新型Co-Si材料和Mg基储氢合金的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Co-非金属化合物,如Co-BN和CoB等在碱液中表现出良好的电化学性能,但该类型材料的电化学反应机理尚不清楚;Mg基储氢合金具有储氢量高、资源丰富和成本低廉等优点是Ni-MH电池潜在的负极材料之一,但合金中Mg的腐蚀导致其电化学循环稳定性较差。针对以上问题和研究现状,本论文研究了Co-非金属化合物Co-Si和Mg基储氢合金两类材料。
     均匀混合法制备了Co-Si系列材料,考察了它们的结构和电化学性能。研究发现,Co-Si材料中的Co和Si保持着各自原有的晶体结构和形貌;相对于Co和Si,Co-Si材料的电化学性能良好,且Co与Si质量比为4:1时最佳,25mA/g放电电流密度下,最大放电比容量为419.9mAh/g,经过50次充放电循环放电比容量保持在352.2 mAh/g,相应的容量保持率S_(50)为83.9%。熔炼法制备的Co-Si材料分别为Co_2Si、CoSi和CoSi_2合金相,合金的首次放电比容量较低,活化周期较长,但循环稳定性较好,活化后Co_2Si、CoSi和CoSi_2最大放电比容量分别为192.9 mAh/g、173.6mAh/g和176.4mAh/g,经115次充放电循环容量保持率S_(115)分别为87.9%、94.8%和92.1%。探讨了CO_2Si合金电极的电化学反应机理,初步推断出合金电极的电化学反应存在吸放氢和氧化还原两个过程,活化前电极存在吸放氢反应,随着循环的进行,合金中的Si慢慢溶解,合金的结构逐渐被破坏,同时Co溶出并发生氧化还原反应,完全活化后电极过程以Co的氧化还原为主。
     采用机械球磨将机械合金化法制备的CoSi与MgNi合金进行复合制备了MgNi-CoSi复合合金材料,研究并优化了制备条件。结果表明,复合合金为非晶态结构;相对于MgNi合金,复合合金循环稳定性得到提高,并且复合时间为10h,MgNi与CoSi质量比为100:10时达到最佳,经过30周充放电循环容量保持率比MgNi合金提高了35.4%。
     采用机械球磨将化学还原法制备的NiP和CoP分别与MgNi合金进行复合制备了MgNi-NiP和MgNi-CoP复合合金材料,研究并优化了制备条件。结果表明,复合合金为非晶态结构;相对于MgNi合金,复合合金循环稳定性得到提高;对于MgNi-NiP,复合时间为10h,MgNi与NiP质量比为100:10时其循环稳定性最佳,经过50周充放电循环容量保持率比MgNi合金提高了31.1%;对于MgNi-CoP,复合时间为20h,MgNi与CoP质量比为100:5时其电化学性能最佳,经过50周充放电循环容量保持率比MgNi合金提高了17.2%。
     机械合金化法成功制备了MgTi_(0.1)Al_(0.1-x)Pd_xNi(x=0.02-0.08)系列合金,研究了其结构和电化学性能。发现,系列合金主相均为非晶态结构,合金颗粒的形貌和粒径分布相似;当Pd的量为0.06时,合金具有最佳的循环稳定性,25 mA/g放电电流密度下,首次放电比容量为365.2 mAh/g,经过100周充放电循环放电比容量为214.1mAh/g,相应的保持率S_(100)为58.6%。
The Co-nonmetal composites, such as Co-BN and CoB and so on, have good electrochemical behaviors in alkaline solution, but the electrochemical reaction mechanism of the materials is not understood clearly; Mg-based hydrogen storage alloys is a kind of promising candidate as negative material for Ni-MH batteries because of high capacity, sufficient mineral sources and low cost. However, the practical application is limited because of their rapid degradation during cycle in the electrolyte, which is related to the corrosion of Mg in the alloy. Emerging as the situation requires, the materials Co-Si and Mg-based hydrogen storage alloy were studied in the dissertation.
     The Co-Si materials were prepared through mixing Co with Si homogeneously. The structural and electrochemical properties of the materials were investigated. It was found that the structures of Co and Si in the Co-Si materials were the same as that of pure Co and Si. Compared with Co and Si, the Co-Si materials had good electrochemical properties, and the Co-Si(4:1) performed the best, at the discharge current density 25 mA/g, whose maximum discharge capacity was 419.9 mAh/g, at cycle 50 the capacity was 352.2 mAh/g and the retention rate was 83.9%. The Co-Si materials prepared by arc-melting were Co_2Si、CoSi and CoSi_2 alloy, respectively. Each alloy had low initial discharge capacity and a long term activation process. After activation, the maximum discharge capacity of Co_2Si、CoSi and CoSi_2 was 192.9 mAh/g、173.6 mAh/g and 176.4 mAh/g, respectively. The alloys showed good cycle stability, the capacity retention rate of which was 87.9%、94.8% and 92.1% at cycle 115, respectively. The electrode reaction mechanism was discussed of the Co_2Si alloy. It was found that the reactions of hydrogen absorption/desorption and Co/Co(OH)_2 coexisted before activation of the alloy, after activation the faradic reaction of Co/Co(OH)_2 was dominant.
     The MgNi-CoSi composite was prepared by ball milling MgNi with CoSi and the preparation conditions of which were optimized. The results showed that the composite had amorphous structure. Compared with MgNi alloy, the cycle stability of the composite was improved. When the ball milling time was 10 h, the weight ratio of MgNi with CoSi was 100:10, the composite performed the best, at cycle 30 the capacity retention rate was 35.4% higher than that of MgNi.
     The MgNi-NiP and MgNi-CoP composites were prepared by ball milling MgNi with NiP or CoP synthesized by chemical reduction method and the preparation conditions were optimized. The results showed that the composites had amorphous structures. Compared with MgNi alloy, the cycle stabilities of the composites were improved. For the MgNi-NiP, when the ball milling time was 10 h, the weight ratio of MgNi with NiP was 100:10, the composite performed the best, at cycle 50 the capacity retention rate was 31.1% higher than that of MgNi; For the MgNi-CoP, when the ball milling time was 20 h, the weight ratio of MgNi with CoP was 100:5, the composite showed the best electrochemical behavior, the capacity retention rate of which was 17.2% higher than that of MgNi at cycle 50.
     The MgTi_(0.1)Al_(0.1-x)Pd_xNi (x = 0.02 - 0.08) alloys were prepared successfully by mechanical alloying method. The structural and electrochemical properties of the alloys were investigated. The results showed that the main phases of the alloys were amorphous and the images of the alloys were similar. When x = 0.06, the alloy showed the best cycle stability, whose maximum discharge capacity was 365.2 mAh/g, at cycle 100 the discharge capacity was 214.1 mAh/g and the capacity retention rate S_(100)was 58.6%。
引文
[1]Havinga E E, Van Vucht JHN, Buschow K H J. Effect of high pressure on the crystal structures of lanthanide trialumindes. Philips Res. Repts., 1970,25:255-256
    [2]Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride. Inorg. Chem, 1974, 13: 218-222
    [3]大角泰章.金属氢化物的性质与应用.北京:化学工业出版社,1990.
    [4]胡子龙.新材料与应用技术丛书:储氢材料.北京:化学工业出版社,2002
    [5]Justi E W, Ewe H H, Kalberlan A W, et al. Electrocatalysis in the nickel-tianium system. Energy Convers., 1973, 10: 109-113
    [6]Earl M W, Dunlop J D. Electronics structure and surface oxidation of the haucke compounds LaNi_5, Proceedings of the 26th Power Sources Symposium, Atlantic City, NJ, 1974,24
    [7]Willems J J G Metal hydride electrodes stability of LaNi_5-related compounds. Philips J. Res.. 1984, 39 (1): 1-94
    [8]刘永峰.La-Mg-Ni-Co系贮氢电极合金的相结构及电化学性能研究:[浙江大学博士学位论文].浙江:浙江大学,2005
    [9]唐有根,李文良.镍氢电池.北京:化学工业出版社,2007
    [10]陈军,陶占良.镍氢二次电池.北京:化学工业出版社,2006
    [11]张允什.负极贮氢合金材料.电源技术,1996,20(1):36-38
    [12]徐光宪.稀土下册:贮氢材料.北京:冶金工业出版社,1995
    [13]Ewe H H, Justi E W, Stephan K. Elektrochemische specicherung und oxidation von wasserstoff mit der intermetallischen verbindung LaNi_5. Energy Convers., 1973, 13:109-113
    [14]Willems J J G, Buschow K H J. From permanent magnets to rechargeable hydride electrodes. J. Less-Common Met., 1987,129: 13-30
    [15]Li C J, Wang F R, Cheng W H, et al. The influence of high-rate quenching on the cycle stability and the structure of the AB_5-type hydrogen storage alloys with difference Co content. J. Alloys Compd., 2001, 315: 218-223
    [16]Leblanc P, Jordy C, Knosp B, Ph. et al. Mechanism of alloy corrosion and consequence on sealed nickel-metal hydride battery performance. J. Electrochem. Soc, 1998, 145(3):860-863
    [17]Arnaud Q, Barbic P, Bernard P, et al. Study of the corrosion resistance of Cr, Zr,Y doped AB_5 type alloys in KOH. J. Alloys Compd., 2002, 330: 262-267
    [18]Kim H S, Nishizawa M, Uchide I. Single particle electrochemistry for hydrogen storage alloys, MmNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3). Electrochim. Acta, 1999,45: 483-488
    [19]江建军.非化学计量比贮氢合金的电化学性能和结构及热力学研究.稀有金属材料与工程,1997,26(3):14-18
    [20] 李全安,陈云贵,涂铭旌等.高性能贮氢合金电极的成分设计.电源技术,2000,24(4):246-250
    [21] 任可,雷永泉,陈立新等.Zr替代稀土对RE(NiCoMnTi)_5贮氢合金相结构和性能的影响.金属学报,2000,36(8):854-858
    [22] Lei Y Q, Zhang S K, L(?) G L, et al. Influence of the material processing on the electrochemical properties of Co-free Ml(NiMnAlFe)_5 alloy. J. Alloys Compd., 2002, 330-332: 861-865
    [23] Wang Y J, Yuan H T, Wang G S, et al. Characteristics of novel Co-free MlNi_(4.2-x)Cu_(0.5)Al_(0.3)Zn_x (0<x<0.1) hydrogen storage alloys. Solid State Ionics 2002, 148: 509-512
    [24] Wei X D, Zhang P, Dong H, et al. Electrochemical performances of a Co-free La(NiMnAlFe)_5 hydrogen storage alloy modified by surface coating with Cu. J. Alloys Compd., 2008,458: 583-587
    [25] Chu H L, Zhang Y, Qiu S J, et al. Electrochemical performances of cobalt-free La_(0.7)Mg_(0.3)Ni_(3.5-x)(MnAl_2)_x (x=0-0.20) hydrogen storage alloy electrodes. J. Alloys Compd., 2008,457: 90-96
    [26] Pebler A, Gulbransen E A. Thermochemical and structural aspects of the reaction of hydrogen with alloys and intermetallic compounds of zirconium. Electrochem. Tech., 1966,4:211-215
    [27] Kim D M, Jeon S W, Lee J Y. A study of the development of a high capacity and high performance Zr-Ti-Mn-V-Ni hydrogen storage alloy for Ni-MH rechargeable batteries. J.Alloys Compd., 1998, 279: 209-214
    [28] Yang X G, Zhang W K, Lei Y Q, et al. Electrochemical properties of Zr-V-Ni system hydrogen storage alloys. J. Electrochem. Soc, 1999, 146(4): 1245-1250
    [29] Chuang H J, Chan S L I. Study of the performance of Ti-Zr based hydrogen storage alloys. J.Power Sources, 1999, 77: 159-163
    [30] Gao X P, Sun Y M, Higuchi E, et al. The effect of the particle pulverization on electrochemical properties of laves phase alloys. Electrochim. Acta, 2000, 45: 3099-3104
    [31] Zuttel A, Chartouni D, N(?)tzenadel C, et al. Bulk and surface properties of crystalline and amorphous Zr_(36)(V_(0.33)Ni_(0.66))_(64) alloy as active electrode material. J. Alloys Compd., 1998, 266:321-326
    [32] Chuang H J, Huang S S, Ma C Y, et al. Effect of annealing heat treatment on an atomized AB_2 hydrogen storage alloy. J. Alloys Compd., 1999, 285: 284-291
    [33] Yang X G, Zhang Q A, Shu K Y, et al. The effect of annealing on the electrochemical properties of Zr_(0.5)Ti_(0.5)Mn_(0.5)V_(0.3)Co_(0.2)Ni_(1.1) alloy electrodes. J. Power Sources, 2000, 90:170-175
    [34] Tanaka K, Sowa M, Kita T, et al. Hydrogen storage properties of amorphous and nanocrystalline Zr-Ni-V alloys. J. Alloys Compd., 2002, 330-332:732-737
    [35] Xu Y H, Chen C P, Wang X L, et al. The electrode properties of the Ti_(1.0)Zr_(0.2)Cr_(0.4)Ni_(0.8)V_(0.8-x)Al_x alloys. Mat. Chem. Phys., 2002, 77: 1-5
    [36] Liu B H, Li Z P, Kitani R, et al. Improvement of electrochemical cyclic durability of Zr-based AB_2 alloys electrodes. J. Alloys Compd., 2002, 330-332: 825-830
    [37] Young K, Fetcenko M A, Li F, et al. Effect of vanadium substitution in C14 Laves phase alloys for NiMH battery application J. Alloys Compd., 2009,468:482-492
    [38] Zhu Y F, Hua F, Li L Q. Effect of rapid solidification on the structural and electrochemical properties of the Ti-V-based hydrogen storage electrode alloy J. Alloys Compd., 2008, 463: 528-532
    [39] Dhar S K, Fetcenko M A, Ovshinsky S R. Advanced materials for next generation high energy and power nickel-metal hydride portable batteries. IEEE, 2001, 0-7803-6545-3: 325-336
    [40] Oesterreicher H, Clinton J, Bittner H. Hydride of La-Ni compounds. Mat. Res. Bull., 1976, 11: 1241-1248
    [41] Maeland A, Andersen A, Videm K. Hydride of lanthanum-nickel compounds. J. Less-Common Met., 1976,45: 347-350
    [42] Zhao M S, Sun C Y, Wu Y M. Electrochemical properties of rare earth AB3-type alloys as negative electrode material in MH-Ni battery, Hydrogen energy progress XIII, Proceedings of the 13~(th) Word Hydrogen Energy Conference, Beijing, June 12-15, 2000, 2: 1106-1110
    [43] Kohno T, Yoshida H, Kanda M. Hydrogen storage properties of La(Ni_(0.9)M_(0.1))_3 alloys. J. Alloys Compd., 2004, 363: 249-252
    [44] Kadir K, Sakai T, Uehara I, Synthesis and structure determination of a new series of hydrogen storage alloys; RMg_2Ni_9 (R= La, Ce, Pr, Nd, Sm and Gd) built from MgNi_2 Laves-type layers alternating with AB5 layers. J. Alloys Compd., 1997,257: 115-121
    [45] Chen J, Kuriyama N, Takeshita H T, et al. Hydrogen storage alloys with PuNi3-rype structure and metal hydride electrodes. Electrochem. Solid-state Lett., 2000, 3(6): 249-252
    [46] Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ternary system alloys: La_2MgNi_9, La_5Mg_2Ni_(23), La_3MgNi_(14). J. Alloys Compd., 2000, 311: L5-L7
    [47] Li Y, Han S H, Zhu X L, et al. The effect of Nd content on the electrochemical properties of low-Co La-Mg-Ni-based hydrogen storage alloys. J. Alloys Compd. 2008,458: 357-362
    [48] Ma S, Gao M X, Li R, et al. A study on the structural and electrochemical properties of La_(0.7-x)Nd_xMg_(0.3)Ni_(2.45)Co_(0.75)Mn_(0.4)iAl_(0.2) (x = 0.0-3.0) hydrogen storage alloys. J. Alloys Compd. 2008,457: 457-464
    [49] Zhang Y H, Li B W, Ren H P, et al. Cycle stabilities of the La_(0.7)Mg_(0.3)Ni_(2.55-x)Co_(0.45)M_x (M = Fe, Mn, Al; x = 0, 0.1) electrode alloys prepared by casting and rapid quenching. J. Alloys Compd. 2008,458: 340-345
    [50] Zhang Y H, Li B W, Ren H P, et al. Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched La_(0.7)Mg_(0.3)Co_(0.45)Ni_(2.55-x)Fe_x (x = 0-0.4) electrode alloys. J. Alloys Compd. 2008,458: 414-420
    [51] Zhang Y H, Li B W, Ren H P, et al. Investigation on structures and electrochemical characteristics of the as-cast and quenched La_(0.5)Ce_(0.2)Mg_(0.3)Co_(0.4)Ni_(2.6-x)Mn_x (x = 0-0.4)electrode alloys. J. Alloys Comp. 2008,461: 591-597
    [52] Qiu S J, Chu H L, Zhang Y, et al. Investigation on the structure and electrochemical properties of AB_3-type La-Mg-Ni-Co-based hydrogen storage composites. J. Alloys Compd. 2008, 462: 392-397
    [53] Zhao X L, Zhang Y H, Li B W, et al. Investigation on microstructures and electrochemical performances of the La_(0.75)Mg_(0.25)Ni_(2.5)Co_x (x = 0-1.0) hydrogen storage alloys. J. Alloys Compd. 2008,454:437-441
    [54] Zhang Y H, Dong X P, Li B W, et al. Microstructures and electrochemical performances of La_(0.75)Mg_(0.25)Ni_(3.5)M_x (M = Ni, Co; x = 0-0.6) hydrogen storage alloys. J. Alloys Compd. 2008,465: 422-428
    [55] 杨晓婵.日本第45届电池研讨会概要.现代材料动态2005,3:14-15
    [56] Wiswall R H, Reilly J J, Inverse hydrogen isotope effects in some metal hydride systems Inorg. Chem., 1972, 11: 1691-1695
    [57] Lee J Y, Byun S M, Park C N, et al, A study of the hydriding kinetics of TiFe and its alloys. J.Less-Common Met. 1982,87(11): 149-164
    [58] Busch G, Schlapbach L, Stucki F, et al. Hydrogen storage in FeTi- Surface segregation and its catalytic effect on hydrogenation and structural studies by means of neutron diffraction.Int. J. Hydrogen Energy, 1979, 4: 29-31
    [59] Sandrock G D, Goodell P D, Cyclic life of metal hydrides with impure hydrogen: overview and engineering considerations. J. Less-Common Met., 1984, 73: 61-67
    [60] Trudeau M L, Bailey L D, Schulz R, et al. The oxidation of nanocrystalline FeTi hydrogen storage compounds. Nanostruct. Mater., 1992, 1: 457-464
    [61] 牟宗信,李国卿,郭宝海等.Ti-Ni非晶合金储氢薄膜制备及电化学性能研究.金属功能材料,1998,6:25-28
    [62] Tsukaraha M, Takahashi K, Mishima T, et al. Metal hydride electrodes based on solid solution type alloy TiV_3Ni_x (0≤x≥0.75), J. Alloys Compd., 1995, 226: 203-207
    [63] Shi J, Sakai T, Takeshita H T, et al. Influence of carbon impurity on microstructures and electrode properties for V-based battery alloys. J. Alloys Compd., 1999, 290: 267-272
    [64] Tsukaraha M, Takahashi K, Isomura A, et al. Improvement of the cycle stability of V-based alloy for Ni-MH battery. J. Alloys Compd., 1999, 287: 215-220
    [65] Choi W K, Tanaka T, Miyauchi R, et al. Electrochemical and structure characteristics of TiV_(2.1)Ni_(0.3) surface modified by ball-milling with MgNi. J. Alloys Compd., 2000, 299:141-147
    [66] Inoue H, Miyauchi R, Shinya R, et al. Charge-discharge characteristics of TiV_(2.1)Ni_(0.3) alloy surface-modified by ball-milling with Ni or raney Ni. J. Alloys Compd., 2001, 330-332:597-560
    [67] Wu C L, Yan Y G, Chen YG, et al. Effect of rare earth (RE) elements onV-based hydrogen storage alloys. Int. J. Hydrogen Energy, 2008, 33: 93-97
    [68] Qiu S J, Chu H L, Zhang Y, et al. Electrochemical kinetics and its temperature dependence behaviors of Ti_(0.17)Zr_(0.08)V_(0.35)Cr_(0.10)Ni_(0.30) alloy electrode. J. Alloys Compd., 2009, 471:453-456
    [69] Sapru K, Reichman B, Reger A, et al. Rechargeable battery electrode used therein, USA patent, USP 4623597,1986
    [70] Lei Y Q, Wu Y M, Yank Q M, et al. Electrochemical behavior of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys. Z. Phys. Chem., 1994,183: 379-384
    [71] Chung S R, Wang K W, Perng T P. Electrochemical hydrogenation of crystalline Co powder.J. Electrochem. Soc, 2006, 153(6): A1128-A1131
    [72] Chung S R, Wang K W, Teng M H. Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder. Int. J. Hydrogen Energy, 2009, 34: 1383-1388
    [73] Lu Z W, Yao S M, Li G R, et al. Microstructure and electrochemical properties of the Co-BN composites. Electrochim. Acta, 2008, 53: 2369-2375
    [74] Yao S M, Xi K, Li G R, et al. Preparation and electrochemical properties of Co-Si_3N_4 nanocomposites. J. Power Sources, 2008, 184: 657-662
    [75] Mitov M, Popov A, Dragieva I. Nanoparticles produced by borohydride reduction as precursors for metal hydride electrodes. J. Appl. Electrochem., 1999,29: 59-64
    [76] Mitov M, Popov A, Dragieva I. Possibilities for battery application of Co_xB_yH_z colloid particles. Colloids Surf., A, 1999, 149:413-419
    [77] 王雅东,艾新平,杨汉西,超细非晶态Fe_2B和CO_2B合金粒子的电化学行为,电化学,2004(2):175-180
    [78] Wang Y D, Ai X P, Cao Y L, et al. Exceptional electrochemical activities of amorphous Fe-B and Co-B alloy powders used as high capacity anode materials. Electrochem. Commun.,2004, 6: 780-784
    [79] Wang Y D, Ai X P, Yang H X, electrochemical hydrogen storage behaviors of ultrafine amorphous Co-B alloy particles. Chem. Mater., 2004, 16: 5194-5197
    [80] Liu Y, Wang Y J, Xiao L L, et al. Structure and electrochemical hydrogen storage behaviors of alloy Co_2B. Electrochem. Commun., 2007, 9: 925-929
    [81] Liu Y, Wang Y J, Xiao L L, et al. Structure and electrochemical behaviors of a series of Co-B alloys. Electrochim. Acta, 2008, 53: 2265-2271
    [82] Song D W, Wang Y J, Wang Y P, et al. Preparation and characterization of novel structure Co-B hydrogen storage alloy. Electrochem. Commun., 2008, 10: 1486-1489
    [83] Cao Y L, Zhou W Z, Li X Y. electrochemical hydrogen storage behaviors of ultrafine Co-P particles prepared by direct ball-milling method. Electrochim. Acta, 2006, 51: 4285-4290
    [84] He G, Jiao L F, Yuan H T, et al. Preparation and electrochemical hydrogen storage property of alloy CoSi. Electrochem. Commun., 2006, 8: 1633-1638
    [85] Reilly J J, Wiswall J R H. The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg_2NiH. Inorg. Chem., 1968, 7: 2254-2256
    [86] 程菊,陶煜.一种镁基储氢合金的制备方法.中国专利,CN1296083A.2001-5-23
    [87] 申泮文,张允什,袁华堂等.储氢材料新合成方法的研究(Ⅱ)-置换扩散法合成Mg_2Ni高等学校化学学报,1985,6(3):197-200
    [88] Zhang Y S, Yang H T, Yuan H T, et al. Dehydriding properties of ternary Mg_2NiZr hydride synthesized by ball milling and annealing. J. Alloys Compd., 1998,269: 278-283
    [89] Wang L B, Tang Y H, Wang Y J, et al. The hydrogenation properties of Mg_(1.8)Ag_(0.2)Ni alloy. J.Alloys Compd. 2002, 336: 297-300
    [90] Yuan H T, Cao R, Wang L B, et al. Characteristic of a new Mg-Ni hydrogen storage system: Mg_(2-x)Ni_(1-y)Ti_xMn_y(0≤x≥1, 0≤y≥1) J. Alloys Compd. 2001, 322: 246-248
    [91] 袁华堂,李秋荻,王一菁等.新型镁基储氢合金的合成及电化学性能的研究.高等学校化学学报,2002,23(4):517-520
    [92] 王美涵,张连中,孙立贤等.Mg_(1.75)Al_(0.25)Ni_(1-x)Cr_x(O≤x≤0.2)合金的制备及其性能.高等学校化学学报,2005,26(10):1877-1880
    [93] Akiyama T, Isogai H, Yagi J. Hydriding combustion synthesis for the production of hydrogen storage alloy. J Alloys Compd. 1997, 252(1-2): L1-L4
    [94] Saita I, Li L Q, Saito K, et al. Pressure-Composition-Temperature properties of hydriding combustion synthesized Mg_2NiH_4. Mater. Trans., 2002, 43: 1100-1104
    [95] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metal Trans.,1970,1:2943-2951
    [96] Liu W H, Wu H Q, Lei Y Q, et al. Amorphization and electrochemical hydrogen storage properties of mechanically alloyed Mg-Ni. J. Alloys Compd., 1997, 252: 234-237
    [97] Ji S J, Sun J C, Yu Z W, et al. On the preparation of amorphous Mg-Ni alloys by mechanical alloying, Int. J. Hydrogen Energy, 1999, 24: 59-63
    [98] 季世军,孙俊才,许晓磊等.Mg_(100-x)Ni_x(x=7~79)合金机械合金化制备研究.稀有金属材料与工程,1998,27(5):271-274
    [99] 张耀,孙俊才,季世军等.Mg-Ni非晶合金吸氢形成焓随Ni含量的变化及其对自放电的影响.中国有色金属学报,2000,10:882-886
    [100] Ruggeri S, Lenain C, Roue L, et al. Mechanically driven crystallization of amorphous MgNi alloy during Prolonged milling: applications in Ni-MH batteries. J. Alloys Compd., 2002,339: 195-201
    [101] Lenain C, Aymard L, Tarascon J M. Electrochemical properties of Mg_2Ni and Mg_2Ni prepared by mechanical alloying. J. Solid State Electrochem., 1998, 2: 285-290
    [102] Sun D L, Lei Y Q, Liu W H, et al. The relation between the discharge capacity and cycling number of mechanically alloyed MgNi_(100-x)amorphous electrode alloys. J. Alloys Compd.,1995,231:621-624
    [103] Nohara S, Hamasaki K, Zhang S, et al. Electrochemical characteristics of an amorphous Mgo.9Vo.1Ni alloy prepared by mechanical alloying. J. Alloys Compd., 1998, 280: 104-106
    [104] Lenain C, Aymard L, Dupont L, et al. A new of Mgo.9Yo.1Ni hydride forming composition obtained by mechanical grinding. J. Alloys Compd., 1999, 292: 84-89
    [105] Han S C, Lee P S, Lee J Y, et al. Effect of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling. J. Alloys Compd., 2000, 306: 219-226
    [106] Han S C, Jiang J J, Park J G, et al. The electrochemical evaluation of ball milled MgNi-based hydrogen storage alloys. J Alloys Compd., 1999, 285: L8-L11
    [107] Jiang J J, Gasik M. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys. J. Power Sources, 2000, 89: 117-124
    [108] Zhang Y, Lei Y Q, Chen L X, et al. The effect of partial substitution of Zr for Ti on the electrochemical properties and surface passivation film of Mg_(35)Ti_(10-x)Zr_xNi_(55) (x = 1, 3, 5, 7, 9) electrode alloys. J Alloys Compd., 2002, 337: 296-302
    [109] Iwakura C, Shin-ya R, Miyanohara K, et al. Effects of Ti-V substitution on electrochemical and structural characteristics of MgNi alloy prepared by mechanical alloying. Electrochim. Acta,2001,46: 2781-2786
    [110] Iwakura C, Inoue H, Nohara S, et al. Effects of surface and bulk modifications on electrochemical and physicochemical characteristics of MgNi alloys. J. Alloys Compd., 2002, 330-332: 636-639
    [111] Iwakura C, Nohara S, Inoue H. Preparation and characterization of M_(0.9)Ti_(0.06)V_(0.04)Ni-carbon material composites for electrochemical use. Solid State Ionics, 2002,148: 499-502
    [112] Zhang Y, Chen L X, Lei Y Q, et al. The effect of partial substitution of Ti with Zr, Cr or V in the Mg_(35)Ti_(10)Ni_(55) electrode alloy on its electrochemical performance. Electrochim. Acta, 2002,47: 1739-1746
    [113] Inoue H, Iden H, Shin-ya R, et al. Effects of Ni content on rate capability of Mg_(0.9)Ti_(0.06)V_(0.04)Ni_x negative electrodes for nickel/metal hydride batteries. J. Electrochem. Soc, 2004,151(7): A939-A943
    [114] Yuan H T, Feng Y. Qiao L J, et al. Electrochemical characteristics of Mg_(0.9)Ti_(0.1-x)Zr_xNi(x = 0.02、 0.04、 0.06) Alloys. Chinese J. Chem., 2004,22: 1158-1163
    [115] Liu J W, Yuan H T, Cao J S, et al. Effect of Ti-Al substitution on the electrochemical Properties of amorphous MgNi-based secondary hydride electrodes. J. Alloys Compd., 2005, 392: 300-305
    [116] Tian Q F, Zhang Y, Sun L X, et al. Effect of Pd substitution on the electrochemical properties of Mg_(0.9-x)Ti_(0.1)Pd_xNi (x = 0.04-0.1) hydrogen storage alloys. J. Power Sources, 2006,158:1463-1471.
    [117] Tian Q F, Zhang Y, Chu H L, et al. The electrochemical properties of Mg_(0.9)9Ti_(0.1)Ni_(1-x)Pd_x (x = 0-0.15) hydrogen storage electrode alloys. J. Power Sources, 2006, 159: 155-158.
    [118] Kim J S, Lee C R, Choi J W, et al. Effect of F-treatment on the degradation of Mg_2Ni electrode fabricated by mechanical alloying. J. Power Sources, 2002, 104: 201-207
    [119] Yang H B, Ji J T, Sun H, et al. Properties of the ternary Mg_2NiCo hydrogen storage alloy after fluorination treatment. J. Electrochem. Soc, 2001, 148(6): A554-A558
    [120] Wang C Y, Yao P, Bradhurst D H, et al. Surface modification of Mg_2Ni alloy in an acid solution of copper sulfate and sulfuric acid. J. Alloys Compd., 1999,285: 267-271
    [121] Abe T, Inoue S, Mu D, et al. Electrochemical studies of the effect of surface modification of amorphous MgNi electrodes by carbon or Ni. J. Alloys Compd., 2003, 349: 279-283
    [122] Ruggeri S, Roue L, Liang G, et al. Influence of carbon on the electrode characteristics of MgNi prepared by mechanical alloying. J. Alloys Compd., 2002, 343: 170-178
    [123] Gao X P, Wang F X, LiuY, et al. Electrochemical hydrogen discharge properties of MgNi-cabron nanoutbe composites. J. Electrochem Soc, 2002, 149(12): A1616-A1619
    [124] Iwakura C, Nohara S, Inoue H. Preparation and characterization of Mg_(0.9)Ti_(0.06)V_(0.04)Ni-carbon material composites for electrochemical use. Solid State Ionics,2002, 148: 499-502
    [125] Guo Z P, Huang Z G, Konstantinov, et al. Electrochemical hydrogen storage properties of nonstoichiometric amorphous MgNi_(1+x)-carbon composites (x = 0.05-0.3) Int. J. Hydrogen Energy, 2006, 31: 2032-2039
    [126] 王仲民,朱敏,彭成红等,Mg2Ni型合金与AB5型稀土储氢合金纳米复合对电极性能的影响.中国有色金属学报,2002.12:300-304
    [127] Cui N, Luan B, Zhao H J, et al. Synthesis and electrode characteristics of the new composite alloys Mg_2Ni-xwt.%Ti_2Ni. J. Alloys Compd., 1996, 240: 229-234
    [128] 王来军,张明慧,李伟等.NiB、NiB/MgO非晶态合金催化剂的制备、表征及其加氢性能.石油化工,2004,33:14-19
    [129] Li Z R, Zhang X Y, Wang X G, et al. Local structure and catalytic performance of ultrafine NiB amorphous alloy. J. Chin. Uni. Sci. Tech., 2001, 31: 302-309
    [130] 骆红山,庄莉,李和兴.超细Ni-B非晶态合金催化糠醛液相加氢制备糠醇.分子催化,2002,16(1):49-54
    [131] 孙新,周宁生.纳米晶FeB合金的制备和磁性研究.中国粉体技术,2001,7(Suppl.):47-49
    [132] 马爱增,陆婉珍,阎恩泽.含金属添加剂的负载型NiB非晶态合金催化剂的结构及催化性能.石油化工,2000,29(3):179-183
    [133] 袁华堂,邹雅冰,王一菁等.MgNi-NiB合金的制备与性能研究.电池,2005,35(4):254-255
    [134] 邹雅冰,王一菁,袁华堂等.镁基复合贮氢合金的合成及其电化学性能.稀有金属材料与工程,2006,35(2):320-323
    [135] Zhao M, Feng Y, Jiao L F. et al. Preparation and electrochemical characteristics of MgNi-FeB alloys. Int. J. Hydrogen Energy, 2007, 32: 3915-3920
    [136] Feng Y, Yuan H T. Effect of FeB doping on the structural and electrochemical characteristics of MgNi alloy. J. Alloys Compd., 2009,473: 275-179
    [137] Feng Y, Jiao L F, Yuan H T, et al. Study on the preparation and electrochemical characteristics of MgNi-CoB alloys. J. Alloys compd., 2007, 440: 304-308
    [138] Feng Y, Jiao L F, Yuan H T, et al. Effects of amorphous CoB on the structural and electrochemical characteristics of MgNi alloy Int. J. Hydrogen Energy, 2007, 32:2836-2842
    [139]Feng Y, Jiao L F, Yuan H T, et al. Effects of NiB doping in MgNi alloy electrode on its electrochemical characteristics. Int. J. Hydrogen Energy, 2007, 32: 2325-2329
    [140]Feng Y, Li Y L, Yuan H T. Effects of amorphous NiB on electrochemical characteristics of MgNi alloy J. Alloys compd., 2009,468: 575-580
    [141]天津大学应用化学系编.电化学测量技术.天津:天津大学出版社,1992
    [142]周伟航.电化学测量.上海:上海科学技术出版社,1985
    [143]田昭武.电化学研究方法.北京:科学出版社,1985
    [144]查全性.电极过程动力学.北京:科学出版社,1987
    [145]Nishina T, Ura H, Uchida I. Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J. Electroanal. Chem., 1997, 144:1273-1277
    [146]Zhang G, Popov B N, White R E. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Alo.75 electrode in alkaline aqueous solution, J. Electrochem. Soc, 1995,142: 2695-2698
    [147]刘永辉.电化学测试技术.北京:北京航空学院出版社,1987
    [148]Elumalai P, Vasan H N, Munichandraiah N. Electrochemical studies of cobalt hydroxide -an additive for nickel electrodes. Electrochim. Acta, 2001, 93: 201-208
    [149]He G, Jiao L F, Yuan H T, et al. Preparation and electrochemical properties of MgNi-MB (M = CoB、TiB) compositie alloys. J. Alloys Compd., 2008,450: 375-379
    [150]Sakai T, Oguro K, Miyamura H, et al. Some factors affecting on the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries, J. Less-Common Met., 1990, 161:193-202
    [151]雷永泉,二十一世纪新材料丛书:新能源材料,第一版,天津:天津大学出版社,2000
    [152]Sakai T, Yoshinage H, Miyamura H, et al. Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys. J. Alloys Compd., 1992, 180: 37-54
    [153]Liao B, Lei Y Q, Chen L X, et al. Effect of Co substitution for Ni on the structural and electrochemical properties of La_2Mg(Ni_(1-x)Co_x)_9 (x = 0.1-0.5) hydrogen storage electrode alloys. Electrochim. Acta, 2004, 50: 1057-1063
    [154]He M, Pan H G, Zhang S C, et al. Influences of Co substitution and annealing treatment on the structure and electrochemical properties of hydrogen storage alloys La_(0.7)Mg_(0.3)Ni_(2.45-x)Co_(0.75+x)Mn_(0.1)Al_(0.1)(x=0.00, 0.15, 0.30). Int. J. Hydrogen Energy, 2007, 32:3387-3394
    [155]Li P, Wang X L, Zhang Y H, et al. Research of low-Co AB_5 type rare earth based hydrogen storage alloy electrodes. J Alloys Compd., 2003; 354: 310-314
    [156]Iwakura C, Ohkawa K, Senoh H, et al. Electrochemical and crystallographic characterization of Co-free hydrogen storage alloys for use in nickel-metal hydride batteries.Electrochim. Acta, 2001,46: 4383-4388
    [157]董会,魏学东,柳永宁等.少量Si对无钴AB_5型储氢合金性能的影响.稀有金属材料与 工程,2008,37(1):156-159
    [158] Wang C S, Lei Y Q, Wang X D. Studies of electrochemical properties of TiNi alloy used as an MH electrode Ⅱ discharge kinetics, Electrochim. Acta. 1998,43(21-22): 3209-3216
    [159] Wang C S, Wang X H, Lei Y Q, et al. A new method of determining the thermodynamic parameters of metal hydride electrode materials, Int. J. Hydrogen Energy, 1997, 22:1117-1124
    [160] Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrode, J. Alloys Compd., 1993, 202: 183-197
    [161] Notten P H L, Hokkeling P, Double-phase hydride forming compounds: A new class of highly electrocatalytic materials, J. Electrochem. Soc, 1991, 138(7): 1877-1885
    [162] 沈俭一,李智渝,胡征等.诱导自催化制备Ni-P超细非晶合金的动力学研究.化学学报,1994,52:858-865
    [163] Yan X H, Sun J Q, Wang Y W, et al. A Fe-promoted Ni-P amorphous alloy catalyst (Ni-Fe-P) for liquid phase hydrogenaton of m- and p-chloronitrobenzene. J. Mol. Catal. A:Chem., 2006, 252: 17-22
    [164] Lee S P, Chen Y W. Catalytic properties of Ni-B and Ni-P ultrafine materials. J. Chem. Technol. Biotechnol., 2000, 75: 1073-1079
    [165] 马延风,张明慧,李伟等.制备方法对NiP非晶态合金性质及催化活性的影响.燃料化学学报,2004,32(3):351-356
    [167] Senoh H, Morimoto K, Inoue H, et al. Relationship between equilibrium hydrogen pressure and exchange current for the hydrogen electrode reaction at MmNi_(3.9-x)Mn_(0.4)Al_xCo_(0.7) alloyelectrodes, J. Electrochem. Soc, 2000; 147(7): 2451-2455
    [168] 梁培玉,韩长秀,林徐明等.CoP非晶合金催化分解磷化氢制高纯磷的研究.南开大学学报(自然科学版),2006,39(4):20-23
    [169] Liu W H, Lei Y Q, Sun D L, et al. A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy, J. Power Sources, 1996, 58: 243-247
    [170] Liu Y F, Pan H G, Gao M X, et al. Function of Al on the cycling behavior of the La-Mg-Ni-Co-type alloy electrodes. Int. J. Hydrogen Energy, 2008, 33: 124-133
    [171] Zhang Y H, Li B W, Cai Y, et al. Microstructure and electrochemical performance of La_(0.7)Mg_(0.3)Ni_(2.55-x)Co_(0.45)M_x (M = Cu, Cr, Al; x = 0-0.4) hydrogen storage alloys prepared by casting and rapid quenching. Mater. Sci. Eng. A, 2007, 458: 67-72
    [172] Zhang Y H, Li B W, Ren H P, et al. Effects of substituting Ni with Al on the microstructure and electrochemical performances of the as-cast and quenched La-Mg-Ni-based (PuNi3-type) hydrogen storage alloys. Mater. Chem. Phys., 2007, 105: 86-91
    [173] Rongeat C, Roue L. Synergetic effect between Ti and Al on the cycling stability of MgNi-based metal hydride electrodes. J. Electrochem. Soc. 2005, 152(7): A1354-A1360
    [174] Yamuara S, Kimura H, Inoue A. Discharge capacities of melt-spun Mg-Ni-Pd amorphous alloys. J. Alloys Compd., 2003, 358: 173-176
    [175] Yamuara S, Kim H Y, Kimura H, et al. Thermal stabilities and discharge capacities of melt- spun Mg-Ni-based amorphous alloys. J. Alloys Compd., 2002, 339: 230- 235
    [176] Ma T, Hatano Y, Abe T, Watanbae K. Effects of Pd addition on electrochemical properties of MgNi. J. Alloys Compd., 2004, 372: 251-258
    [177] Ma T, Hatano Y, Abe T, et al. Effects of bulk modification by Pd on electrochemical properties of MgNi. J. Alloys Compd., 2005, 391: 313-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700