锂离子电池锡基负极材料的电化学制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锡和锡基合金具有高的质量比容量和体积比容量,是下一代锂离子电池负极材料的研究热点之一。其主要缺陷在于嵌锂过程中体积膨胀导致活性材料粉化脱落,循环性能不好。目前解决的主要方法有:(1)制成纳米材料;(2)与活性或非活性元素合金化;(3)用活性或非活性材料包覆。除此之外,对集流体的表面形貌、多孔性和电极/电解质界面性质的深入认识也是提升合金电极电化学性能的重要内容。本论文发明了非氰化物电镀制备Cu_6Sn_5合金的方法,解决了一直以来难以用电镀法获得高锡含量的锡铜合金的难题。重点研究了不同集流体对锡基合金材料电化学循环性能的影响,和锡基合金电极与商业电解液的相容性,特别是运用电化学阻抗谱研究合金电极的相变过程和表面SEI膜的性质。主要研究内容和结果如下:
     (1)光滑铜片、泡沫铜和粗糙铜箔上锡铜合金的电化学性能。XRD结果指出光滑铜片、泡沫铜和粗糙铜箔上锡铜合金均由Cu_6Sn_5合金和少量纯Sn组成。充放电测试结果表明三种集流体上电镀获得的锡铜合金在放电过程中均在0.4V和0.1V附近给出Cu_6Sn_5的特征放电平台,但随着循环的进行逐渐消失。充放电循环结果显示粗糙铜箔上Cu_6Sn_5合金的容量和循环性能均优于其余两种。对经过不同循环次数的三种集流体上Cu_6Sn_5合金表面形貌进行分析,观察到光滑铜片上锡铜合金经过充放电循环39周后发生严重龟裂和脱落;泡沫铜上Cu_6Sn_5合金经过50周循环后也部分龟裂,但未发生明显脱落;粗糙铜箔上Cu_6Sn_5合金经过50周循环后,表面反而变得平滑,也无活性材料明显脱落。不同极化电位下的阻抗测试结果显示,Cu_6Sn_5合金在1.2V附近开始出现代表SEI膜的高频圆弧,在0.4V附近分别出现代表电荷传递和相变阻抗的中频和低频圆弧,但在0.3V附近相变阻抗圆弧基本消失,在0.1V附近又重新出现。Cu_6Sn_5合金放电不同容量后的阻抗谱研究指出,当放电5 mAh/g后Nyquist图中开始出现代表SEI膜的高频圆弧,当放电50 mAh/g后分别出现代表电荷传递和相变阻抗的中频和低频圆弧,当放电247 mAh/g后,低频圆弧转变为斜线,对应在0.4 V附近的放电结束。。对经过不同循环次数的Cu_6Sn_5合金电极的阻抗谱研究表明,电荷传递阻抗随着循环次数的增加先减小,后增大,说明了电极经历了一个从活化到逐渐失效的过程。
     (2)光滑铜片和粗糙铜箔上锡钴合金的制备及性质。XRD结果指出光滑铜片上电镀制得的锡钴合金为无定型态,而粗糙铜箔上电镀获得的锡钴合金为CoSn和Co_3Sn_2的复合物。充放电测试结果表明,光滑铜片和粗糙铜箔上电镀制得的锡钴合金在首次放电过程中均在0.22 V附近给出一个较长的放电电位平台,并在随后的循环中逐渐正移至0.4 V附近。充放电循环结果显示,粗糙铜箔上锡钴合金电极的循环性能明显优于光滑铜片上锡钴合金电极,经70周循环后容量无明显减小。表面形貌结果分析显示,光滑铜片上锡钴合金充放电循环20周后出现严重龟裂和脱落;但粗糙铜箔上锡钴合金经过70周循环后,表面变得平滑,活性材料未发生明显脱落。首次嵌锂过程的阻抗谱结果显示,锡钴合金电极在1.1V附近开始出现代表SEI膜阻抗的圆弧,在0.4 V附近开始出现代表电荷传递阻抗和相变阻抗的圆弧,当电极电位进一步降低至0.125V时,Nyquist图中代表电荷传递阻抗的中频圆弧消失,但低频圆弧仍然存在。对不同循环次数后的锡钴合金电极在0.05V处的阻抗谱分析表明,其电荷传递阻抗随着循环次数的增加不断增大,指示锂离子嵌入逐渐变得困难。
     (3)多孔铜集流体的制备及其表面电镀的锡铜和锡钴合金的电化学性能。运用氢气模版法电沉积制备得到有序多孔铜集流体,改变沉积条件调控孔的尺寸和壁厚。通过热处理增强多孔铜与基底间的结合力。分别以未热处理和热处理后的多孔铜为基底电镀制得锡铜合金。充放电结果显示热处理后的多孔铜上锡铜合金表现出较好的充放电性能,其首次放电容量735 mAh/g,首次充电容量571 mAh/g,经过50周循环后容量保持在342 mAh/g。不同温度条件下的EIS结果给出,开路电位时多孔铜上锡铜合金的Nyquist图均由一段曲率半径很大的圆弧组成。首次嵌锂过程中,当电极电位极化到1.2 V附近出现代表SEI膜阻抗的高频圆弧;到0.4 V附近,Nyquist图均转变为3段圆弧,即高频区域代表SEI膜阻抗的圆弧、中频区域代表电荷传递阻抗的圆弧和低频区域代表相变阻抗的圆弧。相变阻抗模拟结果显示,锡铜合金电极的相变电阻R_p在主要的相变电位区较小,其它电位下较大,但不同温度下R_p极小值出现的电位不同,随着温度的升高,其极小值电位正移。对于热处理后的多孔铜为基底电镀制备的锡钴合金,测得首次放电容量为726 mAh/g,首次充电容量为563 mAh/g,首次库伦效率为77.6%,从第2周循环开始到50周循环容量保持率为70%。多孔铜上锡钴合金的阻抗结果显示首次嵌锂过程中,当电极电位降低到0.4V附近,Nyquist图由高频区域代表SEI膜阻抗的圆弧、中频区域代表电荷传递阻抗的圆弧和低频区域代表相变阻抗的圆弧组成。与锡铜合金电极相似,锡钴合金的相变电阻同样在主要的相变电位区间内最小。当锡钴合金遭到突然的短路后,电极阻抗谱中出现了感抗弧,表征电极活性材料的不均匀性。首次嵌锂过程中感抗电阻R_L随着电极电位的降低而增大,而首次脱锂过程中随着电极电位升高感抗电阻R_L逐渐减小直至消失。
     本论文研究结果对于深入认识电极/电解质的界面性质和锡基合金的失效机理具有重要的基础理论意义。同时发明的非氰化物电镀制备锡基合金的方法、以及对集流体表面结构与电镀的锡基负极材料的功能之间的内在联系的深入认识,对于提升锡基合金负极材料的性能并应用于下一代锂离子电池具有直接的应用价值。
Tin and tin-based alloys have been suggested as promising alternative anode materials for their high gravitational and volumetric capacity. The main disadvantage of tin and tin-based alloys is large volume expansion, which caused exfoliation, and poor cycleability. Up to now, the main methods to resolve this problem include using nano-materials, alloying with other active or inactive element, and coating with active or inactive materials. Besides these, the study of the surface morphology and porosity of alloy electrodes, and interfacial properties of electrode/electrolyte is also important to improve electrochemical performance. In this paper, we invented the method to prepare large tin content Sn-Cu alloy (Cu_6Sn_5 alloy) in cyanide-free solution. We have extensively studied the electrochemical performance, especially the relation of cycleability and current collectors with different structure, and the compatibility of electrode and commercial electrolyte. We also investigated the SEI film and phase transformation of these electrodes using electrochemical impedance spectroscopy. The main experiments and results are given as follow.
     (1) The electrochemical performance of Sn-Cu alloy on smooth copper sheet, copper foam and rough copper foil. The results of XRD indicated that all of them are comprised of Cu_6Sn_5 and pure Sn. Charge/discharge results revealed that they all appeared two potential plateaus at about 0.4 V and 0.1 V, which are the characteristic potential plateaus of Cu_6Sn_5 alloy. Charge/discharge results also revealed that the cycleability of Sn-Cu alloy on rough copper foil was better than that of other two electrodes. From SEM results, we observed that there appeared serious cracks and exfoliation on the surface of Sn-Cu alloy on smooth copper sheet after 39 cycles, and there are few cracks and no exfoliation for Sn-Cu alloy on copper foam and rough copper foil after 50 cycles. The Nyquist spectra of different electrode potentials indicated that the arc appearing in high frequency region represents the SEI film at 1.2 V. When the electrode potential was polarized to about 0.4 V, an arc in the middle frequency region and an arc in the low frequency region appear, corresponding respectively to charge transferring and phase transformation. The phase transformation impedance arc disappeared at about 0.3 V, and appeared again at about 0.1 V. The Nyquist spectra acquired at different stages of discharge under galvanostatic condition revealed that when the electrode is discharged for 5 mAh/g, the arc of high frequency arc associating to the impedance of SEI film is obeserved. When the electrode discharged 55 mAh/g, there appeared middle frequency arc and low frequency arc which represent charge transferring impedance and phase transformation impedance respectively. From the Nyquist spectra of the Sn-Cu electrode after different cycles, we can observe that the charge transferring impedance decreased first and then increased with the increasing of cycles, which revealed a process of activity to failure.
     (2) Preparation and properties of Sn-Co alloy on smooth copper sheet and rough copper foil. The results of XRD indicated that the Sn-Co alloy on smooth copper sheet is amorphous, and the Sn-Co alloy on rough copper foil is comprised of intermetallic composites of SnCo and Co_3Sn_2. Charge/discharge results revealed that one potential plateau at about 0.22 V is observed in all cases in the first cycle, and is shifted to 0.4 V in the second cycle. There appears no obvious decreasing for gravitational specific capacity after 70 cycles for Sn-Co alloy on rough copper foil, which is better than that of Sn-Co alloy on smooth copper sheet. From SEM results, we observed that there appeared serious cracks and exfoliation on the surface of Sn-Co alloy on smooth copper sheet after 20 cycles, and there are few cracks and no exfoliation for Sn-Co alloy on rough copper foil even after 70 cycles. The Nyquist spectra at different polarized potential indicated that there appeared a high frequency arc which represents the impedance of transferring through SEI film of lithium-ion at the potential of 1.1 V. When the electrode potential was polarized to about 0.4 V, there appeared a middle frequency arc and a low frequency arc which represent charge transferring impedance and phase transformation impedance respectively. When the electrode potential was polarized to 0.125 V, the middle frequency arc disappeared, which is different from that of Sn-Cu alloy electrode. From the Nyquist spectra of the Sn-Co electrode recorded in different cycles, we observed that the charge transfer impedance is gradually increased with the increase of cycles.
     (3) The synthesis of porous copper foam and the electrochemical performance of Sn-Cu and Sn- Co alloy on this porous copper foam current collector were studied. Variety of porous copper foams with highly open porous walls have been successfully sculptured using the gas evolved in an electrochemical deposition process. The pore sizes and wall structures of the foams are tunable by adjusting the deposition conditions. The contact between porous copper foams and substrate was strengthened by annealing porous copper foams at high temperature. Charge/discharge results revealed that the cycleability of Sn-Cu alloy on porous copper foams after annealing is better than that of the Sn-Cu alloy deposited on copper porous foam without annealing. The first discharge and charge capacity of Sn-Cu alloy on porous copper foams after annealing is 735 mAh/g and 571 mAh/g respectively, and the charge capacity remained 342 mAh/g after 50 cycles. The Nyquist spectra of different polarized potential at different temperature indicated that there appeared a high frequency arc which represents the impedance of transferring through SEI film of lithium-ion at the potential of 1.2 V. When the electrode potential was polarized to about 0.4 V, there appeared a middle frequency arc and a low frequency arc which represent charge transfer impedance and phase transformation impedance respectively. Simulation result revealed the phase transformation resistance is smallest at the potential region of phase transformation. Charge/discharge results revealed that the first discharge and charge capacity of Sn-Co alloy on porous copper foams after annealing is 726 mAh/g and 563 mAh/g respectively, and the first coulomb efficiency is 77.6%. After 50 cycles, the capacity remained 70% of that of the second cycle. When the electrode potential was polarized to about 0.4 V, the Nyquist spectra are comprised of a high frequency arc, a middle frequency arc and a low frequency arc which represent SEI film impedance, charge transfer impedance and phase transformation impedance respectively. Similar to Sn-Cu alloy, the phase transformation resistance is smallest at the potential region of phase transformation. When Sn-Co alloy electrode suffer Short circuit, there appear inductive loop in the Nyquist spectra, which caused by heterogeneity. The diameter of inductive resistance increased with the decreasing of electrode potential in the initial lithiation, and decreased with the increasing of electrode potential in the initial delithiation.
     The results of this thesis throw insight into electrode/electrolyte interface and failure mechanism of tin and tin-based alloy, and are of significance in developing relevant fundamental theory. The extensively study on the invention of cyanide-free electroplating tin-based alloy, and the intrinsic relation of surface structure of current collector and properties of them is also great importance in improving electrochemical performance of them and application in next generation lithium-ion battery.
引文
[1]J M Tarascon,and M Armand.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367.
    [2]郭炳焜,李新海,杨松青.化学电源—电池原理及制造技术.中南工业大学出版社,2000
    [3]王凤飞,王新庆,杨冰,李振华,王淼.锂离子电池负极材料的研究进展,纳米技术与精密工程,2004,2(3):192-195
    [4]W.S.Harris,Ph.D.Thesis UCRL-8381,University of California,Berkeley.
    [5]Ikeda,H.,Salto,T.& Tamura,H.in Proc.Manganese Dioxide Symp.Vol.1(eds Kozawa,A.& Brodd,R.H.)(IC sample Office,Cleveland,OH,1975).
    [6]Skundin A M,Efimov O N,Yarmolenko O V.The state-of-art and prospects for the development of rechargeable lithium batteries.Russian Chemical Review,2002,71(4):329-346
    [7]Walter A.Van Schalkwijk,Bruno Scrosati.Advances in Lithium-Ion Batteries,Kluwer Academic/Plenum Publishers (New York),2002
    [8]Whittingham,M.S.Electrochemical energy storage and intercalation chemistry.Science,1976,192:1226
    [9]Whittingham,M.S.Chalcogenide battery.US Patent 4009052.
    [10]Armand,M.B.in Materials for Advanced Batteries(Proc.NATO Symp.Materials Adv.Batteries)(eds Murphy,D.W.,Broadhead,J.& Steele,B.C.H.) 145-161(Plenum,New York,1980).
    [11]Mizushima,K.,Jones,P.C.,Wiseman,P.J.& Goodenough,J.B.LixCoO_2(0<x 1):a new cathode material for batteries of high energy density.Mat.Res.Bull.1980,15:783-789
    [12]Nagaura,T.& Tozawa,K.Lithium ion rechargeable battery.Prog.Batteries Solar Cells 1990,9:209
    [13]Y.Nishi,.Performance of the first lithium ion battery and its process technology.in:M.Wakihara,O.Yamamoto(EDS.)Lithium Ion Batteries.Kodansha,Tokyo;WileyNCH,Weinheim,1998,P.181.
    [14]T.A.Hewston,B.L.Chamberland,J.Phys.Chem.Solids,1987,48:97.
    [15]刘汉三,杨勇,张忠如等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学,2001,7(2):145-154.
    [16]Thackeray,M.M.,David,W.I.F.,Bruce,P.G.& Goodenough,J.B.Lithium insertion into manganese spinels.Mat.Res.Bull.1983,18:461-472
    [17]Masataka Wakihara.Recent developments in lithium ion batteries.Materials science and Engineering R33,2001: 109-134
    [18]Padhi,A.K.,Nanjundaswamy,K.S.,Masquelier,C.,Okada S.& Goodenough,J.B.Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates.J.Electrochem.Soc.144,1609-1613(1997).
    [19]K Xu.Nonaqueous Liquid Electrolytes for Lithium-Based Rechatgeable Batteries.Chem.Rev.,2004,104:4303-4417
    [20]Wang Z L,Tang Z Y.A novel polymer electrolyte based on PMAML/PVDF-HFP blend[j].Electrochimica Acta,2004,49(7):1063-1068.
    [21]Rajendran S,Kannan R,Mahendran O.Ionic conductivity studies in poly(methylmethaerylate)-polyethlene oxide hybrid polymer electrolytes with lithium salts[J].J.Power Sources,2001,96(2):406-410.
    [22]Majima M,Ujiie S,Yagasaki E,et al.Trial manufacturing of a large-scale lithium ion battery for power storage[J].Electrochemistry,2000,68(3):174-180.
    [23]Chen Y G,Wang C G,Zhang X Y,et al.Syntheses and application of all-lithium salts of heteropolyacid as electrolyte of lithium-ion battery[J].Chemical Research in Chinese Universities,2004,20(1):77-80.
    [24]Naji A,Ghanbaja J,Willmann P,et al.TEM characterization of the passivating layer formed during the reduction of graphite electrodes in selected electrolytes[J].J.Power Sources,1999,81:207-211.
    [25]Thomas S R,Koch V R,et al.New electrolyte for Li-ion battery[J].J.Electrochem.Soc.,1996,143:L195-197.
    [26]Urbarch D,Ein-Eliy,Chusid O.The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable "rocking chair" type batteries[j].J.Electrochem.Soc.,1994,141:603-610.
    [27]Herlem G,Fahys B.N-Butylamine as solvent for lithium salt electrolytes,structure and properties of concentrated solution[J].Electrochim Acta,1996,41:2753-2759.
    [28]Ota H,Shima K,Ue M,et al.Effect of vinylene carbonate as additive to electrolyte for lithium metal anode[J].Electrochimica Acta,2004,49(4):565-572.
    [29]Wrodnigg G H,Besenhard J O,Winter M.Ethylene suifite as electrolyte additive for lithium-ion cells with graphitic anodes[J].J.Electrochem.Soc.,1999,146(2):470-472.
    [30]Martin Winter,J O.Besenhard.Electrochemical lithiation of tin and tin-based intermetallics and composites.Electrochimica Acta,1999,45:31-50
    [31]任建国,王科,何向明,姜长印,万春荣.锂离子电池合金负极材料的研究进展.化学进展,2005,17(4):597-603
    [32]黄学杰(Huang X J),李泓(Li H),王庆(Wang Q)等.物理(Physics),2002,31(7):444-449
    [33]任建国,王科,何向明,姜长印,万春荣.锂离子电池合金负极材料的研究进展.化学进展,2005,17(4):597-603
    [34]Yang J,Winter M,Besenhard J O.Small particle size multiphase Li-alloy anodes for lithium-ion batteries.Solid State Ionics,1996,90:281-287
    [35]Besenhard J O,Yang J,Winter M.Will advanced lithium-alloy anodes have a chance in lithium-ion batteries.Journal of Power Sources,1997,68:87-90
    [36]Yang J,Wachtler M,Winter M,Bescnhard J O.Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-lon Batteries,Electrochemical and Solid State Letters,1999,2(4):161-163
    [37]Yang J,Takeda Y,Imanishi N,O.Yamamoto.Ultrafine Sn and SnSb_(0.14) Powders for Lithium Storage Matrices in Lithium-lon Batteries.Journal of The Electrochemical Society,1999,146:4009-4013
    [38]Wachtler M,Besenhard J O,Winter M.Tin and tin-based intermetallics as new anode materials for lithium-ion cells.Journal of Power Sources,2001,94:189-193
    [39]Wachtler M,Winter M,Besenhard J O.Anodic materials for rechargeable Li-batteries.Journal of Power Sources,2002,105:151-160
    [40]Irmgard Rom,Mario Wachtler,Ilse Papst,Mario Schmied,J.O.Besenhard,Ferdinand Hofer,Martin Winter,Electron microscopical characterization of SnrSnSb composite electrodes for lithium-ion batteries,Solid State Ionics,2001:329-336
    [41]Hong Li,Guangyan Zhu,Xuejie Huang and Liquan Chen.Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature J.Materials Chemistry,2000,10:693-696
    [42]Li H,Shi L,Lu W,Xuejie Huang,and Liquan Chen.Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries.Journal of The Electrochemical Society,2001,148(8):A915-A922
    [43]李泓(Li H),李晶泽(Li J Z),师丽红(Shi L H)等.锂离子电池纳米材料研究(The Studies on Nanosized Materials for Lithium Ion Batteries).电化学(Electrochemistry),2000,6(2):131-145
    [44]Hung Li,Qing Wang,Lihong Shi,Liquan Chen,and Xuejie Huang,Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery,Chem.Mater.2002,14:103-108
    [45]Hong Li,Lihong Shi,Wei Lu,Xuejie Huang,and Liquan Chen.Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-lon Batteries,Journal of The Electrochemical Society,2001,148(8):A915-A922
    [46]Wei Xiang Chen,Jim Yang Lee,Zhaolin Liu.Electrochemical lithiation and de-lithiation of carbon nanotube-Sn_2Sb nanocomposites,Electrochemistry Communications,2002,4:260-265
    [47]Wei Xiang Chen,Jim Yang Lee,Zhaolin Liu,The nanocomposites of carbon nanotube with Sb and SnSb_(0.5) as Li-ion battery anodes,Carbon,2003,41:959-966
    [48]Ke Wang,Xiangming He,Jianguo Ren,Li Wang,Changyin Jiang,Chunrong Wan.Preparation of Sn_2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides,Electrochimica Acta,2006,52:1221-1225
    [49]Ke Wang,Xiangming He,Jianguo Ren,Li Wang,Changyin Jiang,Chunrong Wan.Preparation of Sn_2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides,Electrochimica Acta,2006,52:1221-1225
    [50]Ehrlich G M,Durnnd C,Chen X,T.A.Hugener,F.Spiess,and S.L.Suib Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries.Journal of The Electrochemical Society,2000,147(3):886-891
    [51]Ahn J H,Kim Y J,Wang G,et al.Materials Transactions,2002,43(1):63-66
    [52]Young-Lae Kim,Heon-Young Lee,Serk-Won Jang,Seung-Joo Lee,Hung-Koo Balk,Young-Soo Yoon,Young-Shin Park,Sung-Man Lee.Nanostructured Ni_3Sn_2 thin film as anodes for thin film rechargeable lithium batteries.Solid State Ionics,2003,160:235-240
    [53]Mukaibo H,Sumi T,Yokoshima T,Toshiyuki Momma,and Tetsuya Osaka Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries.Electrochemical and Solid State Letters,2003,6(10):A218-A220
    [54]H.Mukaibo,T.Momma,T.Osaka.Changes of electro-deposited Sn-Ni alloy thin film for lithium ion battery anodes during charge discharge cycling.Journal of Power Sources,2005,146:457-463
    [55]Hitomi Mukaibo,Toshiyuki Momma,Mohamed Mohamedi,and Tetsuya Osaka.Structural and Morphological Modifications of a Nanosized 62 Atom Percent Sn-Ni Thin Film Anode during Reaction with Lithium.Journal of The Electrochemical Society,2005,152(3):A560-A565
    [56]J.Hassoun,S.Panero,B.Scrosati.Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries,Journal of Power Sources,2006,160:1336-1341
    [57]J.Hassoun,S.Panero,B.Scrosati.Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries,Journal of Power Sources,2006,160:1336-1341
    [58]K.D.Kepler,J.T.Vaughey,M.M Thackray.Copper-tin anodes for rechargeable lithium batteries:an example of the matrix effect in an intermetallic system,Journal of Power sources,1999,81-82:383-387
    [59]M.M.Thankeray,J..Vaughey,A.J.Kahalan,K.D.Kepler,R.Benedek.Intermetallic insersion electrodes derived From NiAs-,Ni_2In-,and Li_2CuSn-type structures for lithium-ion batteries.Electrochemistry Commuication,1999,1:111-115
    [60]M.M.Thackeray,J.Vaughey,A.J.Kahaian,K.D.Kepler,R.Benedek.Intermetallic insersion electrodes derived From NiAs-,Ni_2In-,and Li2CuSn-type structures for lithium-ion batteries.Electrochemistry Commuication,1999,1:111-115
    [61]S.D.Beattie and J.R.Dahn,Single bath pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries J.Electrochem.Soc.,2003,150(7):A894-A898
    [62]Noriyuki Tamur,Ryuji Ohshita,Masahisa Fujimoto,Shin Fujitani,Maruo Kamino,Ikuo Yonezu.Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes.Journal of Power Sources,2002,107:48-55
    [63]Weihua Pu,Xiangming H~*,Jianguo Ren,Chunrong Wan,Changyin Jiang.Electrodeposition of Sn-Cu alloy anodes for lithium batteries.Electrochimica Acta,2005,50:4140-4145
    [64]Catia Arbizzani,Mariachiara Lazzari,and Marina Mastragostino.Lithiation/Delithiation Performance of Cu_6Sn_5 with Carbon Paper as Current Collector.Journal of Tbe Electrochemical Society,2005,152(2):A289-A294
    [65]D.Larcher,L.Y.beaulieu,D.D.macoeil,and J.R.Dahn.In situ X-ray study of the electrochemical reaction of Li with η'-Cu_6Sn_5.Journal of The Electrochemical Society,2000,147(5):1658-1662
    [66]Keith D.Kepler,John T.Vaughey,and Michael M.Thackeray.LixCu_6Sn_5(0<x<13):An lntermetallic Insertion Electrode for Rechargeable Lithium Batteries.Electrochemical and Solid-State Letters,1999,2(7):307-309
    [67]J.T.Vaughey,K.D.Kepler 1,R.Benedek,M.M.Thackeray.NiAs- versus zinc-blende -type intermetallic insertion electrodes for lithium batteries:lithium extraction from Li_2CuSn.Electrochemistry Communications,1999,1:517-521
    [68]T.Sarakonsri,C.S.Johnson,S.A.Hackney,M.M.Thackeray.Solution route synthesis of InSb,Cu_6Sn_5 and Cu_2Sb electrodes for lithium batteries.Journal of Power Sources,2006,153:319-327
    [69]M.M.Thackeray,J.T.Vaughey,C.S.Johnson,A.J.Kropf,R.Benedek,L.M.L.Fransson,K.Edstrom.Structural considerations of intermetallic electrodes for lithium batteries.Journal of Power Sourees,2003,113:124-130
    [70]Wanuk Choi,Jeong Yong Lee,Hong S.Lim.Electrochemical lithiation reactions of Cu_6Sn_5 and their reaction products.Electrochemistry Communications,2004,6:816-820
    [71]S.Sharma,a L.Fransson,b,E.Sjo¨stedt,L.Nordstro¨m,B.Johansson,and K.Edstro¨m.A Theoretical and Experimental Study of the Lithiation of η'-Cu_6Sn_5 in a Lithium-Ion Battery.Journal of The Electrochemical Society,2003,150(3):A330-A334
    [72]C.M.Ionica-Bousquet,P.E.Lippens,L.Aldon,J.Olivier-Fourcade,and J.C.Jumas.In situ ~(119)Sn Mossbauer Effect Study of Li-CoSn_2 Electrochemical System.Chem.Mater.2006,18:6442-6447
    [73]N.Tamura,M.Fujimoto,M.Kamino,S.Fujitani.Mechanic stability of Sn-Co alloy anodes for lithium secondary batteries.Electrochimica Acta,2004,49:1949-1956
    [74]N.Tamura,Y.Kato,A.Mikami,M.Kamino,S.Matsuta,and S.Fujitani.Study on Sn-Co Alloy Anodes for Lithium Secondary Batteries I.Amorphous System.Journal of The Electrochemical Society,2006,153(8):A1626-A1632
    [75]Zhang Jing-jun and Xia Yong-yao.Co-SnAlloys as Negative Electrode Materials for Rechargeable Lithium Batteries.Journal of The electrochemical Society,2006,153(8):A1466-A1471
    [76]D.W.Todd,R.E.Mar,and J.R.Dahn.Combinational Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-ion Batteries.Journal of The Electrochemical Society,2006,153(10):A1998-A2005
    [77]Hyunjung Kim and Jaephil Cho.Synthesis and Morphological,Electrochemical Characterization of Sn_(92)Co_8Nanoalloys for Anode Materials in Li Secondary Batteries.Journal of The Electrochemical Society,2007,154(5):A462-A466
    [78]Ou Man and J.R.Dahn.Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries Ⅱ.The Sn-Fe System.Journal of The Electrochemical Society,1999,146(2):414-422
    [79]Ou Mao,R.A.Dunlap,and J.R.Dahn.Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries I.The Sn_2Fe-C System.Journal of The Electrochemical Society,1999,146(2):405-413
    [80]Ou Mao and J.R.Dahn.Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-lon Batteries Ⅲ.Sn_2Fe:SnFe_3C Active/Inactive Composites.Journal of The Electrochemical Society,1999,146(2):423-427
    [81]Jingtian Yin,Masashi Wada,Yasuyuki Kitano,Shigeo Tanase,Osamu Kajita,and Tetsuo Sakai.Nanostructured Ag-Fe-Sn/Carbon Nanotubes Composites as Anode Materials for Advanced Lithium-Ion Batteries.Journal of The Electrochemical Society,2005,152(7):A1341-A1346
    [82]Jingtian Yin,Masashi Wada,Shigeo Tanase,and Tetsuo Sakai.Nanocrystalline Ag-Fe-Sn Anode Materials for Li-Ion Batteries.Journal of The Electrochemical Society,2004,151(4):A583-A589
    [83]L.Y.Beaulieu and J.R.Dahn.The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying.Journal of The Electrochemical Society,2000,147(9):3237-3241
    [84]H.Kim a,Y.-J.Kim,D.G.Kim,H.-J.Sohn,T.Kang.Mechanochemical synthesis and electrochemical characteristics of Mg_2Sn as an anode material for Li-ion batteries.Solid State Ionics,2001,144:41-49
    [85]H.Kim a,Y.-J.Kim,D.G.Kim,H.-J.Sohn,T.Kang.Mechanochemical synthesis and electrochemical characteristics of Mg_2Sn as an anode material for Li-ion batteries.Solid State Ionics,2001,144:41-49
    [86]Y.Li,J.P.Tu,X.H.Huang,H.M Wu,Y.F.Yuan.Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries.Electrochimica Acta,2006,52:1383-1389
    [87]Y.Li,J.P.Tu,X.H.Huang,H.M Wu,Y.F.Yuan.Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries.Materials Science and Engineering B,2006,128:75-79
    [88]Y.Li,J.P.Tu,X.H.Huang,H.M Wu,Y.F.Yuan.Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries.Electrochimica Acta,2006,52:1383-1389
    [89]Y.Li,J.P.Tu,X.H.Huang,H.M Wu,Y.F.Yuan.Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries.Materials Science and Engineering B,2006,128:75-79
    [90]Fransson L M L,Vanghey J T,Benedek R,et al.ElectrochemistryCommunications,2001,3:317-323
    [91]Fransson L M L,Vaughey J T,Edstrom K,M.M.Thackeray.Structural Transformations in lntermetallic Electrodes for Lithium Batteries.Journal of The Electrochemical Society,2003,150(1):A86-A91
    [92]Cao G S,Zhan X B,Li T,et al.Zn_4Sb_3(---C_7) powders as a potential anode material for lithium-ion batteries.Journal of Power Sources,2001,94:102-107
    [93]李昌明,张仁元,李伟善.硅材料在锂离子电池中的应用研究进展.材料导报,2006,20(9):34-37
    [94]黄峰.氧化物作为锂二次电池负极材料的基础研究[D].武汉大学理学博士论文,武汉,2003,9.
    [95]殷金玲,陈猛,李胜军.锂离子电池非碳负极材料的研究进展.应用科技,2002,29(10):52-55.
    [96]Weydanz W J,Wohlfahrt-Mehrens M,Huggins R A.A room temperature study ofthe binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries[J].Journal of Power Sources,1999,81:237-242.
    [97]Wolfenstine J.CaSi_2 as an anode for lithium-ion batteries.Journal of Power Sources,2003,124(I):241-245.
    [98]Wang G X,Sun L,Bradhurst D H,et al.Nanocrystalline NiSi alloy as an anode material for lithium -ion batteries[J].Journal of Alloys and Compounds,2000,306:249-252.
    [99]Wang G X,Sun L,Bradhurst D H,et al.Innovative nanosize lithium storage alloys with silica as active centre[J].Journal of Power Sources,2000,88(2):278-281.
    [100]Lee S J,Lee H Y,Balk H K,et al.Si-Zr alloy thin-film anodes for microbatteries.Journal of Power Sources,2003,119:113-116.
    [101]Lee S J,Lee H Y,Park Y,et al.Si(-Zr)/Ag multilayer thin-film anodes for microbatteries.Journal of Power Sources,2003,119:117-120.
    [102]刘业翔,胡国荣,禹筱之.锂离子电池研究与开发的新进展——第11届国际锂电池会议述评.电池,2002,32:269-273.
    [103]Pralong V,Souza D C S,Leung K T,et al.Reversible Lithium uptake by CoP_3 at low potentials:role of the anion[J].Electrochemistry Communications,2002,4:516-520.
    [104]Souza D C S,Pralong V,Jacobson A J,et al.A Reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry.Science,2002,296:2012-2015.
    [105]PereirA N,Klein L C,Amtucci G G,et al.The electrochemistry of Zn_3N_2 and LiZnN-a lithium reaction mechanism for metal nitride electrodes.Journal of the Electrochemical Society,2002,149:A262-A271.
    [106]Zhang W X,Wang C,Zhang X M,et al.Low temperature synthesis of nanocrystalline Mn_3O_4 by a solvothermal method.Solid State Ionics,1999,117(3-4):331-335.
    [107]Larcher D,Bonnin D,Cortes R,et al.Combined XRD,EXAFS,and Mossbauer studies of the reduction by lithium of aipha-Fe_2O_3 with various particle sizes.Journal of tThe Electrochemical Society,2003,150(12):A1643-A1650.
    [108]Xu J J,Jain G.Nanocrystailine ferric oxide cathode for rechargeable lithium batteries.Electrochem.Solid State Lett.,2003,6(9):A190-A193.
    [109]Larcher D,Masquelier C,Bonnin D,et al.Effect of particle size on lithium intercalation into aipha-Fe_2O_3.Journal of The Electrochemical Society,2003,150(1):A133-A139.
    [110]Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.Nature,2000,407:496-499.
    [111]Poizot P,Laruelle S,Grugeon S,et al.Rationalization of the Low-potentiai reactivity of 3d-metal-based Inorganic compounds towards Li.Journal of The Electrochemical Society,2002,149(9):A1212-A1217.
    [112]Gaurav Jain,Mabaiingam Balasubramanian,and Jun John Xu,Structural Studies of Lithium Intercalation in a NanocrystaUine α-Fe_2O_3 Compound,Chem.Mater.2006,18,423-434
    [113]Sho Kanzaki,Atsuo Yamada,Ryoji Kanno.Effect of chemical oxidation for nano-size α-Fe_2O_3 as lithium battery cathode.Journal of Power Sources,2007,165:403-407
    [114]Sho Kanzaki,Atsuo Yamada,Ryoji Kanno.Effect of chemical oxidation for nano-size α-Fe_2O_3 as lithium battery cathode.Journal of Power Sources,2007,165:403-407
    [115]P.L.TABERNA,S.MITRA,P.POIZOT,P.SIMON AND J.-M.TARASCON.High rate capabilities Fe_3O_4-based Cu nano-arehitectured electrodes for lithium-ion battery applications,nature materials 2006,5:567-573
    [116]D.Larcher,G.Sudant,J-B.Leriche,Y.Chabre,and J-M.Tarascona,The Electrochemical Reduction of Co_3O_4 in a Lithium Cell,Journal of The Electrochemical Society,2002,149(3):A234-A241
    [117]C.L.Liao,Y.H.Lee,S.T.Chang,K.Z.Fung.Structural characterization and electrochemical properties of R.F-sputtered nanocrystalline Co_3O_4 thin-film anode.Journal of Power Sources,2006,158:1379-1385
    [118]S.A.Needham,G.X.Wang,K.Konstantinov,Y.Tournayre,Z.Lao,and H.K.Liub,Electrochemical Performance of Co_3O_4-C Composite Anode Materials,Electrochemical and Solid-State Letters,2006,9(7):A315-A319
    [119]Han-Chang Liu,Shiow-Kang Yen,Characterization of electrolytic Co_3O_4 thin films as anodes for lithium-ion batteries,Journal of Power Sources.in press
    [120]Han-Chang Liu,Shiow-Kang Yen,Churacterzation of electrolytic Co_3O_4 thin films as anodes for lithium-ion batteries,Journal of Power Sources.in press
    [121]Grugeon S,Laruelle S,Herrera-Urbina R,et al.Particle size effects on the electrochemical performance of copper oxides toward lithium,Journal of The Electrochemical Society,2001,148(4):A285-A292.
    [122]Poizot P,Laruelle S,Grugeon S,et al.Searching for new anode materials for the Li-ion technology:time to deviate from the usual path.J.Power Sources,2001,97-98:235-239.
    [123]X.P.Gan,J.L.Ban,G.L.Pan,H.Y.Zhu,P.X.Huang,F.Wu,and D.Y.Song.Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery.J.Phys.Chem.B 2004,108:5547-5551
    [124]S.Bijani,M.Gabas,L.Martinez,J.R.Ramos-Barrado,J.Morales,L.Sanchez.Nanostructured Cu_2O thin film electrodes prepared by eleetrodeposition for rechargeable lithium batteries.Thin Solid Films.in press
    [125]Q.Zhang,J.P.Tu,X.H.Huang,Y.F.Yuan,X.T.Chen,F.Man.Preparation and electrochemical performances of cubic shape Cu_2O as anode material for lithium ion batteries.Journal of Alloys and Compounds.in press
    [126]A.Kuhn,R.Amandi,F.Gatcia-Alvarado.Electrochemical lithium insertion in TiO_2 with the ramsdellite structure.Journal of Power Sources,2001,92:221-227
    [127]Yong-Sheng Hu,Lorenz Kienle,Yu-Guo Gun,and Joachim Maier.High Lithium Eleetroactivity of Nanometer-Sized Ruffle TiO_2.Adv.Mater.2006,18:1421-1426
    [128]Yong-Sheng Hu,Lorenz Kienle,Yu-Guo Guo,and Joachim Maier.High Lithium Eleetroactivity of Nanometer-Sized Ruffle TiO_2.Adv.Mater.2006,18:1421-1426
    [129]A.Robert Armstrong,Graham Armstrong,Jesus Canales,Peter G.Bruce.TiO_2-B nanowires as negative electrodes for rechargeable lithium batteries.Journal of Power Sources,2005,146:501-506
    [130]Graham Armstrong,A.Robert Armstrong,Jesus Canales,and Peter G.Bruce.TiO_2(B) Nanotubes as Negative Electrodes for Rechargeahle Lithium Batteries.Electrochemical and Solid-State Letters,2006,9(3):A139-A143
    [131]Graham Armstrong,A.Robert Armstrong,Peter G.Bruce,Priscilla Reale,and Bruno Scrosaff.TiO_2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO_4 or LiNi_(0.5)Mn_(1.5)O_4 Cathodes and a Polymer Electrolyte.Adv.Mater.2006,18:2597-2600
    [132]A.Robert Armstrong,Graham Armstrong,Jesus Canales,Peter G.Bruce.Lithium-ion lntercation into TiO_2(B) Nanowires.Adv.Mater.2005,17(4):862-865
    [133]Isamu Moriguchi,Ryoji Hidaka,Hirotoshi Yamada,Tetsuichi Kudo,Hiroto Murakami,and Naotoshi Nakashima.A Mesoporous Nanocomposite of TiO_2 and Carbon Nanotubes as a High-Rate Li-Intercalation Electrode Material.Adv.Mater.2006,18:69-73
    [134]Kang Xu.Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries.Chem.Rev.2004,104:4303-4417
    [135]G E Blomgren.Electrolytes for advanced batteries.J Power Sources,1999,81-82:112-118.
    [136]E Peled.The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model.J Electrochem Soc,1979,126(12):2047-2051.
    [137]D Aurbach,I Weissman,A Schechter.X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions.a comparison with previous studies with previous studies by forier transform infrared spectroscopy.Langmiur,1996,12(16):3991-4007.
    [138]A Schechter and D Aurbach.X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions.Langmuir,1999,15(9):3334-3342.
    [139]K -i Morigaki,A Ohta.Analisis of the surface of lithium in organic electrolyte by atomic force microscopy,fourier transform inflated spectroscopy and scanning auger electron microscopy.J Power Sources,1998,76:159-166.
    [140]S Shiraishi,K Kanamura,Z-i Takehara.Study of the surface composition of highly smooth lithium deposited in various carbonate electrolyte containing HF.Langmuir,1997,13:3542-3549.
    [141]D Aurbach,A zaban,Yosef Gofer,et al.Recent studies of the lithium-liquid electrolyte interface electrochemical,morphology and spectral studies of a few important systems[J].Journal of Power Souces,1995,54:76-84.
    [142]He'rold,A.Bull.Soc.Chim.Fr.1955,187,999.
    [143]Gue'rard,D.;He'rold,A.Carbon 1975,13,337.
    [144]Billaud,D.;He'rold,A.Carbon 1979,17,183.
    [145]Graphite Intercalation Compounds,Vol.Ⅰ and Ⅱ;Zabel,H.,Solin,S.A.,Eds.;Springer-Verlag:New York,1990 and 1992.
    [146]Besenhard,J.O.Carbon 1976,14:111.
    [147]Besenhard,J.O.;Mo¨hwald,H.;Nickl,J.J.Carbon 1980,18:399.
    [148]Besenhard,J.O.;Fritz,H.P Angew.Chem.,Int.Ed.Engl.1983,22:950.
    [149]Besenhard,J.O.;Fritz,H.P.J.Electroanal.Chem.1974,53:329.
    [150]Fong,R.;von Sacken,U.;Dahn,J.R.J.Electrochem.Soc.1990,137:2009.
    [151]Endo,E.;Ata,M.;Tanaka,K.;Sekai,K.J.Electrochem.Soc.1998,145:757.
    [152]Wang,Y.;Nakamura,S.;Ue,M.;Balbuena,P.B.J.Am.Chem.Soc.2001,123:11708.
    [153]Besenhard,J.O.;Winter,M.;Yang,J.;Biberacher,W.J.Power Sources 1993,54:228.
    [154]Chung,G.;Kim,H.;Yu,S.;Jun,S.;Choi,J.;Kim,M.J.Electrochem.Soc.2000,147:4391.
    [155]Dey,A.N.;Sullivan,B.P.J.Electrochem.Soc.1970,117:222.
    [156]Arakawa,M.;Yamaki,J.J.Electroanal.Chem 1987,219:273.
    [157]Kim,Y.;Park,S.J.Electrochem.Soc.2001,148:A194.
    [158]S-K Jeong,M Inaba,T Abe,et al.Surface film formation on graphite negative electrode in lithium-ion batteries,AFM study in an ethylene carbonate-based solution.J Electrochem Soc,2001,148:A989-A993.
    [159]S-K Jeong,M Inaba,Y Iriyama,et al.Surface film formation on a graphite negative electrode in lithium-ion batteries:AM study on the effects of co-solvents in ethylene carbonate-based solutions.Electrochimica Acta,2002,47:1975-1992.
    [160]G -C Chung,H-J Kim,S -I Yu,et al.Original of graphite exfoliation,an investigation of the important role of solvent cointeraction.Journal Electrochem Soc,2000,147:4391-4398.
    [161]E Endo,M Ata,K Tanaka.et al.Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries.J Electrochem Soc,1998,145:3757-3764.
    [162]E Endo,K Tanaka,and K Sekai.Initial reaction in the reduction decomposition of electrolyte solutions for lithium batteries.J Electrochem Soc,2000,147(11):4029-4033.
    [163]S Mori,H Asahima,H Suzuki,et al.Chemical properties of various organic electrolytes for lithium rechargeable batteries,1.Characterization of passivating layer formed on graphite in alkyl carbonate solutions.J Power Sources,1997,68:59-64.
    [164]X Zhang,R Kostecki,T J Richardson,et al.Electrochemical and infrared studies of the reduction of organic carbonates.J Electrochem Soc,2001,148(12):1341-1345.
    [165]Y Kida,A Kinoshita,K Yanagida,et al.A study on cycle performance of lithium secondary batteries using lithium nickel-cobalt composite oxide and graphite/coke hybrid carbon.Electrochimica Acta,2002,47:1691-1696.
    [166]H Yoshida,T Fukunaga,T Hazama,et al.Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging.Journal of Power Sources,1997,68:311-345.
    [167]A Naji,J Ghanbaja,B Humbert,etal.Electroreduction of graphite in LiClO_4-ethylene carbonate electrolyte.Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy.Journal of Power Sources,1996,63:33-39.
    [168]P Arora,R E White,M Doyle.Capacity fade mechanisms and side reactions in lithium-ion batteries.Journal of The Electrochemical Society,1998,145(10):3647-3667.
    [169]Y Wang,P B Balbuena.Theoretical studies on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates.International Journal of Quantum Chemistry,2005,102:724-733.
    [170]Y.Wang,S Nakamura,M Ue,et al.Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries:reduction mechanisms of ethylene carbonate.J.Am.Chem.Soc,2001,123:11708-11718.
    [171]Hong Li,Xuejie Huang,and Liquan Chen.Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries.Electrochemical and Solid-State Letters,1998,1(6):241-243
    [172]Jingze Li,Hong Li,Zhaoxiang Wang,Liquan Chen,Xuejie Huang.The study of surface films formed on SnO anode in lithium rechargeable batteries by spectroscopy.Journal of Power sources,2002,107:1-4
    [173]Hong Li,Xuejie Huang,Liquan Chen.Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries.Journal of Power Sources,1999,81-82:340-345
    [174]Chunsheng Wanga,A.John Applebya,Frank E.Little.Electrochemical study on nano-Sn,Li_(4.4)Sn and AlSi_(0.1)powders used as secondary lithium battery anodes.Journal of Power Sources,2003,93:174-85
    [175]E Peled.The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model.J Electrochem Soc,1979,126(12):2047-2051.
    [176]M J Garreau.Cyclability of the lithium electrode.J Power Sources,1987,20(1-2):9-17
    [177]J G Thevenin.Passivating films on lithium electrodes.An approach by means of electrode impedance spectroscopy.J Power Sources,1985,14(1-3):45-52.
    [178]J G Theveninj,R H Muller.Impedance of lithium electrode in a propylene carbonate electrolyte.J Electrochem Soc,1987,134:273-280.
    [179]D Aurbach and Y S Cohen.Identification of surface films on electrodes in non-aqueous electrolyte solutions:spectroscopic,electronic and morphological studies,Y Wang(Eds.),Solid-electrolyte interphase,Imperial college press and world scientific pulishers,2004.
    [180]S Wemick,and R Pinner.The surface treatment and finishing of Aluminum and its alloys,Vol.1,4th edition(Robert Draper,Teddington,Englang,1972).
    [181]A K Vijh.Electrochmistry of metals and semiconductors:the application of solid state science to electrochemical phenomena(Marcel Dekker,New York,1973.),eds.by J W Diggle and A K Vijh.The anodic behavior of metals and semiconductors series:oxides and oxide films(Marcel Dekker,New York,1976.),Vol.4.
    [182]D Aurbach.The role of surface films on electrodes in Li-ion batteries.Eds.by W A van Schalkwijk and B Scrosati,Advances in lithium-ion batteries.Kluwer acdemic/Plenum publishers.2002
    [183]E.Barsoukov,J.H.Kim,D.H.Kim,K.S.Hwang,C.O.Yoon and H.Lee.Parametric analysis using impedance spectroscopy:relationship of between material properties and battery performance.Journal of New Materials for Electrochemical System,2000,3:301-308
    [184]Jian Hong,Chunsheng Wang,Uday Kasavajjula.Kinetic behavior of LiFeMgPO_4 cathode material for Li-ion batteries.Journal of Power Sources,2006,162:1289-1296
    [185]M.D.Levi & D.Aurbach.The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes.J Solid State Electrochem,2007,11:1031-1042
    [186]Juan Bisquert,Hyacinthe Randriamahazaka,Germ'a Garcia-Belmonte.Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry.Electrochimica Acta,2005,51:627-640
    [1]Idota,Y.;Kubota,T.;Matsufuji,A.;Maekawa,Y.;Miyasaka,T.Tin-based amorphous oxide:A high-capacity lithium-ion-storage material.Science,1997,276,1395
    [2]Nam,S.C.;Yoon,Y.S.;Cho,W.I.;cho,B.W.;Chun,H.S.and Yun,K.S.Reduction of Irreversibility in the First Charge of Tin Oxide Thin Film Negative Electrodes.Journal of The Electrochemical Society.2001,148:A220-A223
    [3]Tamura,N.;Ohshita,R.;Fujimoto,M.;Kamino,M.and Fujitani,Shin.Advanced Structures in Electrodeposited Tin Base Negative Electrodes for Lithium Secondary Batteries.Journal of The Electrochemical Society.2003,150:A679-A683
    [4]Lianbang Wang,Shingo Kitamura,Tsukasa Sonoda,Keigo Obata,Shigeo Tanase,and Tetsuo Sakai,Eiectroplated Sn-Zn Alloy Electrode for Li Secondary Batteries,Journal of The Electrochemical Society.2003,150:A1346-A1350
    [5]Weihua Pu,Xiangming He,Jianguo Ren,Chunrong Wan and Changyin Jiang.Electrodeposition of Sn-Cu alloy anodes for lithium batteries.Electrochimica Acta,2005,50:4140-4145
    [6]Wei Xiang Chen,Jim Yang Lee and Zhanlin Liu.The nanocomposites of carbon nanotube with Sb and SnSb_(0.5) as Li-ion battery anodes.Carbon,2003,41:959-966
    [7]Xiaodong Wu,Zhaoxiang Wang,Liquan Chert and Xuejie Huang.Surface compatibility in a carbon-alloy composite and its influence on the electrochemical performance of Li/ion batteries.Carbon,2004,42:1965-1972
    [8]Z.P.Gun,Z.W.Zhao,H.K.Liu and S.X.Dou.Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites.Carbon,2005,43:1392-1399
    [9]J.Xie,X.B.Zhao,G.S.Cao and M.J.Zhao.Electrochemical performance of CoSb_3/MWNTs nanocomposite prepared by in situ soivothermal synthesis,Electrochimica Acta,2005,50:2725-2731
    [10]Courtney,I.A.;Tse,J.S.;Hanfner,J.and Dahn,J.R..Physical Review B,1998,58,583
    [11]Hong Li,Xuejie Huang and Liquan Chen,Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries,Journal of Power sources,1999,81-82:340-345
    [12]Aurbach,D.;Nimberger,A.;Markovsky,B.;Levi,E.;Sominski,E.and Gedanken,A.Nanoparticles of SnO Produced by Sonochemistry as Anode Materials for Recharge.able Lithium Batteries.Chem.Mater.2005,14,4155
    [13]Naji,J.Ghanbaja,B.Humbert,P.Willmann and D.Billand.Electroreduction of graphite in LiClO_4-ethylene carbonate electrolyte,Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy,Journal of Power Sources,1996,63:33-39.
    [14]Beattie,S.D.;Hatchard,T.;Bonakdarpour,A.;Hewitt,K.C.and Dahn,J.R.Anomalous,High-Voltage Irreversible Capacity in Tin Electrodes for Lithium Batteries.J.Electrochem,Soc.2003,150:A701-A705
    [15]Winter,M.;Besenhard,J.O.Electrochemical lithiation of tin and fin-based intermetallics and composites,Electrochimica Acta,1999,45:31-50
    [1]K.D.Kepler,J.T.Vaughey,M.M Thackray.Copper-tin anodes for rechargeable lithium batteries:an example of the matrix effect in an intermetallic system,Journal of Power sources,1999,81-82:383-387
    [2]S.D.Beattie and J.R.Dahn,Single bath pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries J.Electrochem.Soc.,2003,150(7):A894-A898
    [3]Noriyuki Tamur,Ryuji Ohshita,Masahisa Fujimoto,Shin Fujitani,Maruo Kamino,Ikuo Yonezu.Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes.Journal of Power Sources,2002,107:48-55
    [4]Weihua Pu,Xiangming H,Jianguo Ren,Chunrong Wan,Changyin Jiang.Electrodeposition of Sn-Cu alloy anodes for lithium batteries.Electrochimica Acta,2005,50:4140-4145
    [5]Catia Arbizzani,Mariachiara Lazzari,and Marina Mastragostino.Lithiation/Delithiation Performance of Cu_6Sn_5 with Carbon Paper as Current Collector.Journal of The Electrochemical Society,2005,152(2):A289-A294
    [6]Jing-jun Zhang,Xiao Zhang,and Yong-yao Xia.Co-Doped Co_xCu_(6-x)Sn_5 Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries,Journal of The Electrochemical Society,2007,154(1):A7-A13
    [7]D.Larcher,L.Y.beaulieu,D.D.macneil,and J.R.Dahn.In situ X-ray study of the electrochemical reaction of Li with η'-Cu_6Sn_5.Journal of The Electrochemical Society,2000,147(5):1658-1662
    [8]Keith D.Kepler,John T.Vaughey,and Michael M.Thackeray.LixCu_6Sn_5(0<x<13):An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries.Electrochemical and Solid-State Letters,1999,2(7):307-309
    [9]J.T.Vaughey,K.D.Kepler 1,R.Benedek,M.M.Thackeray.NiAs- versus zinc-blende -type intermetallic insertion electrodes for lithium batteries:lithium extraction from Li_2CuSn.Electrochemistry Communications,1999,1:517-521
    [10]T.Sarakonsri,C.S.Johnson,S.A.Hackney,M.M.Thackeray.Solution route synthesis of InSb,Cu_6Sn_5 and Cu_2Sb electrodes for lithium batteries.Journal of Power Sources,2006,153:319-327
    [11]M.M.Thackeray,J.T.Vaughey,C.S.Johnson,A.J.Kropf,R.Benedek,L.M.L.Fransson,K.Edstrom.Structural considerations of intermetallic electrodes for lithium batteries.Journal of Power Sources,2003,113:124-130
    [12]A Funabiki,M Inaba,Z Ogumi.A.c.impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic.J Power Sources,1997,68:227-231.
    [13]K Dokko,Y Fujita,M Mohamedi,M Umeda,I Uchida,J R Selman.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅱ.Disordered carbon.Electrochimica Acta,2001,47:933-938.
    [14]M Umeda,K Dokko,Y Fujita,M.Mohamedi,I.Uchida,J.R.Selman.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅰ.Graphitized carbon.Electrochimica Acta,2001,47:885-890.
    [15]S Zhang,P Shi.Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte.Electrochimica Acta,2004,49:1475-1482.
    [16]T Pian,S -M Park,C -H Doh,and S -I Meonb.Intercalation of lithium Ions into graphite electrodes studied by AC impedance measurements.Journal of The Electrochemical Society,1999,146(8):2794-2798.
    [17]Levi M D,Aurhach D.Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium.J Phys Chem B,1997,101(23):4630-4640
    [18]E.Barsoukov,J.H.Kim,D.H.Kim,K.S.Hwang,C.O.Yoon and H.Lee.Parametric analysis using impedance spectroscopy:relationship of between material properties and battery performance.Journal of New Materials for Electrochemical System,2000,3:301-308
    [19]Jian Hong,Chunsheng Wang,Uday Kasavajjula.Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries.Journal of Power Sources,2006,162:1289-1296
    [20]M.D.Levi & D.Aurbach.The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes.J Solid State Electrocbem,2007,11:1031-1042
    [21]Juan Bisquert,Hyacinthe Randdemahazaka,Germ'a Garcia-Belmonte.Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry.Electrochimica Acta,2005,51:627-640
    [22]庄全超,许金梅,樊小勇,魏国祯,董全峰,姜艳霞,黄令,孙世刚.LiCoO_2电极/电解液界面特性的电化学阻抗谱研究.中国科学B辑,2007,37(1):18-24.
    [23]庄全超.锂离子电池电极界面特性研究.厦门大学博士论文.2007
    [24]Barsoukov E,Macdonald J R,Impedance Spectroscopy-Theory,Experiment,and Applications,Published by John Wiley & Sons,Inc.,Hoboken,New Jersey,2005:444-446
    [25]Kim Y O,Park S M.Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments.J Electrochem Soc,2001,148:A194-A199.
    [1]N.Tamura,M.Fujimoto,M.Kamino,S.Fujitani.Mechanic stability of Sn-Co alloy anodes for lithium secondary batteries.Electrochimica Acta,2004,49:1949-1956
    [2]http://www.sony.net/SonyInfo/News/Press/200502/05-006E/index.html
    [3]N.Tamura,Y.Kato,A.Mikami,M.Kamino,S.Matsuta,and S.Fujitani.Study on Sn-Co Alloy Anodes for Lithium Secondary Batteries I.Amorphous System.Journal of The Electrochemical Society,2006,153(8):A1626-A1632
    [4]Zhang Jing-jun and Xia Yong-yao.Co-SnAlloys as Negative Electrode Materials for Rechargeable Lithium Batteries.Journal of The electrochemical Society,2006,153(8):A1466-A1471
    [5]D.W.Todd,R.E.Mar,and J.R.Dahn.Combinational Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-ion Batteries.Journal of The Electrochemical Society,2006,153(10):A1998-A2005
    [6]Hyunjung Kim and Jaephil Cho.Synthesis and Morphological,Electrochemical Characterization of Sn_(92)Co_8Nanoalloys for Anode Materials in Li Secondary Batteries.Journal of The Electrochemical Society,2007,154(5):A462-A466
    [7]Fu-Sheng Ke,Ling Huang,Hong-Bing Wei,Jin-Shu Cai,Xiao-Yong Fan,Fang-Zu Yang and Shi-Gang Sun.Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries.Journal of Power Sources,2007,170(2):450-455
    [8]黄令,江宏宏,柯福生,樊小勇,庄全超,杨防祖,孙世刚.新型三维网状锡-钴合金负极材料的结构与性能.物理化学学报,2006,22(12):1537-1541
    [9]D.Aurbach,M.Moshkovich,Y.Gofer,Journal of Electrochemical Society.2001,148:155.
    [10]Doron Aurbach,Yosef Talyosef,Boris Markovsky,Elena Markevich,Ella Zinigrad,Liraz Asraf,Joseph S.Gnanaraj,Hyeong-Jin Kim.Design of electrolyte solutions for Li and Li-ion batteries:a review,Electrochimica Acta,2004,50:247-254
    [11]A Funabiki,M Inaba,Z Ogumi.A.c.impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic.J Power Sources,1997,68:227-231.
    [12]K Dokko,Y Fujita,M Mohamedi,M Umeda,I Uchida,J R Selman.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅱ.Disordered carbon.Electrochimica Acta,2001,47:933-938.
    [13]M Umeda,K Dokko,Y Fujita,M.Mohamedi,I.Uchida,J.R.Selman.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅰ.Graphitized carbon.Electrochimica Acta,2001,47:885-890.
    [14]S Zhang,P Shi.Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte.Electrochimica Acta,2004,49:1475-1482.
    [15]T Piao,S-M Park,C-H Doh,and S-I Moonb.Intercalation of lithium Ions into graphite electrodes studied by AC impedance measurements.Journal of The Electrochemical Society,1999,146(8):2794-2798.
    [16]Levi M D,Aurbach D.Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium.J Phys Chem B,1997,101(23):4630-4640
    [17]E.Barsoukov,J.H.Kim,D.H.Kim,K.S.Hwang,C.O.Yoon and H.Lee.Parametric analysis using impedance spectroscopy:relationship of between material properties and battery performance.Journal of New Materials for Electrochemical System,2000,3:301-308
    [18]Jian Hong,Chunsheng Wang,Uday Kasavajjula.Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries.Journal of Power Sources,2006,162:1289-1296
    [19]M.D.Levi & D.Aurbach.The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes.J Solid State Electrochem,2007,11:1031-1042
    [20]Juan Bisquert,Hyacinthe Randriamahazaka,Germ'a Garcia-Belmonte.Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry.Electrochimica Acta,2005,51:627-640
    [21]Kim Y O,Park S M.Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments.J Electrochem Soc,2001,148:A194-A199.
    [22]Chang Y-C,Soim H-J.Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons.J Electrochem Soc,2000,147(1):50-58
    [23]Holzapfel M,Martinent A,Allion F,et al.First lithiation and charge/discharge cycles of graphite materials,investigated by electrochemical impedance spectroscopy.J Electroanal Chem,2003,546:41-50。
    [1]Catia Arbizzani,Mariachiara Lazzari,and Marina Mastragostino.Lithiation/Delithiation Performance of Cu_6Sn_5 with Carbon Paper as Current Collector.Journal of The Electrochemical Society,2005,152(2):A289-A294
    [2]P.L.TABERNA,S.MITRA,P.POIZOT,P.SIMON AND J.-M.TARASCON.High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications,nature materials 2006,5:567-573
    [3]Jusef Hassoun,Stefania Panero,Patrice Simon,Pierre Louis Taberna,and Bruno Scrosati.High-Rate,Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries.Advanced Materials.In Press
    [4]Tao Jiang,Shichan Zhang,Xinping Qiu,Wentan Zhu,Liquan Chen.Preparation and characterization of tin-based thrce-dimensional cellular anode for lithium ion battery.Journal of Power Sources.In Press
    [5]H.-C.Shin,M.Liu.Three-Dimensional Porous Copper-Tin Alloy Electrodes for Rechargeable Lithium Batteries.Advanced Functional Materials.2005,15(4):582-586
    [6]Heon-Cheol Shin and Meilin Liu.Copper Foam Structures with Highly Porous Nanostructurcd Walls.Chem.Mater.2004,16:5460-5464
    [7]孙雅峰,牛振江,岑树琼,李则林.氢气泡模板法电沉积制备三维多孔铜薄膜,电化学,2006,12(2):177-182
    [8]D.Larcher,L.Y.beanlieu,D.D.macneil,and J.R.Dahn.In situ X-ray study of the electrochemical reaction of Li with η'-Cu_6Sn_5.Journal of The Electrochemical Society,2000,147(5):1658-1662
    [9]Keith D.Kepler,John T.Vanghey,and Michael M.Thackeray.LixCu_6Sn_5(0<x<13):An Intermetallic Insertion Electrode for Rechargenble Lithium Batteries.Electrochemical and Solid-State Letters,1999,2(7):307-309
    [10]J.T.Vanghey,K.D.Kepler 1,R.Benedek,M.M.Thackeray.NiAs- versus zinc-blende -type intermetallic insertion electrodes for lithium batteries:lithium extraction from Li_2CuSn.Electrochemistry Communications,1999,1:517-521
    [11]T.Sarakonsri,C.S.Johnson,S.A.Hackney,M.M.Thackeray.Solution route synthesis of InSb,Cu_6Sn_5 and Cu_2Sb electrodes for lithium batteries.Journal of Power Sonrces,2006,153:319-327
    [12]M.M.Thackeray,J.T.Vaughey,C.S.Johnson,A.J.Kropf,R.Benedek,L.M.L.Fransson,K.Edstrom.Structural considerations of intermetallic electrodes for lithium batteries.Journal of Power Sources,2003,113:124-130
    [13]A Funabiki,M lnaba,Z Ogumi.A.c.impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic.J Power Sources,1997,68:227-231.
    [14]K Dokko,Y Fujita,M Mohamedi,M Umeda,I Uchida,J R Selman.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅱ.Disordered carbon.Electrochimica Acta,2001,47:933-938.
    [15]M Umeda,K Dokko,Y Fujita,M.Mohamedi,I.Uchida,J.R.Seiman.Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part Ⅰ.Graphitized carbon.Electrochimica Acta,2001,47:885-890.
    [16]S Zhang,P Shi.Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte.Electrochimica Acta,2004,49:1475-1482.
    [17]T Piao,S -M Park,C -H Doh,and S -I Moonb.Intercalation of lithium Ions into graphite electrodes studied by AC impedance measurements.Journal of The Electrochemical Society,1999,146(8):2794-2798.
    [18]Levi M D,Aurbach D.Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium.J Phys Chem B,1997,101(23):4630-4640
    [19]E.Barsoukov,J.H.Kim,D.H.Kim,K.S.Hwang,C.O.Yoon and H.Lee.Parametric analysis using impedance spectroscopy:relationship of between material properties and battery performance.Journal of New Materials for Electrochemical System,2000,3:301-308
    [20]Jian Hong,Chunshcng Wang,Uday Kasavajjula.Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries.Journal of Power Sources,2006,162:1289-1296
    [21]M.D.Levi & D.Aurbach.The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes.J Solid State Electrochem,2007,11:1031-1042
    [22]Juan Bisquert,Hyacinthe Randriamahazaka,Germ'a Garcia-Belmonte.Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry.Electrochimica Acta,2005,51:627-640
    [23]Kim Y O,Park S M.Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments.J Electrochem Soc,2001,148:A194-A199.
    [24]庄全超,陈作锋,董全峰,姜艳霞,黄令,孙世刚.石墨负极首次阴极极化过程的电化学阻抗谱研究.2006,51(1):17-20
    [25]N.Tamura,M.Fujimoto,M.Kamino,S.Fujitani.Mechanic stability of Sn-Co alloy anodes for lithium secondary batteries.Electrochimica Acta,2004,49:1949-1956
    [26]N.Tamura,Y.Kato,A.Mikami,M.Kamino,S.Matsuta,and S.Fujitani.Study on Sn-Co Alloy Anodes for Lithium Secondary Batteries I.Amorphous System.Journal of The Electrochemical Society,2006,153(8):A1626-A1632
    [27]M.Keddam,O.R.Mattos,H.Takenouti,J.Electrochcm.Soc.128(1981) 257.
    [28]L.Bai,B.E.Conway,Three-dimensional impedance spectroscopy diagrams for processes involving electrosorbed intermediates,introducing the third electrode-potential variable—examination of conditions leading to pseudo-inductive behavior.Electrochimica Acta 1993,38:1803.
    [29]X.Wu,H.Ma,S.Chen,Z.Xu,A.Sui,General Equivalent Circuits for Faradaic Electrode Processes under Electrochemical Reaction Control.Journal of Electrochemical Society.1999,146:1847.
    [30]Z.Hens,W.P.Gomes,Photoanodic Dissolution of n-InP:An Electrochemical Impedance Study.Journal of Physical Chemistry B,2000,104:7725-7734.
    [31]G.O.Lauvstad,R.Tunold,S.Sundc,Electrochemical Oxidation of CO on Pt and Ni Point Electrodes in Contact with an Yttria-Stabilized Zirconia Electrolyte.Journal of Electrochemical Society.2002,149:F497.
    [32]C.Gabrielli,M.Kcddam,F.Minouflet-Laurent,K.Ogle,H.Perrot,Investigation of zinc chromatation:Part Ⅱ.Electrochemical impedance techniques.Electrochimica Acta,2003,48:1483-1490.
    [33]M.T.M.Koper,Adv.Chem.Phys.92(1996) 1.
    [34]F.Berthier,J.P.Diard,C.Montella,Hopf bifurcation and sign of the transfer resistance.Electrochimica Acta,1999,44:2397-2404.
    [35]A.Sadkowski,Small signal(local) analysis of electrocatalytic reaction.Pole-zero approach.Journal of Electroanaly -tical Chemistry.1999,465:119-128.
    [36]Sadkowski,On some dynamic peculiarities of the charge transfer with adsorption and attractive interactions.Electrochimica Acta,2004,49:2259-2269.
    [37]Y.Hu,S.P.Stapleton,Quantum capacitance of resonant tunneling diodes.Applied Physical Letter.1993,58:167.
    [38]庄全超,许金梅,樊小勇,魏国祯,董全峰,姜艳霞,黄令,孙世刚.LiCoO_2电极/电解液界面特性的电化学阻抗谱研究.中国科学B辑,2007,37(1):18-24
    [39]庄全超.锂离子电池电极界面特性研究.厦门大学博士论文.2007
    [40]Gnanaraj J S,Thompson R W,Iaconatti S N,et al.Formation and growth of surface films on graphitic anode materials for Li-ion batteries.Electrochemical and solid-state letters,2005,8(2):A128-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700