库水变幅带水—岩作用机理和作用效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水-岩相互作用在自然界广泛存在,水是诱发各种地质灾害最活跃、最主要的因素。三峡工程竣工后,库水每年都将在145 m和175 m水位之间缓慢或快速的升降,在库水位大幅度涨落的情况下,库岸边坡部分岩体处于“饱和-风干”的循环状态,水-岩循环作用将造成岩体性质劣化,很可能使稳定的库岸边坡向不稳定方向发展。因此有必要对变幅带水-岩循环作用机理和效应进行系统研究,确定岩土体力学参数的变化规律,并将此规律应用到岸坡稳定性分析中。
     在理论分析的基础上,以试验为主要研究方法对此展开了详细的研究:
     (1)把超声-回弹综合法应用到岩石试样选择中,在正式试验之前,挑出那些可能会使试验结果很离散的试样,可以提高室内试验的测试准确程度。实践表明,这种综合选样方法具有较好的适用性,同时,超声-回弹综合法可以较好的预测岩石的抗压强度。
     (2)试样本身存在的初始差异性决定了初始强度存在差异,采用超声-回弹综合强度预测公式,根据初始纵波波速、回弹值对每个试样的实测强度值进行修正,相当于把每个试样的初始强度修正到同一个标准,然后再进行比较分析,这样可以更好的反映试验规律。
     (3)水-岩物理作用、化学作用和力学作用通常是不可分割的,库岸边坡的破坏,通常是三类作用的综合结果,在不同时期,各类作用所占的比例不一样,引起边坡岩体破坏的作用机理也不一样的,因此,对于库岸边坡岩体在库水位变化时水-岩作用机理的分析应该分三个阶段考虑:库水位上升期、相对稳定期和消落期,同时应该重点考虑“饱和-风干”的循环作用。把库岸边坡水-岩作用机制概括为五个方面:力学弱化机制、局部应力集中机制、物理弱化机制、化学弱化机制、“饱和-风干”循环作用累积损伤机制。
     (4)采用分段的方法,详细分析了库水位升降对库岸边坡岩体的力学作用,从力学机理上解释了库岸边坡在水位上升或下降过程中安全系数先下降后上升变化规律的原因,也能很好的解释一些库岸边坡失稳的原因。
     (5)从断裂力学角度分析了裂隙水压力对裂纹强度因子的影响,对考虑裂隙水压力作用的Ⅰ~Ⅱ型复合裂纹扩展进行了研究,结果表明Ⅰ~Ⅱ型复合裂纹的裂纹扩展角θ的变化,不仅与裂纹的闭合程度、斜裂纹倾角α、双向应力大小有关,还与裂隙水压力的大小、裂纹面的摩擦系数有关;并且,在相同情况下,未闭合裂纹的扩展角要大于闭合裂纹的扩展角:对于闭合裂纹,摩擦角φ越小,扩展角θ越大。
     (6)从试验结果来看,单纯的静水压力对水-岩化学反应的影响较小,其差别在于物理和力学损伤作用促进水-岩化学作用的发生,水压力的升、降和“饱和-风干”循环作用对岩体的损伤有累积放大作用,浸泡时水压力变化越大,对离子浓度和次生孔隙的影响越大,而且,浸泡时间越长,“饱和-风干”循环次数越多,岩体的损伤越严重。
     (7)提出了基于离子浓度变化计算岩石中次生孔隙率变化规律的方法,与实测次生孔隙率变化规律基本一致。
     (8)岩石试样显微结构照片显示,经过浸泡和“饱和-风干”循环作用后,矿物颗粒均发生了不同程度的溶解、溶蚀,颗粒界限边缘变的模糊,不规则状变的趋向圆滑,颗粒之间的钙质胶结趋向松散,说明水溶液对砂岩的物理化学细观损伤作用较强。
     (9)不同浸泡时期的砂岩试样的应力-应变曲线的形态基本一致,但曲线中压密段的长度差别较大,浸泡的时间越长,压密段的长度越大,弹性变形段的斜率越小,卸除荷载后的残余变形越大,岩石试样有明显“变软”的趋势,而且循环加卸载损伤试样“变软”的趋势更加明显。
     (10)在“饱和-风干”循环过程中,砂岩试样的纵波波速、回弹值、抗压强度、粘聚力、摩擦角、弹性模量、变形模量均出现不同程度的劣化,而且浸泡时的压力变化越大,下降的趋势越明显,同时,强度下降趋势与试验时加载的围压有关,围压越低,下降的趋势越明显,与“完整”试样相比,循环加卸载损伤试样的各参数劣化的更为严重。
     (11)随着围压的增大,弹性模量和变形模量有增大的趋势,而且随着浸泡时间(“饱和-风干”循环次数)的变化,这个差别越来越大。同时,随着围压增大,岩石试样张性破坏特征逐渐减弱,而剪性破坏特征逐渐明显,即由张性破坏过渡到张剪性破坏,由张剪性破坏过渡到剪张性破坏。
     (12)从总体统计规律来看,随着围压增大,砂岩试样破坏时的剪切角逐渐变小;相同围压破坏的试样,浸泡时水压力变化越大,其剪切破坏角相对越小;随着浸泡时间(“饱和-风干”循环次数)的变化,砂岩试样的剪切破坏角有逐渐变小的趋势,这与砂岩试样强度参数劣化的规律是一致的。
     (13)与“完整”砂岩试样相比,循环加卸载损伤试样破坏时的破碎程度要严重的多,各项力学指标也衰减的更快,说明损伤岩体对水软化作用更加敏感,长期浸泡“饱和-风干”循环作用后力学性质弱化明显,更易产生不稳定问题。
     (14)通过不同级配、不同含水率情况下的土石混合体直剪试验,建立了天然级配和设计级配土石混合体的c-ω,φ-ω之间的关系,为评价滑坡在库水位变化条件下c、φ值的弱化提供了量化依据。
     (15)建立库岸边坡数值分析模型进行了计算分析,计算结果和监测数据变化趋势基本一致,而且计算中的塑性区分布位置和宏观地质巡查发现的滑坡后缘和中部区域出现了的裂缝区域非常相似,但是计算结果偏小,说明在分析库水位升降循环作用时,必须考虑水-岩作用的长期时间效应;同时,降雨及库水位升降是滑坡加速变形的主要影响因素,滑坡表层土石混合体在“饱和-风干”循环作用下的力学参数变化规律同样值得进一步的研究。
Water-rock interaction exists widely in nature, which is the most active and important factor for a variety of geological disasters. The three gorges project will be completed; and the reservoir water will be raised to 175m and reduced to 145m every year. During the fluctuation of the reservoir water level, the quality of rock mass of the bank slopes would be deteriorated in water-rock interaction of "saturation-air dry" cycles, and it would further cause great damage to stability of the bank slope. So it is necessary to study water-rock interaction mechanisms and effects at the fluctuation of reservoir water level systemically, and determine the physical parameters of rock and soil mass, which can be applied in slope stability analysis and it would reveal the impact of the water-rock interaction on the slope stability.
     Based on theoretical analysis,a detailed study have been launched and experiment is considered as a main research methods:
     (1)The ultrasonic-rebound comprehensive method was applied to the rock sample selection which has the advantages of two methods. In order to get the accurate results, the rock specimens which may cause discrete results can be selected out first before the laboratory test. Practice shows that such a comprehensive sampling method has good applicability. At the same time, the ultrasonic-rebound method is quit useful to predict the compressive strength.
     (2) The inherent differences in the sample determine the differences of initial strength. Here try to propose a strength correction method, a strength prediction equation considering rebound value and strength of rock. It is equivalent to revise the initial strength of each specimen to the same standard, and then the law can be better reflected by the experiment results in a comparative analysis.
     (3) Water-rock interaction includes three aspects:physical, chemical and mechanical effects, the destruction of bank slopes would be the comprehensive result of those three aspects effects. Due to the proportion of different effects changes at different periods of water-rock interaction, failure mechanism of rock slope is not the same as well. So, the impact of water-rock interaction mechanism on bank slope during fluctuation of reservoir water level should be considered to divide in three phases:the decrease, the rise and stationary of reservoir level. Meanwhile the effects of "saturation-air drying" should be mainly concentrated. The water-rock interaction mechanisms is summarized as five aspects:mechanical weakening mechanism, local stress concentration mechanism, physical weakening mechanism, chemical weakening mechanism, cumulative damage mechanism of "saturation-air drying".
     (4) Segmentation method is proposed, and the mechanical effect of reservoir rock slope in rising or drawdown of reservoir water levels is analyzed detailed.The variation that the safety factor change from decreasing to increasing along with the change of reservoir water levels are explained by mechanical mechanism, which also can explain some of the reasons for the bank slope instability.
     (5)The influence of fissure water pressure to the crack intensity factor is analysed in respect of the fracture mechanics. I - II composite crack propagation is studied by considering the fissure water pressure. The results show that the crack propagation angle (?) of composite crack is not only related to the degree of crack closure、the angleαof inclined crack and the size of two-way stress, but is also related to the size of the fissure water pressure and the friction coefficient of the crack surface. In the same circumstances, the propagation angles of non-closed cracks are greater than the propagation angles of closed cracks; and for the closed cracks, the smaller the friction angle, the greater the propagation angle..
     (6) From the test results of this paper, the effect of simple hydrostatic pressure to water-rock interaction is smaller, the differences is for that the physical and chemical role of water-roc、the rise or decline of water pressure and the role in cycle of "saturation-air dry" has cumulative and magnified effect to the damage of rock. Tests show that the greater the water pressure in immersion, the greater the impact to the ion concentration and secondary porosity, and more development the erosion-corrosion pores. At the same time, the longer of the soaking time, the more cycles of "saturation-air dry", the more serious damage to the rock mass.
     (7)Based on the change of ion concentration, the computational method of secondary porosity change law in the rock is proposed, which consistent with measured changes of secondary porosity.
     (8)The microstructure's photographs of the rock samples show that, after cycles of "saturation-air dry" cycles, the mineral particles have undergone varying degrees of dissolution, corrosion, particle boundaries become fuzzy, and irregular shape become smooth, particles of calcium cement tend to be loose, which indicates that the effect of aqueous solution on the sandstone physical and chemical microscopic injury is strong.
     (9)The morphological characteristics of stress-strain curves of sandstone samples in different soaking times is basically identical, but compacting curve varied greatly in length, as soaking time is the longer, length of compacting would be larger, the slope of the elastic deformation's section became smaller, residual deformation after unloading is increased. The rock samples obviously change soft, and the injury samples which have experienced the cyclic loading and unloading change soft more obviously.
     (10)In the cycle of "saturation-air dry", longitudinal wave velocity, rebound value, compressive strength, cohesion, friction angle, elastic modulus, deformation modulus of the sandstone samples has varied degrees of deterioration, the change law is consistent basically. Moreover, the greater pressure in the soaking time, the trend is more downward obviously. While the downward trend of strength is related to the confining pressure of the loading test, the lower the confining pressure, the more obviously the downward trend. Compared with the "intact" samples, all parameters of the injury samples deteriorate more severely.
     (11) With the confining pressure increasing, the elastic modulus and deformation modulus are increased, and changed along with soaking time ("saturation-air dry" cycles), the difference gets more obvious. At the same time,tensile failure characteristics of rock samples is gradually weakened, the shear failure characteristics becomes obvious, which transforms from tensile damage to tensile-shear damage, finally changes to shear tensile damage.
     (12)Statistical laws show that the shear angle of sandstone samples dwindles with the confining pressure increasing; when under the same confining pressure, the shear failure angle is relatively smaller when the water pressure during immersion is greater; as the soaking time ("saturation-air dry" cycles) goes on, shear failure angle of sandstone samples is progressively smaller, which is consistent with the deterioration law of strength parameters of the sandstone sample.
     (13)Compared with the compressive strength of the "intact" sandstone sample, the damage degree of injury samples which have experienced the cyclic of loading and unloading is more serious, and the mechanical parameters decay faster, it indicated that injury samples is more sensitive to water, the weakening of the mechanical properties is obviously after long-term "saturation-air dry" cycles and it is easier to generate instability problems.
     (14) The direct shear test of SRM with the different gradations and different moisture content has been carried out, and the relationship is established between c-ωand (?)-ωof SRM with natural gradation and design gradation, which provides a quantitative basis for evaluating weakening degree of c、(?) of landslide under the condition of the reservoir water level fluctuation.
     (15)The model for numerical analysis is established to calculate, the results are basically consistent with the monitoring data, and the location of plastic zone calculated is very similar to the cracks region found at the edge and centre of the landslide when macro-geological inspection, but the calculation is smaller.The results show that long-time effect of water-rock interaction must be considered; at the same time, rainfall and water level fluctuation are the main factors for accelerating deformation of the landslide, and the variation law of parameters is also worth further studying when SRM on the landslide surface is under "saturation-air dry" cycles.
引文
[001]王士天,刘汉超,张倬元,大型水域水岩相互作用及其环境效应研究[J],地质灾害与环境保护,1997,8(1):69-88.
    [002]刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境,1999,8(1):75-80.
    [003]刘新荣,傅晏,王永新,水-岩相互作用对库岸边坡稳定的影响研究[J],岩土力学,2009,30(3):613-616.
    [004]王思敬,马凤山,杜永廉,水库地区的水岩作用及其地质环境影响[J],工程地质学报,1996,4(3):1-9.
    [005]徐则民,黄润秋,杨立中,斜坡水-岩化学作用问题[J],岩石力学与工程学报[J],2004,23(16):2778-2787.
    [006]马水山,雷俊荣,张保军等,滑坡体水岩作用机制与变形机理研究[J],长江科学院院报,2005,22(5):37-38
    [007]汤连生,王思敬,岩石水化学损伤的机理及量化方法探讨[J],岩石力学与工程学报,2002,21(3):314-319.
    [008]周翠英,邓毅梅,谭祥韶,软岩在饱和过程中水溶液化学成分变化规律研究[J],岩石力学与工程学报,2004,23(22):3813-3817.
    [009]周翠英,邓毅梅,谭祥韶,软岩在饱和过程中微观结构变化规律研究[J],中山大学学报(自然科学版),2003,42(4):98-102.
    [010]丁梧秀,冯夏庭,灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J],岩石力学与工程学报,2005,24(8):1283-1288.
    [011]汤连生,张鹏程,王思敬,水-岩化学作用之岩石断裂力学效应的试验研究[J],岩石力学与工程学报,2002,21(6):822-827.
    [012]汤连生,周萃英,渗透与水化学作用之受力岩体的破坏机理[J],中山大学学报(自然科学版),1996,35(6):95-100.
    [013]朱效嘉.软岩的水理性质[J].矿业科学技术,1996,24(3):46-50.
    [014]苏永华,赵明华,刘晓明,软岩膨胀崩解试验及分形机理[J],岩土力学,2005,26(5):728-732.
    [015]赵明华,刘晓明,苏永华,含崩解软岩红层材料路用工程特性试验研究[J],岩土工程学报,2005,27(6):667-671.
    [016]郭永春,谢强,文江泉,含崩解软岩红层材料路用工程特性试验研究[J],岩土工程学报,2005,27(6):667-671.
    [017]梁冰,刘晓丽,薛强,低渗透地下环境中水-岩作用的渗流模型研究[J],岩石力学与工程学报,2004,23(5):745-750.
    [018]谭罗荣,蚀变凝灰岩的微观特性与水稳定性的关系[J],岩土工程学报,1990,12(6):70-75.
    [019]刘晓明,赵明华,苏永华等,红层软岩崩解性的灰色关联分析[J],湖南大学学报(自然科学版),2006,33(4):16-20.
    [020]何丙辉,刘立志,遂宁组紫色页岩崩解过程及坡积物特征研究[J],西南大学学报(自然科学版),2007,29(1):48-52.
    [021]苏永华,赵明华,刘晓明,软岩膨胀崩解试验及分形机理[J],岩土力学,2005,26(5):728-732.
    [022]张永安,李峰,陈军,红层泥岩水岩作用特征研究[J],工程地质学报,2008,16(1):22-26.
    [023]刘建,李鹏,乔丽苹,砂岩蠕变特性的水物理化学作用效应试验研究[J],岩石力学与工程学报,2008,27(12):2540-2550.
    [024]郭永春,红层岩土中水的物理化学效应及其工程应用研究[D],西南交通大学研究生硕士学位论文.重庆:2007:21-26.
    [025]耿乃光,水对岩石力学性质影响的试验研究[J],国际地震动态,1988,4(2):7-9.
    [026]汤连生,张鹏程,水化学损伤对岩石弹性模量的影响[J],中山大学学报(自然科学版),2000,39(5):126-128.
    [027]汤连生,张鹏程,王思敬,水-岩化学作用的岩石宏观力学效应的试验研究[J],岩石力学与工程学报,2002,21(4):526-531.
    [028]周翠英,邓毅梅,谭祥韶,饱和软岩力学性质软化的试验研究与应用[J],岩石力学与工程学报,2005,24(1):33-38.
    [029]汤连生,张鹏程,王洋,水作用下岩体断裂强度探讨[J],岩石力学与工程学报,2004,23(19):3338-3341.
    [030]LOGAN J M,BLACKWELL M I.The influence of chemically active fluids on the frictional behavior of sandstone[J].EOS,Transactions,American Geophysical Union,1983,64(2):835-837.
    [031]路保平,林永学,张传进,水化对泥页岩力学性质影响的试验研究[J],地质力学学报,1999,5(1):65-70.
    [032]HAWKINS A B,MCCONNELL B J.Sensitivity of sandstone strength and deformability to changes in moisture content[J].Quarterly Journal of Engineering Geology and Hydrogeology,1992,25(2):115-130.
    [033]李炳乾.地下水对岩石的物理作用[J].地震地质译从,1995,17(5):32-37.
    [034]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的试验研究[J].地球物理学报,1991,34(3):335-342.
    [035]徐德敏,黄润秋,虞修竟,蚀变岩水-岩相互作用试验研究[J],水土保持研究,2008,15(2):117-119.
    [036]张有天,岩石水力学与工程[M],北京:中国水利水电出版社:2005.
    [037]杨更社,孙钧.中国岩石力学的研究现状及其展望分析,西安公路交通大学学报[J],2001,21(3):5-9.
    [038]王金星,王灵敏,杨小林.对岩石拉伸试验方法的探讨[J],焦作工学院学报(自然科学版),2004,23(3):205-208.
    [039]刘效云,张弛.浅谈岩石抗压强度试验中应注意的几个问题,煤炭科技[J].1999(1):18-20.
    [040]朱珍德,张爱军,邢福东.岩石抗压强度与试件尺寸相关性试验研究[J].河海大学学报(自然科学版),2004,32(1):42-45.
    [041]尤明庆,苏承东.大理岩试样的长度对单轴压缩试验的影响[J].岩石力学与工程学报,2004,23(22):3754-3760.
    [042]丁嘉榆.岩石中裂隙对声波传播的影响[J].有色金属,1982,24(2):7-12.
    [043]罗周全,杨月平,程爱宝.深部岩体裂隙声波探测技术应用研究[J].有色金属(矿山部分),2005,57(3):28-31.
    [044]张亚非,建筑结构检测,1995,第1版,武汉工业大学出版社.
    [045]Ergin Arioglu用施米德特锤迅速可靠地估测岩石强度[J].中州煤炭,1993,第1期:44-46.
    [046]刘宗平,王润起,吴小林等.施密特锤试验数据处理方法及其在预估岩石可钻性中的应用,现代地质[J],1990,4(4):113-125.
    [047]丁黄平,佴磊,张振营.岩石抗压强度点荷试验与回弹试验相关性研究[J].路基工程,2008,第5期:70-71.
    [048]魏安,蒋爵光.铁路岩石边坡稳定性分类的逐步判别分析[J].西南交通大学学报,1997,第2期:49-54.
    [049]中华人民共和国国家标准编写组.工程岩体分级标准(GB50218-94)[S].北京:中国计划出版社,1999.
    [050]赵明阶,徐蓉,岩石声学特性研究现状及展望[J].重庆交通学院学报,2000.19(2):80-85.
    [051]朱合华,周治国,邓涛.饱和对致密岩石声学参数影响的试验研究[J].岩石力学与工程学报,2006,24(3):823-828.
    [052]王德新,砂岩抗压强度与声波时差关系的试验研究[J].石油大学学报(自然科学版),2001,25(4):37-39.
    [053]赵明阶,吴德伦.工程岩体的超声波分类及强度预测[J].岩石力学与工程学报,2000,19(1):89-92.
    [054]颜峰,姜福兴.爆炸冲击载荷作用下岩石的损伤试验[J],爆炸与冲击,2009,29(3):275-279.
    [055]李维树,丁秀丽,邬爱清,等.蓄水对三峡库区十石混合体直剪强度参数的弱化程度研究,岩土力学[J],2007,28(7):1338-1342.
    [056]刘文平,时卫民,孔位学,等.水对三峡库区碎石土的弱化作用,岩土力学[J],2005,26(11):1857-1861.
    [057]董云,柴贺军,杨慧丽.土石混填路基原位直剪与室内大型直剪试验比较,岩土工程学报[J],2005,27(2):235-238.
    [058]李晓,廖秋林,赫建明,等.土石混合体力学特性的原位试验研究,岩石力学与工程学报[J],2007,26(12):2377-2384.
    [059]许建聪,尚岳全.降雨作用下浅层碎石土滑坡解体破坏机理研究,自然灾害学报[J],2008,17(3):117-124.
    [060]李远耀,殷坤龙,柴波,等.三峡库区滑带土抗剪强度参数的统计规律研究,岩土 力学[J],2008,29(5):1419-1429.
    [061]唐晓松,邓楚键,郑颖人,等.三峡库区碎石土地基浸水试验研究,地下空间与工程学报[J],2008,4(2):226-229.
    [062]赵川,石晋旭,唐红梅,三峡库区土石比对土体强度参数影响规律的试验研究,公路[J],2006,11(11):32-35.
    [063]李维树,邬爱清,丁秀丽,三峡库区滑带土抗剪强度参数的影响因素研究,岩土力学[J],2006,27(1):56-60.
    [064]孔位学,郑颖人,三峡库区饱和碎石土地基承载力研究,工业建筑[J],2005,35(4):62-64.
    [065]刘文平,张利民,郑颖人,等.三峡库区重庆段滑坡体抗剪及渗透参数研究,地下空间与工程学报[J],2009,5(1):226-229.
    [066]赵青,黄质宏,孔思丽,等.土质边坡抗剪强度试验结果分析,贵州工业大学学报(自然科学版)[J],2003,32(2):92-97.
    [067]李维树,夏晔,乐俊义,水对三峡库区滑带(体)土直剪强度参数的弱化规律研究,岩土力学[J],2006,27(sup):1170-1174.
    [068]朱向东,尚岳全,碎石土边坡破坏机理的敏感性分析,防灾减灾工程学报[J],2007,27(1):86-90.
    [069]王乐华,杨学堂,李建林,等.水布垭瓦屋场滑坡参数反分析研究,三峡大学学报(自然科学版)[J],2005,27(5):390-393.
    [070]李世海,汪远年.三维离散元土石混合体随机计算模型及单向加载试验数值模拟[J].岩土工程学报,2004,26(2):172-177.
    [071]LI S H,ZHAO M H,WANG Y M,et al.A new numerical method for DEM-block and particle model [J].International Journal of Rock Mechanics and Mining Sciences,2004,41(3):436.
    [072]AXELRAD D R.Stochastic mechanics of discrete media[M].Berlin-Heidelberg:Springer-Verlag,1993.
    [073]王磊.隧道岩石耐磨性与岩石强度的相关性研究[J].四川联合大学学报(工程科学版),1997,1(6):
    [074]梁祥济.水-岩相互作用和成矿物质来源[M].北京:学苑出版社,1995.
    [075]易立新,车用太,王广才.水库诱发地震研究的历史、现状与发展趋势[J],华南地震,2003,23(1):28-37.
    [076]徐文杰,王立朝,胡瑞林.库水位升降作用下大型土石混合体边坡流-固耦合特性及其稳定性分析[J],岩石力学与工程学报,2009,28(7):1491-1498.
    [077]刘新喜,夏元友,练操.库水位骤降时的滑坡稳定性评价方法研究[J],岩土力学,2005,26(9):1427-1431.
    [078]汤连生,王思敬,岩石水化学损伤的机理及量化方法探讨[J],岩石力学与工程学报,2002,21(3):314-319.
    [079]B.deB,FritZ,关于化学动力学控制的溶解和沉淀模式的理论探讨[J],华东地质学院学报,1993,16(2):120-123.
    [080]汤连生,王思敬,水—岩化学作用对岩体变形破坏力学效应研究进展[J],地球科学进展,1999,14(5):433-439.
    [081]Dunning,J.D.and Miller,M.E.1984.Effecte of pore fluid chemistry on stable sliding of Berea sandstone.Pageoph,122 (1984/1985):447-462
    [082]苟晓琴,陈迪云.当代环境中石造物的腐蚀破坏机理和保护.华东地质学院,1994.17(4):389-394.
    [083]汤连生,王思敬.水-岩土化学作用与地质灾害防治,中国地质灾害与防治学报[J],1999,10(3):61-69.
    [084]Rutter,E.H.and Mainprice,D.H.1978.The effect of water on stress relaxation of faulted and unfaulted sandstone.Pageoph.116 (1978):634-654.
    [085]丁抗.水岩作用的地球化学动力学.地质地球化学,1989.6:29-38
    [086]梁祥济.水-岩相互作用和成矿物质来源[M].北京:学苑出版社,1995.
    [087]涂光烛,卢焕章,洪业汤.高等地球化学[M].北京:科学出版社,1999
    [088]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005
    [089]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J],岩石力学与工程学报,2003,22(sup1):2154-2158
    [090]李新平.刘金焕,彭元平等.压应力作用下裂隙岩体的断裂模式与强度特性[J].岩石力学与工程学报,2002.21(增):1942-1945.
    [091]陈卫忠.李术才,朱维申等.岩石裂纹扩展的试验与数值分析研究[J].岩石力学 与工程学报.2003,22(1):18-23.
    [092]汤连生.张用程.王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报.2002,21(6):822-827
    [093]王桂尧,孙宗颀,徐纪成.岩石压剪断裂机理及强度准则的探讨[J].岩土工程学报,1996,18(4):68-74.
    [094]O ojo.The effect of moisture on some mechanical properties of rock[J].Mining Science and Technology,1990(10):145-156.
    [095]周群力.岩石压剪判据及其应用[J].岩土工程学报,1987,9(6):67-73.
    [096]Atkinson B K,Meredith P G,Strees corrosion cracking of quartz:a note on the influence of chemical environment[J].Tectonophysics,1981,(77):T 1-T11.
    [097]Freiman S W.Effects of chemical environments on slow crack growth in glasses and ceramics[J].J.Geophys.Res,1984,89(B6):4072-4076.
    [098]Rebinder P A,Schreiner L A,Zhigach K F.Hardness Reducers in Driling:a Physico-Chemical Method of Faclitating Mechanical Destruction of Rocks During[M].Moscow:Akad Naunk,Tansl.by Melboune:CSIRO,1994.
    [099]SIH G C.Energy-density concept in fracture mechanics[J].Engineering Fracture Mechanics,1973,5(4):1037-1040.
    [100]NUISMER R J.An energy release rate criterion for mixed mode fracture[J].Int. Jour.Fract.Mech.,1975,11 (2):245-250.
    [101]ERDOGAN F,SIH G C.On crack extension in plates under plane loading and transverse shear[J] Journal of Basic Engineering,ASME,1963,85(4):519-527.
    [102]邓宗才,聂雪强,郑俊杰.混凝土裂缝在拉应变下的损伤与断裂分析[J].华中理工大学学报,1999,27(2):49-51.
    [103]赵均海,魏雪英.双剪统一强度理论下复合裂纹的研究[J].长安大学学报(自然科学版),2005,25(3):58-61.
    [104]李建林,孙志宏.节理岩体压剪断裂及其强度研究[J].岩石力学与工程学报,2000,19(4):444-448.
    [105]李洪升,刘增利,张小鹏.冻土破坏过程的微裂纹损伤区的计算分析[J].计算力学学报,2004,21(6):696-700.
    [106]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1988.
    [107]周群力.岩石压剪断裂判据及其应用[J].岩土工程学报,1987,9(3):73-78
    [108]潘别桐,唐辉明.岩石压剪性断裂特性及Ⅰ-Ⅱ型复合断裂判据[J].地球科学,1988,13(4):413-421.
    [109]范景伟,何江达.含定向闭合断续节理岩体的强度特征[J].岩石力学与工程学报,1992,11(2):190-199.
    [110]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):63-67.
    [111]汤连生,张鹏程,王洋,岩体复合型裂纹的扩展规律Ⅱ.有水作用条件下[J],中山大学学报自然科学版,2003,42(1):90-94.
    [112]孙卫东.钙镁离子对Si02溶解度的影响[J].中国甜菜糖业,2001,26(4):21-24.
    [113]汤连生,张鹏程,王思敬,水-岩化学作用的岩石宏观力学效应的试验研究[J],岩石力学与工程学报,2002,21(4):526-531.
    [114]李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机制[J].石油与天然气地质,2005,26(2):220-223.
    [115]乔丽苹,刘建,冯夏庭.砂岩水物理化学损伤机制研究[J].岩石力学与工程学报,2007,26(10):2117-2124.
    [116]尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    [117]尤明庆,苏承东,徐涛.岩石试样的加载卸荷过程及杨氏模量[J].岩土工程学报,2001,23(5):588-592.
    [118]刘新荣,傅晏,王永新.(库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J],岩土工程学报,2008,30(9):1298-1302.
    [119]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,31(2):150-153.
    [120]Wawersik W R,BraceW F.Post failure behavior of a granite and diabase [J].Rock Mechanics,1971,3(2):61-85.
    [121]吴玉山.应力路径对凝灰岩力学特性的影响[J].岩土工程学报,1983,5(1):112-120.
    [122]尤明庆,苏承东,大理岩试样循环加载强化作用的试验研究[J].固体力学学报,2008,29(1):66-72.
    [123]徐速超,冯夏庭,陈炳瑞,矽卡岩单轴循环加卸载试验及声发射特性研究[J].岩土力学,2009,30(10):2929-2934.
    [124]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585
    [125]周辉,潘鹏志,冯夏庭,循环载荷作用下岩石单轴压缩破坏过程的平面弹塑性细胞自动机模型[J].岩石力学与工程学报,2006,(增刊):3623-3628.
    [126]MANSUROV V A.Acoustic emission from failing rock behaviour[J].Rock Engineering,1994,27(3):173-182.
    [127]HOLCOMB D J,COSTIN L S.Detecting damage surfaces in brittle materials using acoustic emissions[J].Transactions of the ASME,1986,53:536-544.
    [128]LI C,NORDLUND E.Assessment of damage in rock using the Kaiser effect of acoustic emission[J].Int.J.Rock.Mech.Min.Sci.& Geomech.Abstr.,1993,30(7):943-946.
    [129]苏承东,杨圣奇.循环加卸载下岩样变形与强度特征试验[J].河海大学学报(自然科学版),2006,34(6):667-671.
    [130]王恭先.中国滑坡防治研究综述.兰州滑坡会议论文集,北京:中国铁道出版社,1998.
    [131]Lee,K.L.,Duncan,J.M.,Landslides of April 25,1974,on the Mantaro River,Preu.National Academy of Sciences,Washington,D.C.,1975,72-73.
    [132]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999.
    [133]周兴志,赵建功.长江流域地质环境和工程地质概论[M].武汉:中国地质大学出版社2004.
    [134]杨达源.长江地貌过程[M].北京:地质出版,2006.
    [135]刘传正.长江上游川峡二江续接地段岸坡演变过程探讨[J].中国地质灾害与防治学报,2001,11(1):50-59.
    [136]晏同珍.水文工程地质与环境保护[M].武汉:地质出版社,1994
    [137]李远耀,殷坤龙,柴波等.三峡库区滑带土抗剪强度参数的统计规律研究[J].岩土力学.2008:29(5):1419-1424
    [138]陈彪,张锦高.三峡库区巴东新城区滑坡地质灾害危险性分区评价[J].科技管 理研究,2009,01,256-259
    [139]李维树,夏晔,乐俊义,水对三峡库区滑带(体)土直剪强度参数的弱化规律研究,岩土力学[J],2006,27(sup):1170-1174.
    [140]刘文平,时卫民,孔位学,等.水对三峡库区碎石土的弱化作用,岩土力学[J],2005,26(11):1857-1861.
    [141]邓华锋,李建林,易庆林.软岩高边坡开挖卸荷变形研究[J].岩土力学,2009,30(6):1731-1734.
    [142]邓华锋,李建林,王乐华.某电站溢洪道边坡加固方案优化分析[J].武汉大学学报(工学版),2010,43(1):51-54.
    [143]王明华,晏鄂川.水库蓄水对库岸滑坡的影响研究[J].岩土力学,2007,28(12):2722-2725.
    [144]李宏杰,戴福初,杨军.某滑坡蓄水后的三维稳定性数值分析[J].水文地质工程地质,2007,27(6):59-62.
    [145]李建林,王乐华,邓华锋等.铅厂滑坡及坝基开挖边坡稳定研究报告[R].湖北:三峡大学,2007.
    [146]Hoek E and Brown E.T.The Hoek-Brown failure criterion-a 1988 update.Proc.15th Canadian Rock Mech.Symp.(ed.J.H.Curran),Toronto:Civil Engineering Dept.,University of Toronto.1988:31-38.
    [147]Hoek,E.,Wood,D.and Shah,S.A modified Hoek-Brown criterion for jointed rock masses.Proc.rock characterization,symp.Int.Soc.Rock Mech.:Eurock'92, (J.Hudson ed.),1992:209-213.
    [148]Hoek,E.Strength of rock and rock masses,ISRM News Journal,1994,2(2):4-16.
    [149]Hoek,E.,Kaiser,P.K.and Bawden.W.F.Support of underground excavations in hard rock.Rotterdam:Balkema,1995.
    [150]Hoek,E.,Carranza-Torres,C.and Corkum,B.Hoek-Brown criterion-2002 edition.Proc.NARMS-TAC Conference,Toronto,2002,1:267-273.
    [151]哈秋舲,李建林,张永兴,等.长江三峡工程节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    [152]李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999.
    [153]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [154]李建林,王乐华,刘杰等.岩石边坡工程[M].北京:中国水利水电出版社,2006.
    [155]周翠英,邓毅梅,谭祥韶,饱和软岩力学性质软化的试验研究与应用[J],岩石力学与工程学报,2005,24(1):33-38.
    [156]郭富利,张顶立,苏洁,地下水和围压对软岩力学性质影响的试验研究[J],岩石力学与工程学报,2007,26(11):2324-2332.
    [157]张明,胡瑞林,崔芳鹏,考虑水岩物理化学作用的库岸堆积体边坡稳定性研究—以金沙江下咱日堆积体为例[J],岩石力学与工程学报,2008,27(sup2):3769-3704.
    [158]刘新喜,夏元友,练操,等.库水位骤降时的滑坡稳定性评价方法研究[J].岩土力学,2005,26(9):1427-1431.
    [159]刘新喜,夏元友,张显书,等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439-1444.
    [160]徐文杰,王立朝,胡瑞林.库水位升降作用下大型土石混合体边坡流-固耦合特性及其稳定性分析[J].岩石力学与工程学报,2009,28(7):1491-1498.
    [161]廖红建,盛谦,高石夯,等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700