缺血后处理对大鼠小肠缺血—再灌注损伤治疗的实验机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:小肠缺血再灌注损伤(Ischemia Reperfusion Injury, IRI)是外科手术和创伤病人高发病率和死亡率的重要因素。例如在腹主动脉瘤、心肺旁路手术、绞窄性疝、新生儿坏死性小肠炎和小肠移植等肠血流量中断的情况下,IRI是非常常见的重要阶段,在败血症和低血容量性休克时,小肠I RI也经常发生。血流供应的中断造成局部的缺血损伤易于影响代谢活跃的组织,相矛盾的是,缺血组织血流恢复时将会启动一系列的事件,导致细胞进一步的损伤,即再灌注损伤。再灌注损伤的严重性往往超过了最初的缺血性损伤。在IRI中易于发生自由基介导的损伤,发生分子和生化等变化。因此,血液供应减少或中断以及随后的血供恢复将造成组织器官的严重损害,即缺血再灌注损伤(IRI)
     在内脏器官中,小肠是对IRI最敏感的器官之一。缺血时容易损伤由不稳定细胞组成的肠道,随后的血液再灌注则会进一步损伤小肠粘膜细胞。有研究认为,位于绒毛的顶端肠上皮细胞对缺血敏感性增加的原因是由于其位于中央动脉的尽头,具有较低氧分压,对局部缺血较敏感。同时,小肠也是产生各种急性期蛋白和细胞炎症因子的主要场所,小肠IRI不仅会影响小肠本身,还能影响远隔器官的功能和完整性。在缺血发生起始区域的异常改变主要是影响细胞线粒体,特别是影响三磷酸腺苷(Adenosine Triphosphate, ATP)的产生,导致细胞发生缺氧性病理改变,随着缺血缺氧的进一步加重以及随之而来的再灌注损伤,小肠将产生大量的氧自由基等有害物质,损伤微血管、释放炎性细胞因子、激活补体和活化中性粒细胞。因此,小肠IRI被认为是SIRS或MODS最主要的使动因素之一
     有研究表明缺血预处理(Ischemic Preconditioning, IPr)即在器官缺血前给予一次或多次短暂的缺血与再灌注处理,可减轻心、脑、小肠、肾等多种器官的IRI,但由于小肠IRI常见于肠扭转、肠系膜上动脉血栓形成、休克、器官移植术和心力衰竭等,临床上患者多在发生肠缺血后就诊,难以进行预处理,这就极大地限制了其临床应用。因此,有人研究在缺血发生后实施的缺血后处理(Ischemic Postconditioning. IPo),即在缺血后再灌注开始时立刻给予一次或多次短暂再灌注与缺血交替循环处理,可以减轻再灌注损伤,具有更好的临床应用前景。但这一新发现的内源性保护机制尚未完全阐明。
     本研究通过建立大鼠小肠IRI模型,研究IPo对细菌移位、小肠病理改变、小肠粘膜线粒体形态、功能进行研究,以期为临床治疗小肠IRI提供一定的理论和实验依据,并对IPo的保护性机制做进一步研究。
     方法:实验选用SPF级SD大鼠建立小肠IRI模型,采用IPr、IPo与空白对照组和IR组进行对比研究。第二章研究IPo对小肠细菌移位及病理损伤的保护作用:通过实验前给予标记的条件致病菌灌胃,实验通过对不同组别的肠外组织进行细菌移位检测,以及对小肠病理损伤分级评分来了解IPo对小肠粘膜机械屏障损伤的保护作用。第三章进行IPo对大鼠小肠IRI粘膜细胞线粒体保护作用的实验研究:线粒体作为IRI中最早也是最容易受到损伤的细胞器,同时也是细胞坏死和细胞调亡发生的中心环节。通过实验研究IPo是否可以保护线粒体的正常形态、功能及其可能的机制研究,研究内容包括:透射电镜观察大鼠小肠粘膜细胞线粒体超微形态学改变和胞内总体ROS、线粒体膜电势、线粒体质量(Mitochondrial mass)、小肠粘膜细胞氧消耗等线粒体功能指标以及进行MtDNA拷贝数及损伤率的检测。各实验数据采用对比研究方法进行统计处理。
     结果:第二章:IPo能减轻小肠IRI后的细菌移位,肠外组织的细菌菌落数明显低于IR组(P<0.05);而且IPo组小肠病理损伤程度也明显低于IR组(P<0.05)。第三章:IPo组与IR组比较,IPo能有效抑制小肠粘膜细胞线粒体的病理损伤,对线粒体的功能具有一定的抗损伤作用,我们的实验研究具体表现在以下几个方面:1、IPo可减轻大鼠小肠IRI模型小肠粘膜细胞线粒体超微结构的损伤;2、IPo能减轻线粒体膜蛋白的氧化损伤、提高线粒体呼吸链复合物的活性,产生对小肠的保护作用;3、IPo能提高小肠IRI后ATP的合成能力;4、IPo能保护呼吸链复合物Ⅰ-Ⅳ的活性,改善线粒体呼吸功能;5、IPo能减轻线粒体膜的脂质过氧化,保护线粒体内膜的完整性,从而维持线粒体膜电势(△Ψm)的稳定性;6、IPo能减少线粒体内源性ROS的生成,减轻氧化应激反应,产生对小肠的保护作用;7、IPo能减轻由于IRI导致的小肠粘膜细胞内线粒体蛋白的表达降低,维持线粒体质量稳定;8、IPo能减轻MtDNA的氧化损伤、减少MtDNA损伤率,同时增加MtDNA拷贝数,产生对小肠的保护作用。在本研究中,IPo和IPr两种方法的保护作用相当,两者在以上各个方面与IR组比较均具有统计学差异(P<0.05),IPo组及IPr组间比较没有显著性差异(P>0.05)。可能的机理是两者均能对再灌注小肠粘膜细胞ROS及脂质过氧化反应产物起到抑制作用,两者均能保护小肠粘膜细胞对抗IRI。由于IPo更能在临床中应用,因此认为IPo对抗组织或器官IRI的研究及应用更具有重要的现实意义。
     结论:1.IPo能有效减轻小肠IRI后的细菌移位、保护小肠粘膜的病理损伤以及减轻炎症因子释放;2.IPo能从多个方而减轻小肠IRI的粘膜细胞线粒体损伤程度,从而有效保护小肠粘膜线粒体的形态和功能,减少炎症因子及氧自由基的释放,抑制IRI对组织细胞的细胞调亡和坏死。
Background and objective Ischemia-reperfusion injury (IRI) of the intestine is an important factor associated with a high morbidity and mortality in both surgical and trauma patients. It is of importance in situations such as the interruption of blood flow to the gut as in abdominal aortic aneurysm surgery, cardiopulmonary bypass, strangulated hernias, necrotizing enterocolitis, and intestinal transplantation. IRI of the intestine also occurs in septic and hypovolemic shock. Interruptionof blood supply results in ischemic injury which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissue initiates a cascade of events that may lead to additional cell injury known as reperfusion injury. This reperfusion damage frequently exceeds the original ischemic insult. On restoration of the blood supply, the molecular and biochemical changes that occur during ischemia predispose to free radical-mediated damage. The reduction of blood supply results in damage to the intestinal mucosa.
     Among the internal organs, the intestine is probably the most sensitive to IRI. The intestine is composed of labile cells that are easily injured by episodes of ischemia. Subsequent reperfusion of the intestine results in further damage to the mucosa. It has been shown that the enterocytes that are located at the tips of the villi are more sensitive to the effect of ischemia. Earlier studies attributed this increased sensitivity of the enterocyte at the tips of the villi to the location which is at the end of the distribution of a central arteriole which can lead to lower oxygen tension compared to other cells. There is substantial evidence that the mucosa of the intestine becomes the site for the production of various acute-phase proteins and cytokines. These not only influence the intestine but also may affect the function and integrity of distant organs. The initial site of abnormality in ischemia has been emphasized on the cellular mitochondria, which is particularly important in producing adenosine triphosphate (ATP) for organ recovery (16). The damage, however, is dramatically magnified by a large number of events, such as oxygen free radical formation, release of iron storage, damage of the microvasculature of IR organs, inflammatory cytokines, complement activation, and neutrophil infiltration at the site of injury. So the I/RI was regarded as one of the "motor of MODS" in the systemic inflammatory response syndrome (SIRS) and multi-organ dysfunction syndrome(MODS).
     The Ischemic Preconditioning (IPC) refers to a phenomenon whereby exposure of a tissue to brief periods of ischemia protects them from the deleterious effects of prolonged IRI. Its beneficial effects have been demonstrated in the liver, skeletal muscle, brain, heart, lung, intestine, and kidney in various animal models. Although the patients always have ischemic injury before in-hospital, they can not be dealed with the IPr. So the IPr has its limited in clinical practice. For this reason the ischemic postconditioning (IPo) was induced and several experiments demonstred that the IPo can relieve the injury of the IRI and it seemed good perspective of clinical application. However, the mechanism of the IPo is unknown.
     This study was to establish the model of ischemia-reperfusion of intestine. The aim is to study the protective effect of the ischemic postconditioning on bacteria translocation, intestinal pathology, and morphology and function of mitochondria. We hope find a good kind of approach and experimental proof to treat the intestinal ischemia-reperfusion injury.
     Methods The Sprague-Dawley rats were randomly divided into different groups to compare" study. All the animals divided into sham group (S), ischemia-reperfusion group (IR), ischemic preconditioning group (IPr) and ischemic postconditioning group (IPo). The S group as for sham-operated. The IR group for the rats submitted to45-minute of intestinal ischemia and2-hour or4-hour reperfusion. The IPr group was given three alternative cycles of2-min ischemia and2-min reperfusion before the intestinal ischemia. The other operation just like as the IR. group. The IPo group was given three alternative cycles of2-min reperfusion and2-min ischemia before the reperfusion. The other operation like as the IR group. The second chapter to study the protective effect of the IPo on the IRI in rats. The exam of this part include bacterial translocation, histopathologic grades, inflammatory cytokines and cells apoptosis and so on. The third chapter was to study the effect of the IPo on the mitochondria. The mitochondrion is the most sensitive cell organelle to the IRI and is the center priming place of cell apoptosis and cell necorosis. This experiment was showed that the IPo can effectively prevent the function of the mitochondria from IRI in small intestine. All of the experiment data were compared by statistics method.
     Result The second chapter showed that the Ecoli DH5a at lymphonodi mesenterici. liver, lung, spleen and portal vein translocation in the IPo group was lower than in the IR group at2-hour and4-hour(.P<0.05). And the intestinal pathologic injury by Chiu"s classification in the IPo group were2.30±0.96at2-hour,3.1±0.66at4-hour, which were lower than the IR group3.50±0.85at2-hour,4.62±1.14at4-hour. They have conspicuous statistic difference when compared respectively at the same time(.P<0.05). The third chapter showed that the IPo can lessen pathologic injury of mitochondria and suppress release of inflammatory factor, protect the mitochondrial function and prevent MtDNA disassociation. The contents of study in this chapter include follow aspect.1.The IPo can relieve the injury degree of mitochondria ultrastructure in cells of mucous membrane of small intestine in model of the intestinal IRI.2. The IPo can lessen oxidative damage of mitochondria membrane and elevate the compound activities of mitochondrial respiratory chain.3. The IPo can increase the synthetical abilities of adenosine triphosphate after intestinal IRI.4. The IPo can protect the activities of respiratory compound I-IV and improve mitochondrial respiratory function.5. The IPo can maintain the stability of mitochondrial membrane potential(Δ Ψm) through lighten the mitochondrial lipid peroxidation and safeguard integrality of mitochondrial inner membrane.6. The IPo can reduce generation of mitochondrial endogenous reactive oxygen species(ROS) so relieve reaction of oxidative stress.7. The IPo can maintain mitochondrial protein expression and keep mitochondrial quality while intestinal IRI.8. The IPo can relieve oxidative damage of mitochondrial DNA(mtDNA), reduce injury rate of mtDNA and increase mtDNA's copy number. The upper aspects have significant difference in IPo and IR group (P<0.05). The IPo and IPr groups have not significant difference(P>0.05).
     Conclusion1. The IPo can effectively relieve the bacterial translocation and intestinal mucous membrane pathological injury, and can restrain release of pro-inflammatory factors in IRI.2. The IPo can maintain the mitochondrial form and function in IRI through restrain generation of reactive oxygen species and prevent cellular apoptosis and necrosis in IRI.
引文
[1]Araujo M, Welch WJ. Oxidative stress and nitric oxide in kidney function. Curr Opin Nephrol Hypertens,2006,15(1):72-77.
    [2]Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res,2006,70(2):181-190.
    [3]Mallick IH, Yang W, Winslet MC et al. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci,2004,49(9):1359-1377.
    [4]Steiger HJ, Hanggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir(Wien),2007,149(1):1-10.
    [5]Husted TL, Lentsch AB. The role of cytokines in pharmacological modulation of hepatic ischemia/reperfusion injury. Curr Pharm Des,2006,12(23):2867-2873.
    [6]Carmo-Araujo EM, Dal-Pai-Silva M, Dal-Pai V et al. Ischaemia and reperfusion effects on skeletal muscle tissue:morphological and histochemical studies. Int J Exp Pathol,2007, 88(3):147-154.
    [7]DN G, ME H, DA P.-reperfusion injury:Role of oxygen-derived free radicals. Acta Physiol Scand Suppl,1986, (548):47-63.
    [8]DA P, DN G. Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol Gastrointest Liver Physiol.1986, (250):749-753.
    [9]A S, TD K, KA M et al. IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res,2002,105(2):145-152.
    [10]Massberg S, Messmer K. The nature of ischemia/reperfusion injury. Transplant Proc,1998, 30(8):4217-4223.
    [11]IH M, Yang W, MC W et al. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci,2004,49(9):1359-1377.
    [12]Guneli E, Cavdar Z, Islekel H et al. Erythropoietin protects the intestine against ischemia/ reperfusion injury in rats. Mol Med,2007,13(9-10):509-517.
    [13]Z T, B K, FO A et al. Pyrrolidine dithiocarbamate prevents 60 minutes of warm mesenteric ischemia/reperfusion injury in rats. Am J Surg,2007,194(2):255-262.
    [14]Yasuhara H. Acute mesenteric ischemia:the challenge of gastroenterology. Surg Today,2005, (35):185-195.
    [15]Berlanga J, Prats P, Remirez D et al. Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. Am J Pathol,2002,161(2):373-379.
    [16]SR H, NB V, W H et al. Outcome after hemorrhagic shock in trauma patients. J Trauma,1998, 45(3):545-549.
    [17]KA K, PY P, MZ S. Interleukin-11 enhances intestinal absorptive function after ischemia-reperfusion injury. J Pediatr Surg Int,2002,37(3):457-459.
    [18]R R, K A, MZ S. Glucagonlike peptide-2 analogue enhances intestinal mucosal mass and absorptive function after ischemia-reperfusion injury. J Pediatr Surg 2000, 35(11):1537-1539.
    [19]Sileri P, Morini S, Schena S et al. Intestinal ischemia/reperfusion injury produces chronic abnormalities of absorptive function. Transplant Proc,2002,34(3):984.
    [20]JS S, CR F. Short bowel syndrome. Gastroenterol Clin North Am,1998,27(2):467-479.
    [21]L C, P S, M G et al. Bacterial translocation in clinical intestinal transplantation. Transplantation,2001,71(10):1414-1417.
    [22]S I, J S. H N et al. Beneficial effect of enteral glycine in intestinal ischemia/reperfusion injury. J Gastrointest Surg.1997, 1(1):53-60.
    [23]G X. AE M, MP M et al. Heparin-binding EGF-like growth factor preserves crypt cell proliferation and decreases bacterial translocation after intestinal schemia/reperfusion injury. J Pediatr Surg lnt,2002,37(7):1081.
    [24]RD B. Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol,1999, 473:11-30.
    [25]Kuzu MA, Koksoy C. Kuzu I et al. Role of integrins and intracellular adhesion molecule-1 in lung injury after intestinal ischemia-reperfusion. Am J Surg,2002,183(1):70-74.
    [26]JC M. The gut as a potential trigger of exercise-induced inflammatory responses. Can J Physiol Pharmacol,1998,76(5):479-484.
    [27]Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev, 1999,79(2):609-634.
    [28]Ambrosio G, Zweier JL, Duilio C et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem,1993,268(25):18532-18541.
    [29]Venditti P, De Rosa R, Caldarone G et al. Functional and biochemical characteristics of mitochondrial fractions from rat liver in cold-induced oxidative stress. Cell Mol Life Sci,2004, 61(24):3104-3116.
    [30]Ueta H, Ogura R, Sugiyama M et al. O2-. spin trapping on cardiac submitochondrial particles isolated from ischemic and non-ischemic myocardium. J Mol Cell Cardiol,1990, 22(8):893-899.
    [31]Zhou RH, Long C, Liu J et al. Inhibition of the Na+/H+ exchanger protects the immature rabbit myocardium from ischemia and reperfusion injury. Pediatr Cardiol,2008, 29(1):113-120.
    [32]Zhang WH, Fu SB, Lu FH et al. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun,2006,347(4):872-881.
    [33]Hagihara H, Yoshikawa Y, Ohga Y et al. Na+/Ca2+ exchange inhibition protects the rat heart from ischemia-reperfusion injury by blocking energy-wasting processes. Am J Physiol Heart Circ Physiol,2005,288(4):H1699-1707.
    [34]Chen Q, Camara AK, Stowe DF et al. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol,2007,292(1):C137-147.
    [35]Silva JP, Larsson NG. Manipulation of mitochondrial DNA gene expression in the mouse. Biochim Biophys Acta,2002,1555(1-3):106-110.
    [36]Unal S, Demirkan F, Arslan E et al. Comparison of ischemic and chemical preconditioning in jejunal flaps in the rat. Plast Reconstr Surg,2003.112(4):1024-1031.
    [37]McCallion K, Wattanasirichaigoon S, Gardiner KR et al. Ischemic preconditioning ameliorates ischemia-and reperfusion-induced intestinal epithelial hyperpermeability in rats. Shock,2000,14(4):429-434.
    [38]Tomatsuri N, Yoshida N, Takagi T et al. Edaravone, a newly developed radical scavenger, protects against ischemia-reperfusion injury of the small intestine in rats, Int J Mol Med,2004, 13(1):105-109.
    [39]Khanna A. Rossman J, Caty MG et al. Beneficial effects of intraluminal nitroglycerin in intestinal ischemia-reperfusion injury in rats. J Surg Res,2003,114(1):15-24.
    [40]Karpel-Massler G, Fleming SD, Kirschfink M et al. Human C1 esterase inhibitor attenuates murine mesenteric ischemia/reperfusion induced, local organ injury. J Surg Res,2003, 115(2):247-256.
    [41]Stojadinovic A, Kiang J, Smallridge R el al. Induction of heat-shock protein 72 protects against ischemia/reperfusion in rat small intestine. Gastroenterology,1995,109(2):505-515.
    [42]陆贝.丹参与小肠缺血再灌注损伤研究进展.医学研究杂志,2006,35(8):94-95.
    [1]Hebra A, Brown MF, McGeehin K et al. The effects of ischemia and reperfusion on intestinal motility. J Pediatr Surg,1993,28(3):362-365; discussion 365-366.
    [2]Deitch EA. Bacterial translocation of the gut flora. J Trauma,1990,30(12 Suppl):S184-189.
    [3]Takahashi A, Tomomasa T, Kaneko H et al. Intestinal motility in an in vivo rat model of intestinal ischemia-reperfusion with special reference to the effects of nitric oxide on the motility changes. J Pediatr Gastroenterol Nutr,2001,33(3):283-288.
    [4]Deitch EA, Forsythe R, Anjaria D et al. The role of lymph factors in lung injury, bone marrow suppression, and endothelial cell dysfunction in a primate model of trauma-hemorrhagic shock. Shock,2004,22(3):221-228.
    [5]Davidson MT, Deitch EA, Lu Q et al. A study of the biologic activity of trauma-hemorrhagic shock mesenteric lymph over time and the relative role of cytokines. Surgery,2004, 136(1):32-41.
    [6]Grootjans J, Lenaerts K, Derikx JP et al. Human intestinal ischemia-reperfusion-induced inflammation characterized:experiences from a new translational model. Am J Pathol, 176(5):2283-2291.
    [7]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation,1986,74(5):1124-1136.
    [8]Zhao ZQ, Corvera JS, Halkos ME et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol,2003,285(2):H579-588.
    [9]Chiu CJ, McArdle AH, Brown R et al. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg,1970,101(4):478-483.
    [10]J Q, F J, B W et al. Ophiopogonin D prevents H2O2-induced injury in primary human umbilical vein endothelial cells. J Ethnopharmacol,2010,128(2):438-445.
    [11]Neilson IR, Neilson KA, Yunis EJ et al. Failure of tumor necrosis factor to produce hypotensive shock in the absence of endotoxin. Surgery,1989,106(2):439-443.
    [12]Pape HC, van Griensven M, Rice J et al. Major secondary surgery in blunt trauma patients and perioperative cytokine liberation:determination of the clinical relevance of biochemical markers. J Trauma,2001,50(6):989-1000.
    [13]Neidhardt R, Keel M, Steckholzer U et al. Relationship of interleukin-10 plasma levels to severity of injury and clinical outcome in injured patients. J Trauma,1997,42(5):863-870; discussion 870-861.
    [14]Loomis WH, Namiki S, Hoyt DB et al. Hypertonicity rescues T cells from suppression by trauma-induced anti-inflammatory mediators. Am J Physiol Cell Physiol,2001, 281(3):C840-848.
    [15]Stallion A, Kou TD, Miller KA et al. IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res,2002,105(2):145-152.
    [16]Rajeevprasad R, Alavi K, Schwartz MZ. Glucagonlike peptide-2 analogue enhances intestinal mucosal mass and absorptive function after ischemia-reperfusion injury. J Pediatr Surg,2000, 35(11):1537-1539.
    [17]Sileri P, Morini S, Schena S et al. Intestinal ischemia/reperfusion injury produces chronic abnormalities of absorptive function. Transplant Proc,2002,34(3):984.
    [18]Scolapio JS, Fleming CR. Short bowel syndrome. Gastroenterol Clin North Am,1998, 27(2):467-479, viii.
    [19]Cucchetti A, Siniscalchi A, Bagni A et al. Bacterial translocation in adult small bowel transplantation. Transplant Proc,2009,41 (4):1325-1330.
    [20]G X, AE M, MP M et al. Heparin-binding EGF-like growth factor preserves crypt cell proliferation and decreases bacterial translocation after intestinal schemia/reperfusion injury. J Pediatr Surg Int,2002,37(7):1081.
    [21]Tascilar N, lrkorucu O, Tascilar O et al. Bacterial translocation in experimental stroke:what happens to the gut barrier? Bratisl Lek Listy,111 (4):194-199.
    [22]Kuzu MA, Koksoy C, Kuzu 1 et al. Role of integrins and intracellular adhesion molecule-1 in lung injury after intestinal ischemia-reperfusion. Am J Surg,2002,183(1):70-74.
    [23]KA K, PY P, MZ S. Interleukin-11 enhances intestinal absorptive function after ischemia-reperfusion injury. J Pediatr Surg Int,2002,37(3):457-459.
    [24]R R, K A, MZ S. Glucagonlike peptide-2 analogue enhances intestinal mucosal mass and absorptive function after ischemia-reperfusion injury. J Pediatr Surg 2000, 35(11):1537-1539.
    [25]Koti RS, Seifalian AM. McBride AG et al. The relationship of hepatic tissue oxygenation with nitric oxide metabolism in ischemic preconditioning of the liver. Faseb J,2002, 16(12):1654-1656.
    [26]Pang CY, Neligan P. Zhong A et al. Effector mechanism of adenosine in acute ischemic preconditioning of skeletal muscle against infarction. Am J Physiol,1997,273(3 Pt 2):R887-895.
    [27]Glazier SS, O'Rourke DM, Graham DI et al. Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab,1994,14(4):545-553.
    [28]Sakurai M, Hayashi T, Abe K et al. Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J Vasc Surg,1998, 27(4):720-725.
    [29]Turman MA, Bates CM. Susceptibility of human proximal tubular cells to hypoxia:effect of hypoxic preconditioning and comparison to glomerular cells. Ren Fail,1997,19(l):47-60.
    [30]Du ZY, Hicks M, Winlaw D et al. Ischemic preconditioning enhances donor lung preservation in the rat. J Heart Lung Transplant, 1996,15(12):1258-1267.
    [31]Li Y, Roth S. Laser M et al. Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci,2003,44(3):1299-1304.
    [32]Aksoyek S, Cinel 1, Avlan D et al. Intestinal ischemic preconditioning protects the intestine and reduces bacterial translocation. Shock,2002,18(5):476-480.
    [33]Sola A, De Oca J, Gonzalez R et al. Protective effect of ischemic preconditioning on cold preservation and reperfusion injury associated with rat intestinal transplantation. Ann Surg, 2001,234(I):98-106.
    [34]Davis JM, Gute DC, Jones S et al. Ischemic preconditioning prevents postischemic P-selectin expression in the rat small intestine. Am J Physiol,1999,277(6 Pt 2):H2476-2481.
    [35]Vlasov TD, Smirnov DA, Nutfullina GM. Preconditioning of the small intestine to ischemia in rats. Neurosci Behav Physiol,2002,32(4):449-453.
    [36]Jenkins DP, Pugsley WB, Alkhulaifi AM et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart,1997,77(4):314-318.
    [37]Clavien PA, Selzner M, Rudiger HA et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg,2003,238(6):843-850:discussion 851-842.
    [38]Hotter G. Closa D, Prados M et al. Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochem Biophys Res Commun,1996,222(1):27-32.
    [39]Unal S, Demirkan F, Arslan E et al. Comparison of ischemic and chemical preconditioning in jejunal flaps in the rat. Plast Reconstr Surg,2003,112(4):1024-1031.
    [40]McCallion K, Wattanasirichaigoon S, Gardiner KR et al. Ischemic preconditioning ameliorates ischemia- and reperfusion-induced intestinal epithelial hyperpermeability in rats. Shock,2000,14(4):429-434.
    [41]Dos Santos CH, Pontes JC, Gomes OM et al. Evaluation of ischemic postconditioning effect on mesenteric ischemia treatment:experimental study in rats. Rev Bras Cir Cardiovasc,2009, 24(2):150-156.
    [42]Liu KX, Li YS, Huang WQ et al. Immediate but not delayed postconditioning during reperfusion attenuates acute lung injury induced by intestinal ischemia/reperfusion in rats: comparison with ischemic preconditioning. J Surg Res,2009,157(1):e55-62.
    [43]Liu KX, Li YS, Huang WQ et al. Immediate postconditioning during reperfusion attenuates intestinal injury. Intensive Care Med,2009,35(5):933-942.
    [44]Santos CH, Gomes OM, Pontes JC et al. The ischemic preconditioning and postconditioning effect on the intestinal mucosa of rats undergoing mesenteric ischemia/reperfusion procedure. Acta Cir Bras,2008,23(1):22-28.
    [1]Rothfuss O, Gasser T, Patenge N. Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res,38(4):e24.
    [2]贺召丽,高学军,冯令军.小肠缺血再灌注后不同时限小肠站膜细胞凋亡变化的研究.潍坊医学院学报.2009,31(5):359-361.
    [3]Ide T, Tsutsui H, Hayashidani S et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res,2001, 88(5):529-535.
    [4]Zhang Y, Marcillat O, Giulivi C et al. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem,1990,265(27):16330-16336.
    [5]Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta,1998, 1366(1-2):53-67.
    [6]Sastre J, Pallardo FV, Vina J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med,2003,35(1):1-8.
    [7]Kaufman SS, Lyden ER, Brown CR et al. Disaccharidase activities and fat assimilation in pediatric patients after intestinal transplantation. Transplantation.2000.69(3):362-365.
    [8]刘井波,彭双清,阳海鹰.丁烯酸内醋对心肌线粒体呼吸链酶复合物活力的影响.毒理学杂志,2005,19(1):18-20.
    [9]Chen H, Hu CJ, He YY et al. Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion. Stroke,2001,32(10):2382-2387.
    [10]Velasco N, Hernandez G, Wainstein C et al. Influence of polymeric enteral nutrition supplemented with different doses of glutamine on gut permeability in critically ill patients. Nutrition,2001,17(11-12):907-911.
    [11]Garlid KD, Jaburek M, Jezek P et al. How do uncoupling proteins uncouple? Biochim Biophys Acta,2000,1459(2-3):383-389.
    [12]彭曦,汪仕良,陶凌辉等.烧伤后清洁肠道与肠源性高代谢的实验研究.中华烧伤杂志,2001,17(4):207-209.
    [13]高昌俊,徐礼鲜,柴伟等.高氧液对兔肠缺血再灌注损伤的保护作用.中华麻醉学杂志.2005.25(12):928-929.
    [14]Mattiasson G. Analysis of mitochondrial generation and release of reactive oxygen species. Cytometry A,2004,62(2):89-96.
    [15]Kalbacova M, Vrbacky M, Drahota Z et al. Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. Cytometry A,2003,52(2):110-116.
    [16]Kwiecien S, Brzozowski T, Konturek SJ. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. J Physiol Pharmacol,2002,53(1):39-50.
    [17]Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev,2004,3(3):265-301.
    [18]Wu B, Ootani A, Iwakiri R et al. Ischemic preconditioning attenuates ischemia-reperfusion-induced mucosal apoptosis by inhibiting the mitochondria-dependent pathway in rat small intestine. Am J Physiol Gastrointest Liver Physiol,2004, 286(4):G580-587.
    [19]Wu B, Iwakiri R, Tsunada S et al. iNOS enhances rat intestinal apoptosis after ischemia-reperfusion. Free Radic Biol Med,2002,33(5):649-658.
    [20]Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci,2005,1047:248-258.
    [21]蔡循,陈国强,陈竺etal.线粒体跨膜电位与细胞凋亡.生物化学与生物物理进展,2001,28(1):3-6.
    [22]Shah KA, Shurey S, Green CJ. Apoptosis after intestinal ischemia-reperfusion injury:a morphological study. Transplantation,1997,64(10):1393-1397.
    [23]Noda T, Iwakiri R, Fujimoto K et al. Programmed cell death induced by ischemia-reperfusion in rat intestinal mucosa. Am J Physiol,1998,274(2 Pt 1):G270-276.
    [24]Coopersmith CM, O'Donnell D, Gordon JI. Bcl-2 inhibits ischemia-reperfusion-induced apoptosis in the intestinal epithelium of transgenic mice. Am J Physiol,1999.276(3 Pt 1):G677-686.
    [25]Ikeda H, Suzuki Y, Suzuki M et al. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut,1998, 42(4):530-537.
    [26]Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition:a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun,2003,304(3):463-470.
    [27]Ishisaka R, Kanno T, Akiyama J et al. Activation of caspase-3 by lysosomal cysteine proteases and its role in 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH)-induced apoptosis in HL-60 cells. J Biochem.2001,129(1):35-41.
    [28]Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta,2008,1777(7-8):946-952.
    [29]Ballinger SW, Patterson C, Yan CN et al. Hydrogen peroxide-and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res,2000,86(9):960-966.
    [30]Deveraux QL, Roy N, Stennicke HR et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J,1998,17(8):2215-2223.
    [31]Bossy-Wetzel E, Green DR. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem,1999.274(25):17484-17490.
    [32]Gross A, Yin XM, Wang K et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-Rl/Fas death. J Biol Chem,1999,274(2):1156-1163.
    [33]Slee EA, Harte MT, Kluck RM et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol,1999,144(2):281-292.
    [34]Kang D, Hamasaki N. Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med,2003,41(10):1281-1288.
    [35]Khanna A, Rossman JE, Fung HL et al. Attenuated nitric oxide synthase activity and protein expression accompany intestinal ischemia/reperfusion injury in rats. Biochem Biophys Res Commun,2000,269(1):160-164.
    [36]Parks DA, Bulkley GB, Granger DN et al. Ischemic injury in the cat small intestine:role of superoxide radicals. Gastroenterology,1982,82(1):9-15.
    [37]Nakagawa T, Shimizu S, Watanabe T et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature,2005, 434(7033):652-658.
    [38]van der Vliet A. Bast A. Role of reactive oxygen species in intestinal diseases. Free Radic Biol Med,1992,12(6):499-513.
    [39]Parks DA. Oxygen radicals:mediators of gastrointestinal pathophysiology. Gut,1989, 30(3):293-298.
    [40]Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol,1986,251(4 Pt 1):G567-574.
    [41]Granger DN. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol,1988.255(6 Pt 2):H1269-1275.
    [42]Horton JW, Walker PB. Oxygen radicals, lipid peroxidation, and permeability changes after intestinal ischemia and reperfusion. J Appl Physiol,1993,74(4):1515-1520.
    [43]Mallick IH, Yang W, Winslet MC et al. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci,2004,49(9):1359-1377.
    [44]Peralta C, Bulbena O, Xaus C et al. Ischemic preconditioning:a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation, 2002,73(8):1203-1211.
    [45]Lee CF, Liu CY, Hsieh RH et al. Oxidative stress-induced depolymerization of microtubules and alteration of mitochondrial mass in human cells. Ann N Y Acad Sci,2005,1042:246-254.
    [46]Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med,2000,6(5):513-519.
    [47]Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med,2000,29(3-4):222-230.
    [48]王通,曾耀英,肇静娴等.地塞米松介导胸腺细胞凋亡过程中线粒体和细胞结构蛋白的变化.中国病理生理杂志,2005,21(7):1415-1418.
    [49]王通,曾耀英,邢飞跃等.地塞米松诱导小鼠胸腺细胞凋亡中线粒体质量的变化.中国药理学通报,2006.22(5):563-567.
    [50]Sade H, Khandre NS, Mathew MK et al. The mitochondrial phase of the glucocorticoid-induced apoptotic response in thymocytes comprises sequential activation of adenine nucleotide transporter (ANT)-independent and ANT-dependent events. Eur J Immunol, 2004,34(1):119-125.
    [51]Rizzuto R, Pinton P, Ferrari D et al. Calcium and apoptosis:facts and hypotheses. Oncogene, 2003,22(53):8619-8627.
    [52]Jayaraman S. Flow cytometric determination of mitochondrial membrane potential changes during apoptosis of T lymphocytic and pancreatic beta cell lines:comparison of tetramethylrhodamineethylester (TMRE), chloromethyl-X-rosamine (H2-CMX-Ros) and MitoTracker Red 580 (MTR580). J Immunol Methods,2005,306(1-2):68-79.
    [53]Suematsu N, Tsutsui H, Wen J et al. Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation,2003,107(10):1418-1423.
    [54]Lee HC, Yin PH, Lu CY et al. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J,2000,348 Pt 2:425-432.
    [55]Valko M, lzakovic M, Mazur M et al. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem,2004,266(1-2):37-56.
    [56]Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A,1997,94(2):514-519.
    [57]Yang JL, Weissman L, Bohr VA et al. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst),2008,7(7):1110-1120.
    [58]Kruman, Ⅱ, Wersto RP, Cardozo-Pelaez F et al. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron,2004.41(4):549-561.
    [59]Linnane AW, Marzuki S, Ozawa T et al. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet,1989, 1(8639):642-645.
    [60]Cooke MS, Evans MD, Dizdaroglu M et al. Oxidative DNA damage:mechanisms, mutation, and disease. Faseb J,2003,17(10):1195-1214.
    [61]Lu CY, Lee HC, Fahn HJ et al. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res,1999,423(1-2):11-21.
    [62]Inoue M, Sato EF, Nishikawa M et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem,2003,10(23):2495-2505.
    [63]Yoneda M, Katsumata K, Hayakawa M et al. Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun, 1995,209(2):723-729.
    [64]Santos JH, Hunakova L, Chen Y et al. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem,2003,278(3):1728-1734.
    [65]Graziewicz MA, Day BJ. Copeland WC. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res,2002,30(13):2817-2824.
    [66]Kaguni LS. DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem,2004, 73:293-320.
    [67]Gredilla R, Barja G, Lopez-Torres M. Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria and location of the free radical source. J Bioenerg Biomembr,2001,33(4):279-287.
    [1]DA P, DN G. Contributions of ischemia and reperfusion to mucosal lesion formation. American journal of physiology 1986:749-753.
    [2]A S, TD K, KA M, et al. IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res 2002; 105:145-152.
    [3]SR H, NB V, W H, et al. Outcome after hemorrhagic shock in trauma patients. The Journal of trauma 1998;45:545-549.
    [4]DN G, ME H, DA P.-reperfusion injury:Role of oxygen-derived free radicals. Acta Physiol Scand Suppl 1986:47-63.
    [5]IH M, Yang W, MC W, AM S. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Digestive diseases and sciences 2004;49:1359-1377.
    [6]Guneli E, Cavdar Z, Islekel H, et al. Erythropoietin protects the intestine against ischemia/ reperfusion injury in rats. Molecular medicine (Cambridge, Mass 2007;13:509-517.
    [7]Z T, B K, FO A, et al. Pyrrolidine dithiocarbamate prevents 60 minutes of warm mesenteric ischemia/reperfusion injury in rats. American journal of surgery 2007; 194:255-262.
    [8]Yasuhara H. Acute mesenteric ischemia:the challenge of gastroenterology. Surgery today 2005: 185-195.
    [9]Cai F, Li CR, Wu JL, et al. Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediators lnflamm 2006:30490.
    [10]Posma LA, Bleichrodt RP, van Goor H, Hendriks T. Transient Profound Mesenteric Ischemia Strongly Affects the Strength of Intestinal Anastomoses in the Rat. Dis Colon Rectum 2007;50:1070-1079.
    [11]KA K, PY P, MZ S. Interleukin-11 enhances intestinal absorptive function after ischemia-reperfusion injury. J Pediatr Surg Int 2002;37:457-459.
    [12]R R, K A, MZ S. Glucagonlike peptide-2 analogue enhances intestinal mucosal mass and absorptive function after ischemia-reperfusion injury. Journal of pediatric surgery 2000;35:1537-1539.
    [13]Sileri P, Morini S, Schena S, et al. Intestinal ischemia/reperfusion injury produces chronic abnormalities of absorptive function. Transplantation proceedings 2002;34:984.
    [14]JS S, CR F. Short bowel syndrome. Gastroenterol Clin North Am 1998;27:467-479.
    [15]LC,PS,MG et al. Bacterial translocation in clinical intestinal transplantation. Transplantation 2001;71:1414-1417.
    [16]S I, J S, H N, et al. Beneficial effect of enteral glycine in intestinal ischemia/reperfusion injury. J Gastrointest Surg 1997;1:53-60.
    [17]G X, AE M, MP M, GE B. Heparin-binding EGF-like growth factor preserves crypt cell proliferation and decreases bacterial translocation after intestinal schemia/reperfusion injury. J Pediatr Surg Int 2002;37:1081.
    [18]RD B. Bacterial translocation from the gastrointestinal tract. Advances in experimental medicine and biology 1999:473:11-30.
    [19]Kuzu MA, Koksoy C, Kuzu I, et al. Role of integrins and intracellular adhesion molecule-1 in lung injury after intestinal ischemia-reperfusion. American journal of surgery 2002:183:70-74.
    [20]JC M. The gut as a potential trigger of exercise-induced inflammatory responses. Can J Physiol Pharmacol 1998;76:479-484.
    [21]Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiological reviews 1999;79:609-634.
    [22]Ambrosio G, Zweier JL, Duilio C, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 1993;268:18532-18541.
    [23]Venditti P, De Rosa R, Caldarone G, Di Meo S. Functional and biochemical characteristics of mitochondrial fractions from rat liver in cold-induced oxidative stress. Cell Mol Life Sci 2004;61:3104-3116.
    [24]Ueta H, Ogura R, Sugiyama M. et al. O2-. spin trapping on cardiac submitochondrial particles isolated from ischemic and non-ischemic myocardium. Journal of molecular and cellular cardiology 1990;22:893-899.
    [25]Zhou RH, Long C, Liu J, Liu B. Inhibition of the Na+/H+ exchanger protects the immature rabbit myocardium from ischemia and reperfusion injury. Pediatric cardiology 2008;29:113-120.
    [26]Zhang WH, Fu SB, Lu FH, et al. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochemical and biophysical research communications 2006;347:872-881.
    [27]Hagihara H, Yoshikawa Y, Ohga Y, et al. Na+/Ca2+ exchange inhibition protects the rat heart from ischemia-reperfusion injury by blocking energy-wasting processes. American journal of physiology 2005;288:H 1699-1707.
    [28]Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport:physiological and pathological relevance. The American journal of physiology 1994;267:C313-339.
    [29]Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. The American journal of physiology 1990;258:C755-786.
    [30]Chen Q, Camara AK, Stowe DF, et al. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 2007;292:C137-147.
    [31]Silva JP, Larsson NG. Manipulation of mitochondrial DNA gene expression in the mouse. Biochimica et biophysica acta 2002; 1555:106-110.
    [32]Meneshian A and Bulkley GB:The physiology of endothelial xanthine oxidase:From urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9(3):161-175.
    [33]Ozel SK, Yuksel M, Haklar G, et al. Nitric oxide and endothelin relationship in intestinal ischemia/reperfusion injury (II). Prostaglandins, leukotrienes, and essential fatty acids 2001;64:253-257.
    [34]Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family:three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proceedings of the National Academy of Sciences of the United States of America 1989;86:2863-2867.
    [35]Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-415.
    [36]Clozel M, Gray GA, Breu V, et al. The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo. Biochemical and biophysical research communications 1992; 186:867-873.
    [37]Anadol AZ, Bayram O, Dursun A, Ercan S. Role of endogenous endothelin peptides in intestinal ischemia-reperfusion injury in rats. Prostaglandins, leukotrienes, and essential fatty acids 1998;59:279-283.
    [38]Andrasi TB, Kekesi V, Blazovics A, et al. ET(A) receptor blockade protects the small intestine against ischaemia/reperfusion injury in dogs via an enhancement of antioxidant defences. Clin Sci (Lond) 2002;103 Suppl 48:59S-63S.
    [39]Buyukgebiz O, Aktan AO, Yegen C, et al. Captopril increases endothelin serum concentrations and preserves intestinal mucosa after mesenteric ischemia-reperfusion injury. Research in experimental medicine 1994;194:339-348.
    [40]Oktar BK, Gulpinar MA, Bozkurt A, et al. Endothelin receptor blockers reduce I/R-induced intestinal mucosal injury:role of blood flow. American journal of physiology 2002;282:G647-655.
    [41]Wolfard A, Szalay L, Kaszaki J. et al. Dynamic in vivo observation of villus microcirculation during small bowel autotransplantation:effects of endothelin-A receptor inhibition. Transplantation 2002;73:1511-1513.
    [42]Oktar BK, Coskun T, Bozkurt A, et al. Endothelin-1-induced PMN infiltration and mucosal dysfunction in the rat small intestine. American journal of physiology 2000;279:G483-491.
    [43]Tsuruma T, Yagihashi A, Matsuno T, et al. The heat-shock protein 70 family reduces ischemia/reperfusion injury in small intestine. Transplantation proceedings 1996;28:2629-2630.
    [44]Hotchkiss R, Nunnally 1, Lindquist S, et al. Hyperthermia protects mice against the lethal effects of endotoxin. The American journal of physiology 1993;265:R1447-1457.
    [45]Ryan AJ, Flanagan SW, Moseley PL, Gisolfi CV. Acute heat stress protects rats against endotoxin shock. J Appl Physiol 1992;73:1517-]522.
    [46]Fleming SD, Starnes BW, Kiang JG, et al. Heat stress protection against mesenteric I/R-induced alterations in intestinal mucosa in rats. J Appl Physiol 2002;92:2600-2607.
    [47]Stojadinovic A, Kiang J, Smallridge R, et al. Induction of heat-shock protein 72 protects against ischemia/reperfusion in rat small intestine. Gastroenterology 1995; 109:505-515.
    [48]Tsuruma T, Yagihashi A, Watanabe N, et al. Heat-shock protein-73 protects against small intestinal warm ischemia-reperfusion injury in the rat. Surgery 1999:125:385-395.
    [49]Albrecht EW, Stegeman CA, Heeringa P, et al. Protective role of endothelial nitric oxide synthase. The Journal of pathology 2003;199:8-17.
    [50]Qu XW, Wang H, De Plaen IG, et al. Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B. Faseb J 2001; 15:439-446.
    [51]Salzman AL. Nitric oxide in the gut. New horizons (Baltimore, Md 1995:3:33-45.
    [52]Wink DA, Hanbauer I, Krishna MC, et al. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 1993:90:9813-9817.
    [53]Kosonen O, Kankaanranta H, Malo-Ranta U, Moilanen E. Nitric oxide-releasing compounds inhibit neutrophil adhesion to endothelial cells. European journal of pharmacology 1999:382:111-117.
    [54]Gidday JM, Park TS. Shah AR, Gonzales ER. Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide. Stroke; a journal of cerebral circulation 1998;29:1423-1429:discussion 1429-1430.
    [55]Guo JP, Murohara T, Buerke M, et al. Direct measurement of nitric oxide release from vascular endothelial cells. J Appl Physiol 1996:81:774-779.
    [56]Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovascular research 1996:32:743-751.
    [57]Wink DA, Mitchell JB. Chemical biology of nitric oxide:Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free radical biology & medicine 1998;25:434-456.
    [58]Gauthier TW, Davenpeck KL, Lefer AM. Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. The American journal of physiology 1994;267:G562-568.
    [59]Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. The American journal of medicine 2000;109:150-158.
    [60]Suzuki Y, Deitch EA, Mishima S, et al. Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia-reperfusion injury. Critical care medicine 2000;28:3692-3696.
    [61]Cuzzocrea S, Zingarelli B, Caputi AP. Role of constitutive nitric oxide synthase and peroxynitrite production in a rat model of splanchnic artery occlusion shock. Life sciences 1998;63:789-799.
    [62]Wu B, Iwakiri R, Tsunada S, et al. iNOS enhances rat intestinal apoptosis after ischemia-reperfusion. Free radical biology & medicine 2002:33:649-658.
    [63]Virlos IT, Inglott FS, Williamson RC, Mathie RT. Differential expression of pulmonary nitric oxide synthase isoforms after intestinal ischemia-reperfusion. Hepato-gastroenterology 2003;50:31-36.
    [64]Anaya-Prado R. Toledo-Pereyra LH, Lentsch AB, Ward PA. Ischemia/reperfusion injury. The Journal of surgical research 2002:105:248-258.
    [65]Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappaB as a therapeutic target in critical care medicine. Critical care medicine 2003;31:S105-111.
    [66]Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annual review of cell biology 1994:10:405-455.
    [67]Collins T, Read MA, Neish AS, et al. Transcriptional regulation of endothelial cell adhesion molecules:NF-kappa B and cytokine-inducible enhancers. Faseb J 1995;9:899-909.
    [68]Barnes PJ. Nuclear factor-kappa B. The international journal of biochemistry & cell biology 1997:29:867-870.
    [69]Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. American journal of respiratory cell and molecular biology 1997;17:3-9.
    [70]Spiecker M, Darius H, Kaboth K, et al. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. Journal of leukocyte biology 1998;63:732-739.
    [71]Peng HB, Libby P, Liao JK. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. The Journal of biological chemistry 1995;270:14214-14219.
    [72]Richard V, Kaeffer N, Tron C, Thuillez C. Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion. Circulation 1994;89:1254-1261.
    [73]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-1136.
    [74]Koti RS, Seifalian AM, McBride AG, et al. The relationship of hepatic tissue oxygenation with nitric oxide metabolism in ischemic preconditioning of the liver. Faseb J 2002;16:1654-1656.
    [75]Pang CY, Neligan P, Zhong A, et al. Effector mechanism of adenosine in acute ischemic preconditioning of skeletal muscle against infarction. The American journal of physiology 1997;273:R887-895.
    [76]Glazier SS, O'Rourke DM, Graham DI, Welsh FA. Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab 1994:14:545-553.
    [77]Sakurai M, Hayashi T, Abe K, et al. Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J Vasc Surg 1998:27:720-725.
    [78]Turman MA, Bates CM. Susceptibility of human proximal tubular cells to hypoxia:effect of hypoxic preconditioning and comparison to glomerular cells. Renal failure 1997; 19:47-60.
    [79]Du ZY, Hicks M, Winlaw D, et al. Ischemic preconditioning enhances donor lung preservation in the rat. J Heart Lung Transplant 1996; 15:1258-1267.
    [80]Li Y, Roth S, Laser M, et al. Retinal preconditioning and the induction of heat-shock protein 27. Investigative ophthalmology & visual science 2003;44:1299-1304.
    [81]Aksoyek S, Cinel I, Avian D, et al. Intestinal ischemic preconditioning protects the intestine and reduces bacterial translocation. Shock (Augusta. Ga 2002; 18:476-480.
    [82]Sola A, De Oca J. Gonzalez R, et al. Protective effect of ischemic preconditioning on cold preservation and reperfusion injury associated with rat intestinal transplantation. Annals of surgery 2001:234:98-106.
    [83]Davis JM, Gute DC, Jones S, et al. Ischemic preconditioning prevents postischemic P-selectin expression in the rat small intestine. The American journal of physiology 1999:277:H2476-2481.
    [84]Vlasov TD, Smirnov DA, Nutfullina GM. Preconditioning of the small intestine to ischemia in rats. Neuroscience and behavioral physiology 2002:32:449-453.
    [85]Jenkins DP, Pugsley WB, Alkhulaifi AM, et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart (British Cardiac Society) 1997;77:314-318.
    [86]Clavien PA, Selzner M, Rudiger HA, et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Annals of surgery 2003:238:843-850; discussion 851-842.
    [87]Hotter G, Closa D, Prados M, et al. Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochemical and biophysical research communications 1996:222:27-32.
    [88]Unal S, Demirkan F, Arslan E, et al. Comparison of ischemic and chemical preconditioning in jejunal flaps in the rat. Plastic and reconstructive surgery 2003;112:1024-1031.
    [89]McCallion K, Wattanasirichaigoon S, Gardiner KR, Fink MP, Ischemic preconditioning ameliorates ischemia- and reperfusion-induced intestinal epithelial hyperpermeability in rats. Shock (Augusta, Ga 2000; 14:429-434.
    [90]Cohen MV, Baines CP, Downey JM. Ischemic preconditioning:from adenosine receptor to KATP channel. Annual review of physiology 2000:62:79-109.
    [91]Bolli R. The late phase of preconditioning. Circulation research 2000:87:972-983.
    [92]Yellon DM, Dana A. The preconditioning phenomenon:A tool for the scientist or a clinical reality? Circulation research 2000;87:543-550.
    [93]Ferencz A, Szanto Z, Kalmar-Nagy K, et al. Mitigation of oxidative injury by classic and delayed ischemic preconditioning prior to small bowel autotransplantation. Transplantation proceedings 2004:36:286-288.
    [94]Sola A, Hotter G, Prats N, et al. Modification of oxidative stress in response to intestinal preconditioning. Transplantation 2000;69:767-772.
    [95]Cinel 1, Avian D, Cinel L, et al. Ischemic preconditioning reduces intestinal epithelial apoptosis in rats. Shock (Augusta, Ga 2003;19:588-592.
    [96]Tamion F, Richard V, Lacoume Y, Thuillez C. Intestinal preconditioning prevents systemic inflammatory response in hemorrhagic shock. Role of HO-1. American journal of physiology 2002:283:G408-414.
    [97]Ferencz A, Szanto Z, Borsiczky B, et al. The effects of preconditioning on the oxidative stress in small-bowel autotransplantation. Surgery 2002;132:877-884.
    [98]Wu B, Ootani A, Iwakiri R, et al. Ischemic preconditioning attenuates ischemia-reperfusion-induced mucosal apoptosis by inhibiting the mitochondria-dependent pathway in rat small intestine. American journal of physiology 2004;286:G580-587.
    [99]Ahmadinejad M, Rex M, Sutton RH, et al. The effects of allopurinol on the ultrastructure of ischaemic and reperfused large intestine of sheep. Australian veterinary journal 1996;74:135-139.
    [100]Cuzzocrea S, Mazzon E, Dugo L, et al. Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusion. British journal of pharmacology 2001; 132:19-29.
    [101]Balogh N, Krausz F, Levai P, et al. Effect of deferoxamine and L-arginine treatment on lipid peroxidation in an intestinal ischaemia-reperfusion model in rats. Acta veterinaria Hungarica 2002;50:343-356.
    [102]Cuzzocrea S, Mazzon E, Costantino G, et al. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovascular research 2000;47:537-548.
    [103]Yamaguchi T, Dayton C, Shigematsu T, et al. Preconditioning with ethanol prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 2002;283:H1019-1030.
    [104]Nakamura M, Ozaki M, Fuchinoue S. et al. Ascorbic acid prevents ischemia-reperfusion injury in the rat small intestine. Transpl Int 1997;10:89-95.
    [105]Gunel E, Caglayan F, Caglayan O, et al. Treatment of intestinal reperfusion injury using antioxidative agents. Journal of pediatric surgery 1998;33:1536-1539.
    [106]Sener G, Akgun U, Satiroglu H, et al. The effect of pentoxifylline on intestinal ischemia/reperfusion injury. Fundamental & clinical pharmacology 2001;15:19-22.
    [107]Hammerman C, Goldschmidt D, Caplan MS, et al. Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. Journal of pediatric gastroenterology and nutrition 1999;29:69-74.
    [108]Mocan H, Gedik Y. Erduran E, et al. The role of calcium channel entry blocker in experimental ischemia-reperfusion-induced intestinal injury. Polish journal of pharmacology 1995;47:179-183.
    [109]Simpson R, Alon R, Kobzik L. et al. Neutrophil and nonneutrophil-mediated injury in intestinal ischemia-reperfusion. Annals of surgery 1993;218:444-453; discussion 453-444.
    [110]Kojima M, Iwakiri R, Wu B, et al. Effects of antioxidative agents on apoptosis induced by ischaemia-reperfusion in rat intestinal mucosa. Alimentary pharmacology & therapeutics 2003;18 Suppl 1:139-145.
    [111]Tomatsuri N, Yoshida N, Takagi T, et al. Edaravone. a newly developed radical scavenger, protects against ischemia-reperfusion injury of the small intestine in rats. International journal of molecular medicine 2004;13:105-109.
    [112]Kawata K, Takeyoshi I, lwanami K, et al. A spontaneous nitric oxide donor ameliorates small bowel ischemia-reperfusion injury in dogs. Digestive diseases and sciences 2001;46:1748-1756.
    [113]Aoki N, Johnson G, 3rd, Lefer AM. Beneficial effects of two forms of NO administration in feline splanchnic artery occlusion shock. The American journal of physiology 1990:258:G275-281.
    [114]Kalia N, Brown NJ, Hopkinson K, et al. FK409 inhibits both local and remote organ damage after intestinal ischaemia. The Journal of pathology 2002;197:595-602.
    [115]Fox-Robichaud A, Payne D, Hasan SU, et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. The Journal of clinical investigation 1998:101:2497-2505.
    [116]Luo CC, Chen HM, Chiu CH, et al. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model. Biology of the neonate 2001;80:60-63.
    [117]Naito Y, Takagi T, Ichikawa H. et al. A novel potent inhibitor of inducible nitric oxide inhibitor, ONO-1714, reduces intestinal ischemia-reperfusion injury in rats. Nitric Oxide 2004;10:170-177.
    [118]Khanna A, Rossman J, Caty MG, Fung HL. Beneficial effects of intraluminal nitroglycerin in intestinal ischemia-reperfusion injury in rats. The Journal of surgical research 2003; 114:15-24.
    [119]Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001;94:1133-1138.
    [120]Heller T, Hennecke M, Baumann U, et al. Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J Immunol 1999;163:985-994.
    [121]Arumugam TV, Shiels IA, Woodruff TM, et al. Protective effect of a new C5a receptor antagonist against ischemia-reperfusion injury in the rat small intestine. The Journal of surgical research 2002; 103:260-267.
    [122]Zhao H, Montalto MC, Pfeiffer KJ, et al. Murine model of gastrointestinal ischemia associated with complement-dependent injury. J Appl Physiol 2002;93:338-345.
    [123]Williams JP, Pechet TT, Weiser MR, et al. Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol 1999;86:938-942.
    [124]Karpel-Massler G, Fleming SD. Kirschfink M, Tsokos GC. Human C1 esterase inhibitor attenuates murine mesenteric ischemia/reperfusion induced local organ injury. The Journal of surgical research 2003:115:247-256.
    [125]Welbourn CR, Goldman G, Paterson IS, et al. Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. The British journal of surgery 1991:78:651-655.
    [126]Turnage RH. Kadesky KM. Rogers T, et al. Neutrophil regulation of splanchnic blood flow after hemorrhagic shock. Annals of surgery 1995:222:66-72.
    [127]Schmeling DJ, Caty MG, Oldham KT, Guice KS. Cytoprotection by diclofenac sodium after intestinal ischemia/reperfusion injury. Journal of pediatric surgery 1994;29:1044-1048.
    [128]马利,马敬文,肖光夏.中性白细胞及羟自由基在休克后肠源性细菌感染发病中的作用.中华外科杂志1992:52.
    [129]Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutrition reviews 1990:48:297-309.
    [130]Askanazi J. Carpentier YA, Michelsen CB, et al. Muscle and plasma amino acids following injury.Influence of intercurrent infection. Annals of surgery 1980;192:78-85.
    [131]Wilmore DW. Growth factors and nutrients in the short bowel syndrome. Jpen 1999;23:S117-120.
    [132]Ziegler TR, Estivariz CF. Jonas CR, et al. Interactions between nutrients and peptide growth factors in intestinal growth, repair, and function. Jpen 1999:23:S174-183.
    [133]Li YS, Li JS, Jiang JW, et al. Glycyl-glutamine-enriched long-term total parenteral nutrition attenuates bacterial translocation following small bowel transplantation in the pig. The Journal of surgical research 1999:82:106-111.
    [134]Sakawaki T, Sasaki K, Hirata K. Saline with glutamine improves cold preserved small bowel graft mortality. Transplantation proceedings 1998;30:3471-3474.
    [135]Tamaki T, Konoeda Y, Yasuhara M, et al. Glutamine-induced heme oxygenase-1 protects intestines and hearts from warm ischemic injury. Transplantation proceedings 1999:31:1018-1019.
    [136]Zhang W, Bain A, Rombeau JL. Insulin-like growth factor-1 (IGF-I) and glutamine improve structure and function in the small bowel allograft. The Journal of surgical research 1995;59:6-12.
    [137]Ikeda S, Zarzaur BL, Johnson CD, et al. Total parenteral nutrition supplementation with glutamine improves survival after gut ischemia/reperfusion. Jpen 2002;26:169-173.
    [138]Wischmeyer PE. Glutamine and heat shock protein expression. Nutrition (Burbank, Los Angeles County, Calif 2002;18:225-228.
    [139]Kelly D, Wischmeyer PE. Role of L-glutamine in critical illness:new insights. Current opinion in clinical nutrition and metabolic care 2003;6:217-222.
    [140]Harward TR, Coe D, Souba WW, et al. Glutamine preserves gut glutathione levels during intestinal ischemia/reperfusion. The Journal of surgical research 1994;56:351-355.
    [141]史晓峰,刘敦贵.1,6-二磷酸果糖在大鼠小肠缺血再灌注损伤中的保护作用.中国临床营养杂志2003;11:278-280.
    [142]陆贝.丹参与小肠缺血再灌注损伤研究进展.医学研究杂志2006:35:94-95.
    [143]方天翎,唐朝晖,胡元龙,夏穗生.谷氨酰胺对缺血再灌注损伤早期小肠粘膜细胞凋亡的影响.中国临床营养杂志2003;11:40-43.
    [144]牛卫博,王为忠,季刚,et a1.小剂量FK506预处理对大鼠小肠移植缺血再灌注损伤中细胞凋亡的影响.第四军医大学学报2003;11:980-983.
    [145]华玉芳,马永丰,任冬青.异丙酚对大鼠小肠缺血再灌注时粘膜上皮细胞凋亡的影响.中华麻醉学杂志2007;27:754-757.
    [146]林峥,李兴旺,刘中砥.依达拉奉对肠部分缺血-再灌注损伤大鼠肠组织TNF-a和IL-6的影响.江西医药2008;43:298-299,293.
    [147]Cicalese L, Lee K, Schraut W, et al. Pyruvate prevents ischemia-reperfusion mucosal injury of rat small intestine. American journal of surgery 1996;171:97-100; discussion 100-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700