Activated Carbon Adsorption Coupled with Biodegradation to Treat Proble-matic Wastewaters Proc[J].1st IAWQ Specialized Conference on Adsorption in Water Environment and Treatment Processes.1996:pp.191±199
    [44] Takashi Kameya,Tatsuya Hada,Changes of Adsorption Capacity and Pore Distribution of Biological Activated Carbon on Advanced Water Treatment[J].Wat.Sci.Tech.Vol.35. (1997) NO.7:pp.155~162
    [45] Kazuhiro Mochidzuki and Yasushi Takeuchi.The Effects of Some Inhibitory Components on Biological Activated Carbon Processes[J].Wat.Res.Vol.33,(1997) No.11:pp.2609~2616
    [46] Y.Takeuchi , Y.Suzuki and K.Mochidzuki.Biological Activated Carbon Treatment of Organic e.uent Water Containing Heavy Metal Ions at a High Salt Concentration Proc[J].SCEJ Kusyu Regional Meeting,1994:pp.125±126
    [47] K.Mehmet,E.K.James,and K.Tanju*.Isolation of Dissolved Organic Matter (DOM) from Surface Waters Usingreverse Osmosis and Its Imapact on The Reactivity of DOM to Formation and Speciation of Disinfection By-products[J].Wat.Res.Vol.35 , No.9(2001) ,pp.2225~2234
    [48] Suitor J.W,Marner W.J.The history and status of research in fouling of heat exchanger in cooling water service[J] .Canada Journal of chemistry in English,1977,55:374~392
    [49] 刘振法,王育琳.新型高效阻垢缓蚀剂的研制[J] .河北省科学院学报,1998,2:44~46
    [50] 程云章,瞿祥华.阻垢剂的阻垢机理及性能评定[J] .华东电力,2003,7:14~18
    [51] Dong-jin C.Development of an environmentally safe corrosion,scale,and microorganism inhibitor for recirculating cooling systems[J].Materials Science and Engineering,2002, 335:228~236
    [52] Yasuda M, Suzuki K,Ogata Y,Hine F,Kondo Y.Study of the CaSO4 deposits in thepresence of scale inhibitors [J]. Corrosion 1985,41:331~356
    [53] 郑邦乾,朱清泉.高分子阻垢剂及其阻垢机理[J].油田化学,1984(2):181~184
    [54] Al-Shammiri M,Safar M,Al-Dawas M.Evaluation of two different antiscalants in real operation at the Doha research plant[J].Desalination,2000,128(1)1~16
    [55] Butt F H,Rahman F,Baduruthamal U.Evaluation of SHMP and advanced scale inhibitor for control of CaSO4,SrSO4 and CaCO3 scales in RO desalination[J].Desalination,1997,109 (3):323~332
    [56] Butt F H,Rahman F,Baduruthamal U.Identification of scale deposits through membrane autopsy[J].Desalination,1995,101(3):219~230
    [57] 严瑞谊.水处理剂应用手册[M].北京:化学工业出版社,2001
    [58] He Shiliang,Amy T Kan,Mason B Tomson.Inhibition of calcium carbonate precipition in NaCl brines from 25 to 90oC[J]. Applied Geochiemistry,1999,14(1):17~25
    [59] 何铁林.水处理化学品手册[M].北京:化学工业出版社,2001
    [60] 何高荣,陈博武,蒋毅章.PAPEMP 与西部冷却水处理[J].工业水处理,2002, 21(1) :19~22
    [61] 何高荣,陈博武,鲍其鼎.含醚膦酸 PAPEMP 复配水处理剂 SPC-680 研究[J].净水技术,2001,20 (2):19~23
    [62] 王睿,张岐,丁洁.阻垢剂作用机理研究进展[J].化学工业与工程,2001,18 (2) : 79~86
    [63] Amjad Zhhid.Scale control with terpolymers containing styrene sulfonic acid[P].US 4952327,1990
    [64] Duggirala P Y.Process for treating an aqueous liquid containing forming calcium scale salts by adding a copolymer of 1,2-dihydroxy-3-butene antiscalant[P].US 6235152,2001
    [65] Koskan Larry P.Polyaspartic acid as a calcium sulfate and a barium sulfate inhibitor[P].US 5116513,1992
    [66] Sikes C S.Inhibition of inorganic or biological CaCO3 sub.3 deposition by poly amino acid derivatives [P]. US 4534831,1985
    [67] Zidovec Davor F.Calcium carbonate scale controlling method[P] .US 5562830,1996
    [68] Koskan Larry P.Methods of controlling scale formation in aqueous systems[P] .US 5062962,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700