噪声背景下chirp信号参数估计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕噪声背景下chirp信号的频率、时延以及波达方向参数估计问题展开研究。提出了基于时变互高阶累积量的参数估计方法,在混合噪声背景下分别对多分量chirp信号的频率参数以及chirp信号的多径时延参数进行了有效估计。提出了模糊函数特征向量DOA估计法,实现了高精度的宽带多源chirp信号波达方向估计,将该方法与总体最小二乘法相结合,可以在一般阵列误差情况下估计chirp信号的一维及二维到达角。提出了基于互相关的宽带chirp信号DOA估计方法,在理想与非理想阵列中都能有效地抑制非高斯有色噪声,实现高效的chirp信号一维及二维到达角估计。理论分析和仿真实验表明,本文提出的各种chirp信号参数估计方法,普遍具有噪声抑制能力强、估计精度高、计算量小等优点。
Chirp signal (Liner frequency modulated signal or LFM signal) is a typical nonstationary signal. It is widely used in many systems, e.g., radar, sonar, communication, geology exploration and medical imaging. The research on chirp signal is of significance both in signal processing theory and in its practical applications.
     Scholars have developed many theories and methods of chirp signals in recent years. However, most of existing chirp parameter estimation approaches are restricted by white Gaussian noise assumption, high computational cost and ideal signal models. To improve these methods, time-varying cross-higher-order cumulant theory, ambiguity function eigenvector algorithm and cross correlation DOA estimation technique are proposed in this paper. Three primary research aspects are studied which includes: frequency parameter estimation of multi-component chirp signals, multi-path time delay estimation of chirp signals, wideband DOA estimation of chirp signals. The main work can be generalized as:
     1. Multi-component chirp frequency parameters estimation based on time- varying cross-higher-order cumulant.
     Most of existing chirp frequency parameter estimation methods are based on white Gaussian noise assumption. This assumption is in favor of theory analysis and processing, but noise is often more complicated in practice. So these approaches are no longer suitable.
     In this paper a kind of time-varying cross-higher-order cumulant techniques are proposed. They can do nonstationary chirp signals processing and have advantages of higher-order cumulant and cross spectral. The time-varying cross-higher-order cumulant can suppress correlated Gaussian noise and all kinds of uncorrelated noise. Because the special time-varying cross-higher-order cumulant of chirp signals derived by the analysis of chirp structure is time independent, complicated nonstationary algorithms are avoided. In stationary domain, higher-order cumulant belongs to tools with large computational burden, but for nonstationary chirp signal processing the computational cost of time-varying cross-higher-order cumulant is lower than which of maximum likelihood or time-frequency analysis methods. In this paper three subspace decomposition methods are presented which are MUSIC, SVD-MN and TLS-ESPRIT. Emulation results show that the three algorithms can realize high accurate and high reliable frequency parameter estimation of multi-component chirp signals in mixed noise environments.
     2. Multi-path chirp time delay estimation based on time-varying cross- higher-order cumulant.
     Time delay estimation of chirp signals is generally used in radar, sonar and geology exploration, etc. In general, echoes received by sensors are results of multi-path transmission, so study on chirp multi-path time delay estimation is very practical. In this paper two chirp multi-path time delay estimation problems are discussed:
     (1) Multi-path time delay estimation of chirp signals. A time-varying cross-higher-order cumulant being defined, multi-path time delay estimation of nonstationary chirp signal is converted into frequency estimation of stationary multi-component signal. Then MUSIC, SVD-MN and TLS-ESPRIT methods based on this time-varying cross-higher-order cumulant are proposed. To reduce the aliasing ambiguities in multi-path time delay estimation, an unambiguous technique based on multi-frequency sampling theory is presented. Emulation results verify these multi-path time delay estimation approaches have advantages of high accuracy, high robustness and strong noise suppression ability.
     (2) Joint multi-path time delay and Doppler stretch estimation of wideband chirp signals. Joint time delay and Doppler estimation problem can be viewed as an extent of time delay estimation. Chirp signal is a wideband signal, so joint multi-path time delay and Doppler stretch estimation should be used when relative motion of objects cannot be ignored. In this paper a time-varying higher-order cumulant is presented to estimate Doppler stretch factor. Then, the factor is used to reconstruct a reference signal, and multi-path time delay is estimated through time-varying cross-higher-order cumulant algorithms. These joint estimation algorithms can suppress Gaussian colored noise and their computational loads are smaller than most nonstationary joint estimation approaches.
     3. Wideband multi-source chirp DOA estimation based on ambiguity function. DOA estimation of chirp signals is widely used in engineering. It has become a study focus in modern signal processing domain recently. In this paper wideband multi-source chirp DOA estimation based on ambiguity function in ideal and non-ideal sensor array is studied.
     (1) Chirp DOA estimation based on ambiguity function in ideal sensor array. Ambiguity function transform on wideband multi-source chirp signals is analyzed and an eigenvector method based on ambiguity function is proposed to estimate chirp DOA. This algorithm works well even when the number of sources is greater than the number of sensors. The signal frequency can be higher than the array design frequency. Time delay property of ambiguity function is used to separate ambiguity function and its time delay item without adding short time window, so the precision of ambiguity function DOA method is higher than spatial PWVD DOA method.
     (2) Chirp DOA estimation based on ambiguity function in non-ideal sensor array. Errors in sensor array occur commonly in practice. Many algorithms suitable for ideal array cannot satisfy non-ideal array signal processing. Through analysis of the eigenvector method based on ambiguity function in non-ideal sensor array, an ambiguity function array calibration method is presented. It has robustness on phase and gain errors. Combining with total least squares algorithm, it can restrain errors in the element locations. In this paper the array calibration method based on ambiguity function is applied in non-ideal uniform linear array and L shape array to realize 1-D and 2-D angle estimation.
     4. Wideband chirp DOA estimation based on cross correlation.
     The eigenvector method based on ambiguity function for chirp DOA estimation can work well both in ideal and in non-ideal sensor array, but its computational cost is high. So a cross correlation chirp DOA estimation method is presented and its application in ideal and non-ideal sensor array is discussed.
     (1) Chirp DOA estimation based on cross correlation in ideal sensor array. After calculating the conjugate product of each sensor and the referenced sensor, a cross correlation approach is proposed to estimate wideband chirp DOA estimation. Then, estimation results of multiple sensors are synthesized by least squares method to decrease errors. The cross correlation DOA estimation approach is simple, effective and can suppress uncorrelated non-Gaussian colored noise.
     (2) Chirp DOA estimation based on cross correlation in non-ideal sensor array. Array calibration methods combined cross correlation with total least squares is proposed. They can calibrate phase, gain and location errors in the array elements. Performance analysis shows that the cross correlation calibration method can estimate 1-D and 2-D angle in non-ideal uniform linear array and L shape array.
     Summarily, chirp signal parameter estimation approaches proposed in this paper have many prominent virtues such as strong noise suppression ability, high estimation accuracy and low computational cost. Both theoretical analysis and simulation results demonstrate the effectiveness of the new methods.
引文
[1] 林茂庸, 柯有安. 雷达信号理论. 国防工业出版社, 1984.
    [2] E.J. Kelly. The radar measurement of range, velocity and acceleration. IRE transactions on military electronics, 1962:51-57.
    [3] Chen, V.C., Hao Ling. Joint time-frequency analysis for radar signal and image processing. IEEE Signal Processing Magazine, 1999, 16(2):81-93.
    [4] C.C. Chen, H.C. Andrews. Target-motion-induced radar imaging. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1):2-14.
    [5] K.K. Erland. Application of inverse synthetic aperture radar on aircraft. Proc. Of the international conference on radar, 1984:618-623.
    [6] Roos A.D., Sinton J.J., Gough P.T., et al. The detecting and classification of objects lying on the seafloor. Journal of the Acoustical Society of America, 1988:1456-1477.
    [7] 王润田. 海底声学探测与底质识别技术的新进展. 声学学报, 2002, 21(1): 96-98.
    [8] 李晓陆. Chirp 探测技术及其在短波通信中的应用. 舰船电子工程, 2005, 25(3): 96-100.
    [9] Misaridis Thanassis X, Gammelmark Kim, Jorgensen Christian H. Potential of coded excitation in medical ultrasound imaging. Ultrasonics, 2000, 38(3): 183-189.
    [10] 姜弢, 林君, 陈祖斌等. 可控震源相控地震的相关检测技术. 仪器仪表学报, 2005, 26(4):336-339.
    [11] E.J. Kelly, I.S. Reed, W.L. Root. The detection of radar echoes in noise(I). Journal of the society of industrial applied mathematics, 1960:309-341.
    [12] E.J. Kelly, I.S. Reed, W.L. Root. The detection of radar echoes in noise(II). Journal of the society of industrial applied mathematics, 1960:481-507.
    [13] T. Abatzoglou. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1986, vol.11:1409-1412.
    [14] Saha, S., Kay, S. A noniterative maximum likelihood parameter estimator of superimposed chirp signals. IEEE International Conference on Acoustics,Speech and Signal Processing, 2001, vol.5: 3109-3112.
    [15] Saha, S., Kay, Steven M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling. IEEE Transactions on Signal Processing, 2002, 50(2):224-230.
    [16] 周良臣, 杨建宇, 唐斌. 一种高效的 LFM 信号参数估计方法及性能分析. 电子学报, 2007, (6):1128-1133.
    [17] P.M. Djuric, S.M. Kay. Parameter estimation of chirp signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(12): 2118-2126.
    [18] C.L. DiMonte, K.S. Arun. Tracking the frequencies of superimposed time-varying harmonics. 1990 International Conference on Acoustics, Speech, and Signal Processing, 1990, vol.5:2539-2542.
    [19] R.M. Liang, K.S. Arun. Parameter estimation for superimposed chirp signals. 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992, vol.5:273-276.
    [20] Xiang-Gen Xia. Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Transactions on Signal Processing, 2000, 48(11):3122-3133.
    [21] 邹红星, 戴琼海, 李衍达, 卢旭光, 不含交叉项干扰且具有 WVD 聚集性的时频分布之不存在性. 中国科学 E 辑, 2001, 31(4):348-354.
    [22] 张贤达, 保铮. 非平稳信号分析与处理. 国防工业出版社, 1998.
    [23] J.C. Wood, D.T. Barry. Radon transformation of time-frequency distributions for analysis of multicomponent signals. IEEE Transactions on Signal Processing, 1994, 42(11):3166-3177.
    [24] S. Barbarossa, A. Zanalda. A combined Wigner-Ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation. 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, March 1992, vol.5, pp.173-176.
    [25] S. Barbarossa. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, 43(6):1511-1515.
    [26] Peleg, Shimon, Porat, Boaz. Linear FM signal parameter estimation from discrete-time observations. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(4):607-616.
    [27] 刘渝. 快速解线性调频技术. 数据采集与处理,1999, 14(2):175-178.
    [28] Djurovic, I., Ohsumi, A., Ijima, H. Estimation of the parameters and angle-of-arrival of wideband signals on sensor arrays based on the phase differentiation algorithm. IEEE Techno-Ocean'04, 2004, vol.2:631-634.
    [29] 黄克骥, 李立萍, 陈天麒. 一种快速、高精度的 LFM 参数估计算法. 电子学报, 2004, 32(3):377-380.
    [30] Minsheng Wang, A.K. Chan, C.K. Chui. Linear Frequency-Modulated Signal Detection Using Radon-Ambiguity Transform. IEEE Transactions on Signal Processing, 1998, 46(3):571-586.
    [31] 李英祥, 肖先赐. 基于逐次滤波 Radon-Ambiguity 变换的多线性调频信号时频检测. 声学学报, 2004, 29(6):557-561.
    [32] 袁俊泉, 皇甫堪. 低信噪比下基于 DAF 的 LFM 信号参数估计新方法. 电子与信息学报, 2005, 27(8):1193-1196.
    [33] Qi L, Tao R, Zhou S Y, et al. Detection and paramter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China, 2004, 47(2):184-198.
    [34] Dong Yongqiang, Tao Ran, Zhou Siyong, et al. The fractional Fourier analysis of multicomponent LFM signal, Chinese journal of electronics, 1999, 8(3): 326-329.
    [35] A.S. Kayhan. Evolutionary maximum entropy spectral analysis of chirps in noise. Signal Processing, 1999, 78(2):151-157.
    [36] Suleesathira Raungrong, Chaparro Luis F., Akan Aydin. Discrete evolutionary transform for time-frequency signal analysis. Journal of the Franklin Institute, 2000, 337(4):347-364.
    [37] 邹虹, 保铮. 一种有效的基于 Chirplet 自适应信号分解算法. 2001, 29(4):515-517.
    [38] A. Bultan. A four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing, 1999, 47(3):731-745.
    [39] Yuan Weiming, Wang Min Wu, Shunjun. Algorithm for the detection and parameter estimation of multicomponent LFM signals. Journal of Electronics (China), 2005, 22(2):185-189.
    [40] C.H. Knapp, G.C. Carter. The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and SignalProcessing, 1976, 24(4):320-327.
    [41] A.G. Piersol. Time delay estimation using phase data. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):471-477.
    [42] Y.T. Chan, J.M. Riley, J.B. Plant. A parameter estimation approach to time-delay estimation and signal detection. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(1):8-16.
    [43] A.M. Bruckstein, T.J. Shan, T. Kailath. The resolution of overlapping echoes. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(6):1357-1367.
    [44] F.A. Reed, P.L. Feintuch, N.J. Bershad. Time delay estimation using the LMS adaptive filter-Static behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):561-571.
    [45] P.L. Feintuch, Bershad, F.A. Reed. Time delay estimation using the LMS adaptive filter-Dynamic behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):571-576.
    [46] D.H. Youn, N. Ahmed, G.C. Carter. On using the LMS algorithm for time delay estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982, 30(5):798-801.
    [47] C.L. Nikias, R. Pan. Time delay estimation in unknown Gaussian spatially correlated noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(11):1706-1714.
    [48] M.J. Hinich, G.R. Wilson. Time delay estimation using the cross bispectrum. IEEE Transactions on Signal Processing, 1992, 40(1):106-113.
    [49] J. K. Tugnait. On time delay estimation with unknown spatially correlated Gaussian noise using fourth-order cumulants and cross cumulants. IEEE Transactions on Signal Processing, 1991, 39(6):1258-1267.
    [50] Liang, Ying-Chang, Leyman, A. Rahim, Soong, Boon-Hee. Multipath time delay estimation using higher order statistics. IEEE Signal Processing Workshop on Higher-Order Statistics, 1997:9-13.
    [51] Liang, Ying-Chang, Leyman, A. Rahim. Time delay estimation using higher order statistics, Electronics Letters, 1997, 33(9):751-753.
    [52] Liu Ying, Wang Shuxun, Liang Yingchang, Li Zhongxia. Multipath time delay estimation with unknown spatially correlated noise and multiple access interference using cyclic statistics. Proceedings of the IEEE Conference onDecision and Control, 2001, vol.4:3338-3343.
    [53] 刘颖, 王树勋, 梁应敞. 多通道干扰下的多径时延估计. 电子学报, 2001, 29(6):762-765.
    [54] Stein, S. Algorithms for ambiguity function processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):588-599.
    [55] Qu Jin, Kon Max Wong, Zhi-Quan Luo. The estimation of time delay and Doppler stretch of wideband signals. IEEE Transactions on Signal Processing, 1995, 43(4):904-916.
    [56] X.X. Niu, P.C. Ching, Y.T. Chan. Wavelet based approach for joint time delay and Doppler stretch measurements. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):1111-1119.
    [57] Antonio Napolitano, Simone Ricciardelli, Mario Tanda. Blind estimation of amplitudes, phases, time delays and frequency offsets in multiple-access systems with circular transmissions. Signal Processing, 2005, 85(8): 1588-1601.
    [58] S.R. Dooley, A.K. Nandi. Adaptive time delay and Doppler shift estimation for narrowband signals. IEE Proceedings: Radar, Sonar and Navigation, 1999, 146(5):243-250.
    [59] Andreas Jakobsson, A. Lee Swindlehurst, Petre Stoica. Subspace-based estimation of time delays and Doppler shifts. IEEE Transactions on Signal Processing, 1998, 46(9):2472-2483.
    [60] S. Radhakrishnan Pillai, Andreas Antoniou. Time-delay estimation using a chirp-like signal. IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing, 1995:379-382.
    [61] Arie Yeredor. Multiple delays estimation for chirp signals using structured total least squares. Linear Algebra and its Applications, 2004, 391(1):261-286.
    [62] Tian Xiaohua, Liao Guisheng, Wu Yuntao. Joint estimation of Doppler and multipath time delay of overlapping echoes for LFM pulse radar. 2001 CIE International Conference on Radar, 2001:829-833.
    [63] 刘庆云, 李志舜. 基于自适应核时频分布的多普勒频移及多径时延估计. 西北工业大学学报, 2004, 22(1):29-32.
    [64] 李家强, 金荣洪, 耿军平等. 基于分数阶频率域混合相关的线性调频信号检测与参数估计. 上海交通大学学报, 2006, 40(9):1478-1482.
    [65] J.F. Shi, K.R. Wang. Time-delay estimation for complex LFM signal based on cyclic cross-correlation amplitude. 2006 1st IEEE Conference on Industrial Electronics and Applications, 2006:1-6.
    [66] 史建锋, 马 强. 基于循环互相关的窄带回波多普勒频移估计. 航天电子对抗, 2006,22(3):31-33.
    [67] 史建锋. LFM 脉冲雷达的宽带回波多普勒频移和时延联合估计. 电子对抗, 2006, No.5:18-42.
    [68] Hamid Karim, Mats Viberg. Two decades of array signal processing research. IEEE signal processing magazine. 1996, 13(4): 67-94.
    [69] J.P. Burg. Maximum entropy spectral analysis. Proc.37th Meeting of Society of Exploration Geophysicists, 1967.
    [70] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969, 57(8): 1408-1418.
    [71] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1979, 34(3):276-280.
    [72] R. Roy, A. Paulraj, T. Kailath. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise, IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5):1340-1342.
    [73] Rao, B.D., Hari, K.V.S. Performance analysis of Root-MUSIC. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12):1939-1949.
    [74] Zoltowski, M.D., Kautz, G.M., Silverstein, S.D. Beamspace Root-MUSIC. IEEE Transactions on Signal Processing, 1993, 41(1):344-364.
    [75] R. Kumaresan, D.W. Tufts. Estimating the Angles of Arrival of Multiple Plane Waves. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(1): 134-139.
    [76] Cadzow, J.A., Kim, Y.S., Shiue, D.C. General direction-of-arrival estimation: a signal subspace approach. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(1):31-46.
    [77] Swindlehurst, A.L., Ottersten, B., Roy, R., Kailath, T. Multiple invariance ESPRIT. IEEE Transactions on Signal Processing, 1992, 40(4):867 – 881.
    [78] J.C. Allen. Advanced beamforming concepts: source localization using the bispectrum, Gabor transform, Wigner-Ville distribution, and nonstationary signal representations. Twenty-Fifth Asilomar Conference on Signals,Systems and Computers, 1991, vol.2:818-824.
    [79] A. Belouchrani, M.G. Amin. Blind source separation based on time-frequency signal representations. IEEE Transactions on Signal Processing, 1998, 46(11):2888-2897.
    [80] M.G. Amin, A. Belouchrani. Blind source separation using the spatial ambiguity functions. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1998:413-416.
    [81] A. Belouchrani, M.G. Amin. Time-frequency MUSIC. IEEE Signal Processing Letters, 1999, 6(5):109-110.
    [82] A. Hassanien, A.B. Gershman, M.G. Amin. Time-frequency ESPRIT for direction-of-arrival estimation of chirp signals. Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002:337-341.
    [83] Amin, M.G., Belouchrani, A., Zhang, Y. The spatial ambiguity function and its applications. IEEE Signal Processing Letters, 2000, 7(6):138-140.
    [84] Yimin Zhang, Weifeng Mu, Moeness G. Amin. Time–frequency maximum likelihood methods for direction finding. Journal of the Franklin Institute, 2000, 337(4):483-497.
    [85] Yimin Zhang, Weifeng Mu, M.G. Amin. Subspace analysis of spatial time-frequency distribution matrices. IEEE Transactions on Signal Processing, 2001, 49(4):747-759.
    [86] A.B. Gershman, M.G. Amin. Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions. IEEE Signal Processing Letters, 2000, 7(6):152-155.
    [87] L.A. Cirillo, A.M. Zoubir, A.B. Gershman. Direction-of-arrival estimation for uncorrelated FM signals. Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002:318-322.
    [88] L.A. Cirillo, A.M. Zoubir, M.G. Amin. Direction finding of nonstationary signals using a time-frequency hough transform. 2005 IEEE International Conference on Acoustics, Speech and Signal Processing, 2005, vol.IV:501-504.
    [89] Yimin Zhang, B.A. Obeidat, M.G. Amin. Nonstationary array processing for sources with time-varying polarizations. Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004:1242-1246.
    [90] Yimin Zhang, B.A. Obeidat, M.G. Amin. Spatial polarimetric time-frequencydistributions for direction-of-arrival estimations. IEEE Transactions on Signal Processing, 2006, 54(4):1327-1340.
    [91] Jin, Liang, Yin, Qin-ye, Wang, Wen-jie. Time-frequency signal subspace fitting method for direction-of-arrival estimation. IEEE International Symposium on Circuits and Systems, 2000, vol.3:375-378.
    [92] 黄克骥, 田达, 陈天麒. 基于时频子空间分解的宽带线性调频信号 DOA估计. 电子与信息学报, 2004, 26(3):344-349.
    [93] 黄克骥, 田达, 陈天麒. 基于对称阵列 Wigner-Ville 分布的宽带线性调频信号 AOA 估计, 信号处理, 2003, 19(2):104-107.
    [94] Tian, Da, Huang, Keji, Chen, Tianqi. DOA estimation of nonstationary sources with time-frequency maximum likelihood method. 2004 International Conference on Communications, Circuits and Systems, 2004, vol.2:835-839.
    [95] 田达, 黄克骥, 陈天麒. 一种小运算量的宽带线性调频信号 DOA 估计算法. 2003, 19(1):48-50.
    [96] 汤建龙, 李滔, 杨绍全. 基于修正空时频分布矩阵的到达角估计. 系统工程与电子技术, 2004, 26(6):714-716.
    [97] 汤建龙, 李滔, 杨绍全. 通道误差对时频-MUSIC 算法性能的影响和校正. 电波科学学报, 2005, 20(4):495-499.
    [98] 刘云, 李志舜. 基于时频阵列模型的波达方向估计. 声学学报, 2005, 30(2):115-119.
    [99] Gershman, A.B., Pesavento, M., Amin, M.G. Estimating the parameters of multiple wideband chirp signals in sensor arrays. 2000 Tenth IEEE Workshop on Statistical Signal and Array Processing, 2000:467-471.
    [100] Gershman, A.B., Pesavento, M., Amin, M.G. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays. IEEE Transactions on Signal Processing, 2001, 49(12):2924-2934.
    [101] Gershman, A.B., Amin, M.G., Pesavento, M. High-resolution sensor array processing in the presence of multiple wideband chirp signals. 2000 Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000, vol.1:41-45.
    [102] Wang, G., Xia, X.G. Iterative algorithm for direction of arrival estimation with wideband chirp signals. IEE Proceedings Radar, Sonar and Navigation,2000, 147(5):233-238.
    [103] Lie, S., Leyman, A.R., Chew, Y.H. Parameter estimation of wideband chirp signals in sensor arrays through DPT. 2003 The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol.2:1878-1881.
    [104] Ning Ma, Joo Thiarn Goh. DOA estimation for broadband chirp signals. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, vol.2:261-264.
    [105] Ning Ma, Joo Thiam Goh. Ambiguity-function-based techniques to estimate DOA of broadband chirp signals. IEEE Transactions on Signal Processing, 2006, 54(5):1826-1839.
    [106] 张贤达. 现代信号处理. 清华大学出版社,1995.
    [107] 王宏禹. 非平稳随机信号分析与处理. 国防工业出版社, 1999.
    [108] 刘波, 文忠, 曾涯. Matlab 信号处理. 电子工业出版社, 2006.
    [109] H. Krim, M. Viberg. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
    [110] 王永良, 陈辉, 彭应宁. 空间谱估计理论与算法. 清华大学出版社, 2004.
    [111] Shamsunder, S., Giannakis, G.B. Detection and estimation of chirp signals in non-Gaussian noise. The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1993, vol.2:1191-1195.
    [112] 毛用才, 保铮. 估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析. 电子学报, 1999, 27(4):135-136.
    [113] Besson Olivier, Ghogho Mounir, Swami Ananthram. Parameter estimation for random amplitude chirp signals, IEEE Transactions on Signal Processing, 1999, 47(12):3208-3219.
    [114] A. Swami, J.M. Mendel. Cumulant-based approach to the harmonic retrieval problem. 1988 International Conference on Acoustics, Speech, and Signal Processing, 1988, vol.4:2264-2267.
    [115] A. Swami, J.M. Mendel. Cumulant-based approach to harmonic retrieval and related problems. IEEE Transactions on Signal Processing, 1991, 39(5):1099-1109.
    [116] 石要武, 戴逸松. 测量噪声背景下微弱正弦信号参数估计的互功率谱方法. 电子学报, 1994, 22(1):1-8.
    [117] 石要武, 戴逸松, 宫文斌. 色噪声背景下正弦参量估计的互谱矩和 SVD方法. 电子科学学刊, 1995, 17(1):13-19.
    [118] 石要武, 戴逸松, 丁宏. 有色噪声背景下正弦信号频率估计的互谱Pisarenko 和 MUSIC 方法. 电子学报, 1996, 24(10):46-50.
    [119] Ma Yan, Shi Yaowu, Dai Yisong. Harmonic Retrieval Embedded in Hybrid Colored Noise : a Novel Pisarenko Method Based on Cross-high-order Cumulant. High Technology Letters, 2000, 6(3):23-28.
    [120] 马彦, 石要武, 戴逸松. 混合色噪声背景下的弱信号频率估计:基于互高阶累积量的矩和最小范围-TLS 方法. 计量学报, 2001, 22(3):234-238.
    [121] 马彦, 石要武, 陈虹. 色噪声下的信号频率估计:基于互高阶累积量的MUSIC 方法. 仪器仪表学报, 2001, 22(z2):88-89.
    [122] 张魁元, 高文森. 概率论与数理统计. 东北师范大学出版社, 1997.
    [123] 西安交通大学高等数学教研室. 工程数学 复变函数. 高等教育出版社, 1996 年 05 月第 4 版.
    [124] 谢邦杰. 线性代数. 人民教育出版社, 1987.
    [125] Wax, M., Kailath, T. Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2):387-392.
    [126] Chen, W., Wong, K.M., Reilly, J.P. Detection of the number of signals: a predicted eigen-threshold approach. IEEE Transactions on Signal Processing, 39(5):1088-1098.
    [127] H.T. Wu, J.F. Yang, F.K. Chen. Source number estimators using transformed Gerschgorin radii. IEEE Transactions on Signal Processing, 1995, 43(6):1325-1333.
    [128] 陈祖明, 周家胜. 矩阵论引论. 北京航空航天大学出版社,1998.
    [129] Roy, R., Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7):984-995.
    [130] Ottersten, B., Viberg, M., Kailath, T. Performance analysis of the total least squares ESPRIT algorithm. IEEE Transactions on Signal Processing, 1991, 39(5):1122-1135.
    [131] Zoltowski, M.D., Stavrinides, D. Sensor array signal processing via a procrustes rotations based eigenanalysis of the ESPRIT data pencil. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989,37(6):832-861.
    [132] Xian-Da Zhang, Ying-Chang Liang. Prefiltering-based ESPRIT for estimating sinusoidal parameters in non-Gaussian ARMA noise. IEEE Transactions on Signal Processing, 1995, 43(1):349-353.
    [133] A.H. Quazi. An overview on the time delay estimate in active and passive systems for target localization. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):527-533.
    [134] Zoltowski, M.D., Mathews, C.P. Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling. IEEE Transactions on Signal Processing, 1994, 42(10): 2781-2794.
    [135] McCormick, W.S., Miller, D.E. Tsui, J.B.Y. Resolution of a 2π ambiguity problem in multiple frequency spectral estimation. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 2-8.
    [136] 王洪洋, 曾操, 廖桂生. 一种新的宽频带信号频率欠采样估计方法. 西安电子科技大学学报, 2005, 32(1):31-35.
    [137] 张贤达. 信号处理中的线性代数. 清华大学出版社,1998.
    [138] Rockah, Y., Schultheiss, P. Array shape calibration using sources in unknown locations-Part I: Far-field sources. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3):286-299.
    [139] Paulraj, A., Kailath, T. Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1985, vol.10:640-643.
    [140] Friedlander, B. A sensitivity analysis of the MUSIC algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10):1740-1751.
    [141] Friedlander, B. Sensitivity analysis of the maximum likelihood direction-finding algorithm. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(6): 953-968.
    [142] Weiss, A.J., Friedlander, B. Array shape calibration using sources in unknown locations-a maximum likelihood approach. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12):1958-1966.
    [143] Wang, C., Cadzow, J.A. Direction-finding with sensor gain, phase and location uncertainty. 1991 International Conference on Acoustics, Speech,and Signal Processing, 1991, vol.2:1429-1432.
    [144] Golub G H, Van Loan C F. An analysis of the total least squares problem. SIAM J. Numer Anal, 1980, 17:883-893.
    [145] 陶建武, 石要武, 常文秀. 当增益幅度不同时信号二维方向角和多普勒频率的盲估计, 航空学报, 2002, 23(4):373-376.
    [146] 周荫清, 李春升. 随机过程导论. 北京航空学院出版社, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700