基于分数阶Fourier变换的非平稳信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平稳信号广泛地存在于自然界中。在军事及国民经济领域,许多典型的信号都具有明显的非平稳特性。可以说,对各类非平稳信号处理技术的研究已经逐渐成为整个信号处理学科最核心、最重要的任务之一。
     作为传统Fourier变换的广义形式,分数阶Fourier变换(FrFT)实质上是一种统一的时频表示。在各种时频分析工具中,FrFT具有明确的物理意义、统一的描述方法、优良的数学性质以及高效的离散算法,被广泛地应用于雷达、通信、地质勘探、生物医学等领域。本文结合FrFT的基本理论及快速离散算法,对多分量信号参数估计、宽带非平稳阵列信号处理、时频滤波器设计等问题进行了较为深入的研究,主要创新性成果包括以下几个方面:
     为了实现噪声背景下线性调频(LFM)信号参数的精确估计,提出了一种基于FrFT和离散谱校正的LFM信号参数估计方法。该方法将LFM信号的参数估计问题转化为分数阶Fourier域上的二维谱峰搜索过程,并将能量重心谱校正法引入谱峰搜索过程,在不增加运算量的基础上实现了谱峰位置的超分辨率估计。在此基础上,提出了一种基于Radon-Ambiguity变换(RAT)和FrFT一维谱校正的LFM信号参数估计方法,将传统方法中的二维谱峰搜索转化为两次一维谱校正过程,进一步降低了算法的复杂度。最后,对高斯白噪声环境中的校正精度进行了理论分析,并进行了仿真实验。
     针对现有的宽带LFM信号波达方向(DOA)估计方法仅适用于各种规则阵列的问题,提出了一种基于FrFT、并适用于非规则几何结构阵列的DOA估计新方法。该方法利用FrFT对LFM信号的聚焦性,建立起分数阶Fourier域阵列数据模型,然后结合常规子空间算法的思想,在分数阶Fourier域上定义了非规则子阵列间的广义旋转矩阵,最后利用该矩阵构造空间谱函数,并通过谱峰搜索的办法实现了多个LFM信号的一维和二维DOA估计。理论分析证明了该方法是传统FrFT-ESPRIT算法的广义形式,仿真实验的结果证明了该方法的有效性。
     针对非规则部分校准阵列情况,提出了一种宽带LFM信号二维DOA估计新方法。该方法在空域和时域同时对信号进行采样,利用观测样本的FrFT峰值构造出新的时频空DOA矩阵,进而通过特征值分解的方法实现多个LFM信号的二维DOA估计。该方法充分挖掘了观测信号所包含的时频信息,降低了对阵列结构和阵元一致性的约束,使其适用于阵元几何结构不规则且大部分阵元未经校准的阵列。仿真结果显示,在DOA估计的均方根误差(RMSE)相同时,与传统方法相比,该方法可获得较大的信噪比增益。
     提出了一种相干宽带LFM信号DOA估计新方法。该方法利用FrFT对LFM信号的解线调特性,构造出新的解线调域阵列数据模型,然后结合传统的矩阵重构解相干以及MUSIC算法实现相干LFM信号的DOA估计。若同时存在多组相干LFM信号入射,则首先在不同的能量聚集域上将各信号组分离,然后逐一进行各组内相干信号的DOA估计。该方法对观测信号的利用更加充分,提高了空间分辨性能和抗噪声性能。此外,该方法无冗余阵元与孔径损失,且适用于任意流形阵列,具有广泛的应用前景。
     为了实现复杂噪声背景下信号波形的无失真恢复,提出了一种基于Gabor变换(GT)和支持向量机(SVM)的分数阶Fourier域滤波器设计方法。该方法利用GT获得观测信号的时频分布,然后结合图像分割技术以及SVM分类算法实现时频面上不同信号和噪声区域的分离并确定最优分类线,进而根据分类线的参数确定滤波器的阶次和传递函数。对于时频区域线性不可分情况,提出对SVM分类线进行分段线性拟合,进而根据拟合方程构造并行多阶滤波器组。该方法利用机器学习实现滤波器参数的全局寻优,且整个设计过程无需信号和噪声的先验知识,同时满足了滤波器的可靠性和通用性要求。
     对时频滤波器的具体应用进行了研究。分别将本文提出的滤波器设计方法应用到SAR多运动目标检测与成像以及Wigner分布交叉项抑制问题中,取得了良好的效果。对算法的具体实施流程进行了讨论,并针对不同的应用环境分析了算法的侧重点与改进措施。仿真实验的结果证明了所提方法的有效性。
Non-stationary signal exits widely in the nature. A lot of typical signals possess non-stationary property in the national economic and military fields. It can be said that studies on non-stationary signal processing technologies has become one of the most basic and important tasks in signal processing subject.
     As a generalized form of conventional Fourier transform, FrFT is essentially a unified time-frequency representation. Compared with other time-frequency analysis tools, FrFT has definite physical meaning, unified description method, excellent mathematical property and efficient discrete algorithm, which is applied widely in radar, communication, geological exploration and biomedical engineering. Based on theories of FrFT, this paper studied deeply on multi-component signal parameter estimation, wideband array signal processing and time-frequency filter designing. The main innovations are summarized as follows:
     To estimate the parameters of LFM signals precisely in noisy environment, an estimation method based on FrFT and spectrum correction is presented. This method converts the estimation to 2-d spectral peak searching, and the energy centrobaric correction is introduced, which realizes the super-resolution estimation of spectral peak without increasing any computational cost. On this basis, a 1-d correction method is proposed based on RAT and FrFT. This method reduces the 2-d peak searching to two 1-d corrections, which reduce the complexity substantially. Finally, the estimation precision under white Gaussian noise is analyzed, and the efficiency of the method is verified.
     Current DOA estimation algorithm for wideband LFM signals can be applied only to regular array. To solve this problem, an estimation method based on FrFT is proposed. Based on the energy-concentrated property of LFM signal in fractional Fourier domain, a new array data model is constructed, then the DOAs can be estimated by spectral searching over spatial function. It is verified that this estimator is generalized form of conventional FrFT-ESPRIT method. Simulation experiments are also conducted.
     According to partly calibrated array, a 2-d DOA estimation method is proposed. The incident signals are sampled in spatial and time domain synchronously, and a new time-frequency spatial DOA matrix is constructed, then the DOAs can be estimated by eigen-decomposition processes. This method has lower constraint of array structure, and can be applied to partly calibrated array with arbitrary structure.
     A DOA estimation method for coherent LFM signals is proposed. Based on the dechirping property of LFM signal in a certain domain, a new array data model is constructed, then the matrix reconstruction and MUSIC algorithm are used to estimate the DOAs of signals. If there are multiple groups of coherent signals, separate them in different energy-concentrated domains first, then carry the estimation on each of the groups. This method has better resolution and anti-noise performance, which has extensive application prospect.
     To realize signal restoration in complicated noise, a design method of fractional Fourier domain filter is proposed. The signal distribution is obtained by GT, and based on the image segmentation and SVM classification, regions on time-frequency plane are separated, then the filter parameters can be determined by separating line. For linearly inseparable case, the piecewise linear fitting is performed, then the parallel filter banks are constructed from the fitting equation. This method realizes the global optimization of filter parameters, and needs no prior knowledge, which can meet the reliable and general requirements simultaneously.
     The applications of time-frequency filter are studied. The proposed filter is applied to SAR multiple moving targets imaging and WD cross-term suppression. The implementation flow is given. The improvement measures for different environment are analyzed. Simulation experiments are conducted to analyze the efficiency of the method.
引文
[1]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社, 1998, 1~11
    [2]胡广书.现代信号处理教程.北京:清华大学出版社, 2004, 3~9
    [3] Grenier Y. Time dependent ARMA modeling nonstationary signals. IEEE Transactions on Acoustics, Speech and Signal Processing, 1983, 31(4): 899~911
    [4] Gabor D. Communication theory and physics. IEEE Transactions on Information Theory, 1953, 1(1): 48~59
    [5] Bastiaans M J. Gabor’s expansion of a signal into Gaussian elementary signals. Proceedings of the IEEE, 1980, 68(4): 538~539
    [6] Wexler J, Raz S. Discrete Gabor expansions. IEEE Transactions on Signal Processing, 1990, 21(3): 207~220
    [7] Zibulski M, Zeevi Y Y. Oversampling in the Gabor scheme. IEEE Transactions on Signal Processing, 1993, 41(8): 2679~2687
    [8] Qian S, Chen D. Discrete Gabor transform. IEEE Transactions on Signal Processing, 1993, 41(7): 2429~2438
    [9]薛健,袁保宗.拟正交Gabor展开的构造.通信学报, 1997, 18(4): 59~63
    [10] Potter R K, Kopp G A, Green H C. Visible speech. New York: Van Nostrand Reinhold, 1947
    [11] Koenig W, Dunn H K, Lacy L Y. The sound spectrograph. Journal of the Acoustical Society of America, 1946, 18(1): 19~49
    [12] Allen J B, Rabiner L R. A unified approach to short-time Fourier analysis and synthesis. Proceedings of the IEEE, 1977, 65(11): 1558~1564
    [13] Wigner E. On the quantum correction for thermodynamics equilibrium. Physical Review, 1932, 40(5): 749~759
    [14] Ville J. Theorie et applications de la notion de signal analytique. Cables et transmission, 1948, 2A(1): 61~74
    [15] Cohen L. Time-frequency distributions—a review. Proceedings of the IEEE, 1989, 77(7): 941~981
    [16] Cohen L. Generalized phase-space distribution functions. Journal of Mathematical Physics, 1966, 7(5): 781~786
    [17] Choi H I, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(6): 862~871
    [18] Papandreou A, Boudreaux-Bartels G F. Generalization of the Choi-Williams distribution and the Butterworth distribution for time-frequency analysis. IEEE Transactions on Signal Processing, 1993, 41(1): 463~472
    [19] Zhao Y, Atlas L E, Marks R J. The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(7): 1084~1091
    [20] Guo Z Y, Durand L G, Lee H C. The time-frequency distributions of nonstationary signals based on a Bessel kernel. IEEE Transactions on Signal Processing, 1994, 42(7): 1700~1707
    [21] Jeong J, Williams W J. Kernel design for reduced interference distributions. IEEE Transactions on Signal Processing, 1992, 40(2): 402~412
    [22] Krattenthaler W, Hlawatsch F. Time-frequency design and processing of signals via smoothed Wigner distributions. IEEE Transactions on Signal Processing, 1993, 41(1): 278~287
    [23]孙晓兵,保铮.基于时频局域相关能量的时变信号分析.西安电子科技大学学报, 1996, 23(2): 137~144
    [24] Martin W, Flandrin P. Wigner-Ville spectral analysis of nonstationary processes. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(6): 1461~1470
    [25] Fonoliosa J R, Nikias C T. Wigner higher order moment spectra: definition, properties, computation and application to transient signal analysis. IEEE Transactions on Signal Processing, 1993, 41(1): 245~266
    [26] Posch T E. Time-frequency distributions for a wide-sense stationary random signal. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(4): 725~727
    [27] Sharman K, Friedlander B. Time-varying autoregressive modeling of a class of nonstationary signals. IEEE International Conference on Acoustics, Speech and Signal Processing, 1984: 22.2.1~22.2.4
    [28]王宏禹.非平稳随机信号分析与处理.北京:国防工业出版社, 1999
    [29] Boashash B, Shea O P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Transactions on Signal Processing, 1994, 42(1): 216~220
    [30] Jones D L, Parks T W. A high resolution data-adaptive time-frequency representation. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(12): 2127~2135
    [31] Jones D L, Baraniuk R G. An adaptive optimal-kernel time-frequency representation. IEEE Transactions on Signal Processing, 1995, 43(10): 2361~2371
    [32] Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radially Gaussian kernel. Signal Processing, 1993, 32(3): 263~284
    [33] Baraniuk R G, Jones D L. A signal-dependent time-frequency representation: fast algorithm for optimal kernel design. IEEE Transactions on Signal Processing, 1994, 42(1): 134~146
    [34] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397~3415
    [35] Shie Q, Chen D, Chen K. Signal approximation via data-adaptive normalized Gaussian functions and its applications for speech processing. IEEE International Conference on Acoustics, Speech and Signal Processing, 1992: 141~144
    [36] Shie Q, Chen D. Signal representation using adaptive normalized Gaussian functions. Signal Processing, 1994, 36(1): 1~11
    [37] Hough P V C. Method and means for recognizing complex patterns. United States Patent 3069654, 1962
    [38] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, 43(6): 1511~1515
    [39]孙晓昶,皇甫堪.基于Wigner-Hough变换的多分量LFM信号检测及离散计算方法.电子学报, 2003, 31(2): 241~244
    [40]梁国龙,生雪莉.基于WVD-HT的宽带调频信号检测技术研究.电子学报, 2004, 32(12): 1941~1944
    [41]穆学禄,陈建春,张宏宽.基于Wigner-Hough变换的反辐射导弹检测技术.西安电子科技大学学报, 2005, 32(4): 616~619
    [42]刘建成,王雪松,肖顺平,等.基于Wigner-Hough变换的径向加速度估计.电子学报, 2005, 33(12): 2235~2238
    [43] Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. Society for Industrial and Applied Mathematics Journal on Mathematical Analysis, 1984, 15(4): 723~736
    [44] Meyer Y. Orthonormal wavelets. Edited by Combes J M, Grossmann A, Tchamitchian P, Wavelets, Time-Frequency Methods and Phase Space. Berlin: Springer-Verlag, 1989
    [45] Mallat S G. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(2): 2091~2110
    [46] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1990, 36(5): 961~1005
    [47] Vetterli M, Herley C. Wavelets and filter banks: theory and design. IEEE Transactions on Signal Processing, 1992, 40(9): 2207~2232
    [48] Mallat, S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693
    [49] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1988, 41(7): 909~996
    [50]董永强,陶然,周思永,等.基于分数阶傅里叶变换的SAR运动目标检测与成像.兵工学报, 1999, 20(2): 132~136
    [51]赵兴浩,陶然.基于分数阶相关的无源雷达运动目标检测新算法.电子学报, 2005, 33(9): 1567~1570
    [52] Sun H B, Liu G S, Gu H, et al. Application of the fractional Fourier transform to moving target detection in airborne SAR. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1416~1424
    [53] Du L P, Su G C. Adaptive inverse synthetic aperture radar imaging for nonuniformly moving targets. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3): 247~249
    [54] Amein A S, Soraghan J J. A new chirp scaling algorithm based on the fractional Fourier transform. IEEE Signal Processing Letters, 2005, 12(10): 705~708
    [55] Musha T, Uchida H, Nagashima M. Self-monitoring sonar transducer array with internal accelerometers. IEEE Journal of Oceanic Engineering, 2002, 27(1): 28~34
    [56] Bennett M J, McLaughlin S, Anderson T, et al. The use of the fraction Fourier transform with coded excitation in ultrasound imaging. IEEE Transactions on Biomedical Engineering, 2006, 53(4): 754~756
    [57]齐林,陶然,周思永,等. DSSS系统中基于分数阶傅里叶变换的扫频干扰抑制算法.电子学报, 2004, 32(5): 799~802
    [58]邓兵,陶然,齐林,等.基于分数阶傅里叶变换的混响抑制方法研究.兵工学报, 2005, 26(6): 761~765
    [59]邓兵,陶然,平殿发,等.基于分数阶傅里叶变换补偿多普勒徙动的动目标检测算法.兵工学报, 2009, 30(10): 1303~1309
    [60]陈恩庆,陶然,张卫强.一种基于分数阶傅里叶变换的时变信道参数估计方法.电子学报, 2005, 33(12): 2101~2104
    [61]陈恩庆,陶然,张卫强,等.一种基于分数阶傅里叶变换的OFDM系统及其均衡算法.电子学报, 2007, 35(3): 409~414
    [62]邓兵,陶然,平殿发.基于分数阶Fourier变换的chirp-rate调制解调方法研究.电子学报, 2008, 36(6): 1078~1083
    [63] Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Transactions on Communications, 2001, 49(6): 1011~1020
    [64] Ju Y, Barkat B, Attallah S. Analysis of peak-to-average power ratio of a multicarrier system based on the fractional Fourier transform. The 9th International Conference on Communications Systems, 2004: 165~168
    [65] Namias V. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 1980, 25(3): 241~265
    [66] McBride A C, Kerr F H. On Namias’fractional Fourier transforms. IMA Journal of Applied Mathematics, 1987, 39(2): 159~175
    [67] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation:Ⅰ. Journal of the Optical Society of America. A, 1993, 10(9): 1875~1881
    [68] Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation:Ⅱ. Journal of the Optical Society of America. A, 1993, 10(12): 2522~2531
    [69] Ozaktas H M. The fractional Fourier transform with applications in optics and signal processing. New York: John Wiley & Sons, 2000
    [70] Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 1994, 42(11): 3084~3091
    [71] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 1996, 44(9): 2141~2150
    [72] Kutay M A, Ozaktas H M, Arikan O, et al. Optimal filtering in fractional Fourier domains. IEEE Transactions on Signal Processing, 1997, 45(5): 1129~1143
    [73] Erden M F, Kutay M A, Ozaktas H M. Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. IEEE Transactions on Signal Processing, 1999, 47(5): 1458~1462
    [74]邓兵,陶然,齐林,等.分数阶Fourier变换与时频滤波.系统工程与电子技术, 2004, 26(10): 1357~1359
    [75]齐林,周丽晓.变换域自适应滤波算法的研究.郑州大学学报, 2007, 39(1): 61~66
    [76]孟祥意,陶然,王越.分数阶傅里叶域两通道滤波器组.电子学报, 2008, 36(5): 919~926
    [77]孟祥意,陶然,王越.分数阶傅里叶域滤波器组的一般化设计方法.电子学报, 2009, 37(9): 2046~2051
    [78]邓兵,陶然,尹德强.分数阶傅里叶域的阵列信号盲分离方法.兵工学报, 2009, 30(11): 1451~1456
    [79] Chan Y K, Koo V C. An introduction to synthetic aperture radar. Progress In Electromagnetics Research B, 2008, 2: 27~60
    [80] Gudra T, Herman K. Some problems of analyzing bio-sonar echolocation signals generated by echolocating animals living in the water and in the air. The Journal of the Acoustical Society of America, 2008, 123(5): 5941~5946
    [81] Jang S, Choi W, Sarkar T K, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3109~3121
    [82] Jouny I I. Radar backscatter analysis using fractional Fourier transform. IEEE Antennas and Propagation Society International Symposium, 2004, 2: 2115~2118
    [83] Mason S, Berger C, Zhou S, et al. Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1638~1649
    [84] Alieva T, Bastiaans M J, Stankovic L. Signal reconstruction form two close fractional Fourier power spectra. IEEE Transactions on Signal Processing, 2003, 51(1): 112~123
    [85] Zhang F, Bi G, Chen Y Q. Tomography time-frequency transform. IEEE Transactions on Signal Processing, 2002, 50(6): 1289~1297
    [86]陈光化,马世伟,曹家麟,等.基于分数阶傅立叶变换的自适应时频表示.系统工程与电子技术, 2001, 23(4): 69~71
    [87] Djurovic I, Stankovic S, Pitas I. Digital watermarking in the fractional Fourier transformation domain. Journal of Network and Computer Applications. 2001, 24: 167~173
    [88] Liu S, Yu L, Zhu B. Optical image encryption by cascaded fractional Fourier transforms with random phase filtering. Optics Communications, 2001, 187: 57~63
    [89] Zhu B, Liu S. Optical image encryption based on the generalized fractional convolution operation. Optics Communications, 2001, 195: 371~381
    [90] Zhang Y, Zheng C H, Tanno N. Optical encryption based on iterative fractional Fourier transform. Optics Communications, 2002, 202: 277~285
    [91] Hennelly B, Sheridan J T. Fractional Fourier transform-based image encryption: phase retrieval algorithm. Optics Communications, 2003, 226: 61~80
    [92] Nishchal N K, Joseph J, Singh K. Securing information using fractional Fourier transform in digital holography. Optics Communications, 2004, 235: 253~259
    [93]张南,陶然,单涛,等.基于分数阶傅里叶变换的线性调频信号分辨率分析.电子学报, 2007, 35(12A): 8~13
    [94]刘峰,黄宇,陶然,等.分数阶Fourier变换对多分量Chirp信号中心频率的分辨能力.兵工学报, 2009, 30(1): 14~18
    [95]邓兵,陶然,曲长文.分数阶Fourier域中多分量chirp信号的遮蔽分析.电子学报, 2007, 35(6): 1094~1098
    [96] Lohmann A W, Mendlovic D, Zalevsky Z, et al. Some important fractional transformations for signal processing. Optics Communications, 1996, 125: 18~20
    [97] Kraniauskas P, Cariolaro G, Erseghe T. Method for defining a class of fractional operations. IEEE Transactions on Signal Processing, 1998, 46(10): 2804~2807
    [98] Akay O, Boudreaux-Bartels G F. Fractional convolution and correlation via operator methods and an application to detection of linear FM signals. IEEE Transactions on Signal Processing, 2001, 49(5): 979~993
    [99] Pei S C, Ding J J. Fractional cosine, sine, and Hartley transforms. IEEE Transactions on Signal Processing, 2002, 50(7): 1661~1680
    [100] Wiener N. Hermitian polynomials and Fourier analysis. Journal of Mathematical Physics, 1929, 18: 70~73
    [101] Condon E U. Immersion of the Fourier transform in a continuous group of functional transformations. Proceedings of the National Academy of Sciences, 1937, 23(3): 158~164
    [102] Bargmann V. On a Hilbert space of analytic functions and an associated integral transform, partⅠ. Communications on Pure and Applied Mathematics, 1961, 14(3): 187~214
    [103] Kober H. On fractional integrals and derivatives. Quarterly Journal of Mathematics, 1940, Oxford Ser. 11(1): 193~211
    [104] De Bruijn N G. A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence. Nieuw Archief voor Wiskunde (3), 1973, 21: 205~280
    [105] Mustard D. The fractional Fourier transform and the Wigner distribution. The Journal of the Australian Mathematical Society, Ser. B, Applied Mathematics, 1996, 38(2): 209~219
    [106] Mendlovic D, Ozaktas H M, Lohmann A W. Self Fourier functions and fractional Fourier transforms. Optics Communications, 1994, 105: 36~38
    [107] Lohmann A W. Relationships between the Radon-Wigner and fractional Fourier transforms. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1994, 11(6): 1798~1801
    [108] Ozaktas H M, Zalevsky Z, Kutay M A. The fractional Fourier transform with applications in optics and signal processing. New York: John Wiley & Sons, 2001
    [109]孙晓兵,保铮.分数阶Fourier变换及其应用.电子学报, 1996, 24(12): 60~65
    [110]陶然,邓兵,王越.分数阶Fourier变换在信号处理领域的研究进展.中国科学E辑, 2006, 36(2): 113~136
    [111]陶然,张峰,王越.分数阶Fourier变换离散化的研究进展.中国科学E辑, 2008, 38(4): 481~503
    [112]孟祥意,陶然,王越.分数阶傅里叶域循环多抽样率信号处理理论.中国科学E辑, 2009, 39(5): 1004~1015
    [113]李炳照,陶然,王越.分数阶Fourier域上非均匀采样信号的频谱重构研究.电子学报, 2008, 36(6): 1202~1205
    [114] Yang X M, Tao R. An automatic interference recognition method in spread spectrum communication system. Journal of China Ordnance, 2007, 3(3): 215~220
    [115] Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Transactions on Signal Processing, 2008, 56(1): 158~171
    [116] Tao R, Zhang F, Wang Y. Fractional power spectrum. IEEE Transactions on Signal Processing, 2008, 56(9): 4199~4206
    [117]陶然,齐林,王越.分数阶Fourier变换的原理与应用.北京:清华大学出版社, 2004
    [118]陶然,邓兵,王越.分数阶傅里叶变换及其应用.北京:清华大学出版社, 2009
    [119] Ozaktas H M, Kutay M A, Mendlovic D. Introduction to the fractional Fourier transform and its applications. Advances in Imaging and Electron Physics, 1999, 106: 239~291
    [120] Bultheel A, Sulbaran H E M. Computation of the fractional Fourier transform. Applied and Computational Harmonic Analysis, 2004, 16(3): 182~202
    [121] Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transforms. IEEE Transactions on Signal Processing, 2000, 48(5): 1338~1353
    [122] Pei S C, Yeh M H, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Transactions on Signal Processing, 1999, 47(5): 1335~1348
    [123] Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform. IEEE Transactions on Signal Processing, 2000, 48(5): 1329~1337
    [124]平先军,陶然,周思永,等.一种新的分数阶傅里叶变换快速算法.电子学报, 2001, 29(3): 406~408
    [125] Santhanam B, McClellan J H. The discrete rotational Fourier transform. IEEE Transactions on Signal Processing, 1996, 44(4): 994~998
    [126] Yeh M H, Pei S C. A method for the discrete fractional Fourier transform computation. IEEE Transactions on Signal Processing, 2003, 51(3): 889~891
    [127] Huang D F, Chen B S. A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform. Signal Processing, 2000, 80(8): 1501~1513
    [128] Zhu Y, Qi L, Yang S, et al. Calculation of discrete fractional Fourier transform based on adaptive LMS algorithm. 8th International Conference on Signal Processing, 2006: 16~20
    [129] Hanna M T. A discrete fractional Fourier transform based on orthonormalized McClellan-Parks eigenvectors. Proceedings of the International Symposium on Circuits and systems, 2003, 4: 81~84
    [130] Pei S C, Yeh M H. Two dimensional discrete fractional Fourier transform. Signal Processing, 1998, 67(1): 99~108
    [131] Ozaktas H M, Barshan B. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to LFM and wavelet transforms. Journal of the Optical Society of America. A, 1993, 11(2): 547~559
    [132] Lee S Y, Szu H H. Fractional Fourier transforms, wavelet transforms, and adaptive neural networks. Optical Engineering, 1994, 33(7): 2326~2330
    [133] Huang Y, Suter B. Fractional wave packet transform. IEEE Digital Signal Processing Workshop Proceedings, 1996: 413~415
    [134] Fonollosa J R, Nikias C L. A new positive time-frequency distribution. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1994, 4: 301~304
    [135] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography. Physical Review Letters, 1994, 72(8): 1137~1140
    [136] Bernardo L M, Soares O D D. Fractional Fourier transforms and optical systems. Optics Communications, 1994, 110: 517~522
    [137] Ozaktas H M, Aytur O. Fractional Fourier domains. Signal Processing, 1995, 46(1): 119~124
    [138] Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. Journal of the Optical Society of America. A, 1993, 10(10): 2181~2186
    [139] Bernardo L M, Soares O D D. Fractional Fourier transforms and imaging. Journal of the Optical Society of America. A, 1994, 11(10): 2622~2626
    [140] Liu S, Ren H, Zhang J, et al. Image-scaling problem in the optical fractional Fourier transform. Applied Optics, 1997, 36(23): 5671~5674
    [141] Kutay M A, Ozaktas H M, Onural L, et al. Optimal filtering in fractional Fourier domains. IEEE Transactions on Signal Processing, 1997, 45(5): 1129~1143
    [142]齐林,陶然,周思永,等. LFM信号的一种最优滤波算法.电子学报, 2004, 32(9): 1464~1467
    [143] Raney R K. Synthetic aperture imaging radar and moving targets. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(3): 499~505
    [144] Roberton M, Brown E R. Integrated radar and communications based on chirped spread-spectrum techniques. IEEE MTT-S International Microwave Symposium Digest, 2003, 1: 611~614
    [145] Evans D L, Farr T G, Ford J P. Multipolarization radar images for geologic mapping and vegetation discrimination. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(2): 246~257
    [146] Zhang Y, Zhang Q, Wu S. Biomedical signal detection based on fractional Fourier transform. International Conference on Information Technology and Applications in Biomedicine, 2008: 349~352
    [147] Kim D Y, Lee J C, Kwon S J. Ultrasound second harmonic imaging with a weighted chirp signal. IEEE Ultrasonics Symposium, 2001, 2: 1477~1480
    [148] Djuric P M, Kay S M. Parameter estimation of chirp signals. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(12): 2118~2126
    [149] Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Transactions on Signal Processing, 1997, 45(2): 316~327
    [150] Abatzoglou T. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1986: 1409~1412
    [151] Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(4): 607~616
    [152]毛用才,保铮.估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析.电子学报, 1999, 27(4): 135~136
    [153] Haimovich A M, Peckham C D, Teti J G, et al. SAR imagery of moving targets: Application of time-frequency distributions for estimating motion parameters. Proceedings of SPIE’s International Symposium on Aerospace and Sensing, 1994, 2238: 238~247
    [154] Rao P, Taylor F J. Estimation of instantaneous frequency using the discrete Wigner distribution. Electronic Letters, 1990, 26(4): 246~248
    [155]田孝华,廖桂生,吴云韬. LFM脉冲雷达回波Doppler与多径时延的联合估计.电子学报, 2002, 30(6): 857~860
    [156] Qi L, Tao R, Zhou S. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China Ser. F Information Sciences, 2004, 47(2): 184~198
    [157]赵兴浩,陶然,周思永,等.基于Radon-Ambiguity变换和分数阶傅里叶变换的chirp信号检测及多参数估计.北京理工大学学报, 2003, 23(3): 371~374
    [158]丁康,张晓飞.频谱校正理论的发展.振动工程学报, 2000, 13(1): 14~22
    [159]丁康,江利旗.离散频谱的能量重心校正法.振动工程学报, 2001, 14(3): 354~359
    [160]丁康,郑春松,杨志坚.离散频谱能量重心法频率校正精度分析及改进.机械工程学报, 2010, 46(5): 43~48
    [161]王宏禹.现代谱估计.南京:东南大学出版社, 1990
    [162] Krim H, Viberg M. Two decades of array processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, 13(4): 67~94
    [163] Burg J P. Maximum entropy spectral analysis. 37th Annual International Meeting of Society of Exploration Geophysics, 1967
    [164] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proceeding of the IEEE, 1969, 57(8): 1408~1418
    [165] Kay S M, Marple S L. Spectrum analysis—A modern perspective. Proceedings of the IEEE, 1981, 69(11): 1380~1419
    [166] Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276~280
    [167] Roy R, Paulraj A, Kailath T. ESPRIT—A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34(5): 1340~1342
    [168] Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representation. IEEE Transactions on Signal Processing, 1998, 46(11): 2888~2897
    [169] Belouchrani A, Amin M G. Time-frequency MUSIC. IEEE Signal Processing Letters, 1999, 6(5): 109~110
    [170] Wang Q, Wu C. A high reliability DOA estimation method—TF-ESPRIT method. 6th International Conference on Signal Processing, 2002, 1: 374~377
    [171] Zhang Y, Mu W, Amin M G. Time-frequency maximum likelihood methods for direction finding. Journal of Franklin Institute, 2000, 337(4): 483~497
    [172] Jin L, In Q Y, Wang W J. Time-frequency signal subspace fitting method for direction-of-arrival estimation. IEEE International Symposium on Circuits and Systems, 2000, 3: 375~378
    [173]李丽萍,黄克骥,陈天麒.基于STFT的相干宽带调频信号2-D到达角估计.电子与信息学报, 2005, 27(11): 1760~1764
    [174]陶然,周云松.基于分数阶傅里叶变换的宽带LFM信号波达方向估计新算法.北京理工大学学报, 2005, 25(10): 895~899
    [175]杨小明,陶然.基于分数阶傅里叶变换的线性调频信号二维波达方向估计.电子学报, 2008, 36(9): 1737~1740
    [176]杨小明,陶然.基于分数阶Fourier变换和ESPRIT算法的LFM信号2D波达方向估计.兵工学报, 2007, 28(12): 1438~1442
    [177]王永良,陈辉,彭应宁,等.空间谱估计理论与算法.北京:清华大学出版社, 2004
    [178] Kay S M. Fundamentals of statistical signal processing: estimation theory. New Jersey: Prentice Hall, 1992
    [179] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(5): 720~741
    [180]茆诗松,王静龙,濮晓龙,等.高等数理统计.北京:高等教育出版社, 1998
    [181] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 1939~1949
    [182]金梁,殷勤业.时空DOA矩阵方法.电子学报, 2000, 28(6): 8~12
    [183] Qu H, Qi L, Mu X, et al. DOA estimation of coherent wideband LFM signals based on fractional Fourier transform. International Conference on Innovative Computing, Information and Control, 2006: 18~21
    [184]刘小河,王建英,杨美英.基于分数阶傅里叶变换的宽带LFM相干信号的DOA估计.数据采集与处理, 2008, 23(5): 547~550
    [185] Zalevsky Z, Mendlovic D. Fractional Wiener filter. Applied Optics, 1996, 35(20): 3930~3936
    [186] Pei S C, Ding J J. Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Transactions on Signal Processing, 2007, 55(10): 4839~4850
    [187] Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273~297
    [188] Gonzalez R C, Woods R E. Digital image processing. New York: Prentice Hall, 2002
    [189] Perry R P, DiPietro R C, Fante R L. SAR imaging of moving targets. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188~200
    [190] Dias J M B, Marques P A C. Multiple moving target detection and trajectory estimation using a single SAR sensor. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 604~624
    [191] Fienup J R. Detecting moving targets in SAR imagery by focusing. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 794~809
    [192]王宏艳,吴彦鸿,叶伟,等.分数阶Fourier变换在SAR运动目标检测中的应用.装备指挥技术学院学报, 2003, 14(1): 70~73
    [193] Curlander J C, McDonough R N. Synthetic aperture radar: Systems and signal processing. New York: John Wiley & Sons, 1991
    [194]张澄波.合成孔径雷达原理、系统分析与应用.北京:科学出版社, 1989
    [195] Qian S, Morris J M. Wigner distribution decomposition and cross-terms deleted representation. Signal Processing, 1992, 27(2): 125~144
    [196] Hlawatsch F, Manickam T G, Urbanke R L, et al. Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: Ambiguity-domain analysis and experimental comparison. Signal Processing, 1995, 43(2): 149~168
    [197] Arce G R, Hasan S R. Elimination of interference terms of the discrete Wigner distribution using nonlinear filtering. IEEE Transactions on Signal Processing, 2000, 48(8): 2321~2331
    [198] Qazi S, Georgakis A, Stergioulas L K, et al. Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis. IEEE Transactions on Signal Processing, 2007, 55(6): 3150~3154
    [199] < http://dsp.rice.edu/software/bat-echolocation-chirp >

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700