低截获概率信号的循环平稳检测与参数估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子对抗是现代信息对抗领域的重要分支,低截获概率技术是电子对抗系统广泛采用的一种技术,研究低截获概率信号的有效截获和识别方法,对于提高武器装备的作战性能,增强军事对抗的能力具有重要的现实意义和应用价值。本论文在循环平稳理论框架下,针对低截获概率技术中典型的相位编码信号和线性调频信号,开展低截获概率信号的检测和参数估计方法研究,主要内容包括:
     第一章综述了包括低截获雷达技术和低截获通信技术在内的低截获概率技术的发展概况,重点总结了截获技术中检测和参数估计方法的研究现状,概述了循环平稳理论的研究进展。
     第二章介绍了循环平稳理论的基础知识,包括循环平稳的基本概念和循环统计量的估计方法及估计性能,对比分析了循环平稳分析法和时频分析法,并阐述了二者之间的关系,说明了在信号检测和参数估计中,循环平稳分析方法抑制噪声与干扰的优势。
     第三章分析了相位编码信号的循环平稳特性,推导了二相编码信号和四相编码信号的循环自相关函数,深入研究了基于循环自相关函数的单循环检测器,分析了单循环检测器的性能。针对某些非协作条件下缺少与相位编码信号循环频率相关的先验信息等情况,提出了一种基于循环特征的检测方法。该方法可实现较低信噪比下相位编码信号的盲检测。
     第四章在所推导的相位编码信号循环自相关函数的基础上,分析了延迟自变量对循环自相关函数取值的影响。提出了一种基于循环自相关函数的载频和码片时宽盲估计方法,分析了平稳噪声对该方法性能的影响。该方法在相位编码信号的参数估计中避免了多维搜索,提高了计算效率,为非协作情况下相位编码信号的盲参数估计问题提供了一条有效的解决途径。
     第五章研究了基于循环自相关函数包络的线性调频信号检测方法,详细分析了该检测方法的性能,并将Dandawate等人所提出的渐近最优χ2检验方案推广到线性调频信号的盲检测中,提出了一种基于循环特征的恒虚警概率检测方法。两种方法均可实现线性调频信号的盲检测。
     第六章研究了基于循环平稳的线性调频信号相位估计法,推导了所估计相位参数的均方误差近似表达式,分析了该方法的性能。针对循环平稳法的缺点,提出了一种基于循环平稳的线性调频信号参数估计迭代算法,该算法在二阶相位参数的估计中,对迭代初始化和迭代过程采用不同的延迟值,增大了相位参数取值范围,提高了估计精度,降低了误差传递的影响。所提出的迭代算法对线性调频信号相位参数的估计性能明显优于普通的循环平稳法,且与Cramer-Rao界非常接近。
     第七章对全文进行了总结,并提出了需要进一步研究的问题。
Electronic countermeasures are of great importance in the field of information warfare. Low-probability-of-intercept (LPI) techniques are widely utilized in electronic countermeasure systems. Therefore, researches on effective interception and parameter estimation methods of LPI signals have great practical significance and remarkable application value. This dissertation mainly deals with the detection and parameter estimation of phase-coded signals and linear frequency modulated (LFM) signals, which are typical waveforms applied in LPI radar and communication systems, under the framework of cyclostationarity. The main contents are as follows:
     Chapter 1 introduces the research background and significance of our work firstly. Then a brief review of the advances and the state-of-the-art of LPI signal detection and parameter estimation techniques is presented and the evolution of the cyclostationary theory is summarized.
     In Chapter 2, the fundamentals of the cyclostationary theory, including the basic concepts of cyclostationarity and the estimation of cyclic statistics, are briefly reviewed. The links as well as the distinctions between cyclostaitionary approaches and time-frequency representations are provided. Finally, the advantages of cyclostaitionary methods in noise and interference suppression are explicated.
     The cyclostationarity of phase-coded signals is analyzed in Chapter 3, then the explicit formula of the cyclic autocorrelation functions of binary phase-coded signals, as well as those of quaternary phase-coded signals are derived. Single cycle detectors are presented in the form of cyclic autocorrelation function, and their detection performance is analyzed employing the deflection theory. A cyclic feature based detection scheme for phase-coded signals is proposed for non-cooperative cases, which could perform blind detection under rather low signal-to-noise ratios.
     Based on the cyclic autocorrelation functions derived in the last chapter, the influence of lags on the cyclic autocorrelation is analyzed in Chapter 4. A new cyclic autocorrelation based phase-coded signal blind parameter estimation method is proposed, and the effect of stationary noise on the estimation performance is also provided. The method avoids multi-dimensional searching and has raised the computational efficiency.
     In Chapter 5, the cyclic autocorrelation envelope based detection method for LFM signals is studied in detail and its performance is evaluated. A cyclic autocorrelation based constant false alarm ratio detection scheme is developed by extending the asymptotically optimal chi-squared test for cyclostationarity, which is proposed by Dandawate et al, to LFM signal detection. Both methods could perform blind detection of LFM signals.
     The cyclostationary LFM signal phase parameter estimation method is presented in Chapter 6 and its performance is analyzed with the derived approximate mean-square-error analytical expressions of the parameters to be estimated. In order to overcome the drawbacks of the conventional cyclostationary method, an iterative estimation algorithm based on cyclostationarity is proposed. By choosing the lag values for iteration different from those for initialization, the proposed algorithm achieves increased estimation accuracy, reduced error propagation effect and operation over a wider range of phase parameter values. The new iterative algorithm has better performance as compared with the conventional cyclostationary estimation method and is very close to the Cramer-Rao lower Bounds.
     A summary of the whole dissertation is given in Chapter 7 and a prospect of the issues concerned in this field is also made from the author’s research perspective.
引文
[1] 桑伟森, 顾耀平. 综合电子战新技术新方法. 北京:国防工业出版社, 1996.
    [2] 林象平. 雷达对抗原理. 西北电讯工程学院出版社,1985, pp. 1-20.
    [3] Siefker R.G. The intercept of covert radar. Military Electronics /Countermeasures, 1979, Vol. 5, pp. 56-94.
    [4] Forest J.R. Technique for low probability of intercept radar. MSAT. 1983, pp. 496-500.
    [5] 黄春琳. 基于循环平稳特性的低截获概率信号的截获技术研究. 博士学位论文, 长沙: 国防科学技术大学, 2001.
    [6] Stimson G. Introduction to airborne radar. 2nd ed., Mendham, N.J.: SciTech Publishing, 1998, pp. 515–518.
    [7] 我军侦察兵的电子眼 -- 战场侦察雷达 . 西陆社区东方军事论坛:http://bbs14.xilu.com/CGI/junshi/emas/209671.html
    [8] 产运华. 低截获概率雷达及其关键技术. 现代电子, 1997, No. 4, pp. 27-34.
    [9] 李承恕, 赵荣黎. 扩展频谱通信. 北京: 人民邮电出版社,1996.
    [10] 魏晨曦, 通信干扰、抗干扰技术分析. 飞行器测控学报, 2000, 19(1), pp. 61-66.
    [11] Park K.Y. Performance evaluation of energy detectors. IEEE Trans. Aerospace and Electronic Systems, 1978, AES-14(2), pp. 237-241.
    [12] Chung C.-D., Polydoros A. Detection and hop-rate estimation of random FH signals via autocorrelation technique. IEEE MILCOM’91, 1991, Vol. 1, pp. 345-349.
    [13] Urkowitz H. Energy detection of unknown deterministic signals. Proceedings of the IEE, 1967, 55(4), pp. 523-531.
    [14] Urkowitz H. Closed-form expressions for noncoherent radar integration gain and collapsing loss. IEEE Trans. AES, 1973, AES-9(5), pp. 781-783.
    [15] Bruce J.D., Snow K.D. Final technical report TEAL WING program. Probe Systems report PSI-ER327, Probe Systems, Inc., Sunnyvale, CA, 1974.
    [16] Nicholson D.L. Spread spectrum signal design: LPE and AJ Systems. Computer Science Press: Rockville, MD, 1988.
    [17] Dillard R.A. Detectability of spread-Spectrum signals. IEEE Trans. AES, 1979, AES-15(4), pp. 526-537.
    [18] Engler H.F., Howard D.H. A compendium of analytic models for coherent and non-coherent receivers. AFWAL-TR-85-1118, Georgia Tech Research Institute, 1985.
    [19] Eden J.D. Wideband, non-coherent, frequency-hopped waveforms and their hybrids in low probability of intercept communications. NRL Report 3025, Naval Research Laboratory, 1976.
    [20] Czerwinski R.N. Adaptive short-time Fourier analysis. IEEE Signal Processing Letters, 1997, 4(2), pp. 42-45.
    [21] Kwok H.K., Jones D. L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform. IEEE Trans. Signal Processing, 2000, 48(10), pp. 2964-2972.
    [22] 邹红星, 周小波, 李衍达. 基于 Radon-STFT 变换的含噪 LFM 信号子空间分解. 电子学报, 1999, 27(12), pp. 4-8.
    [23] Arnold M.J., Roessgen M., Boashash B. Signal filtering using frequency encoding and the time-frequency plane. Signals, Systems and Computers, 1993 Conference Record of the Twenty-Seventh Asilomar Conference on, 1993, Vol. 2, pp. 1459 -1463.
    [24] Arnold M.J., Boashash B. Time-frequency peak filtering: analysis and implementation details. Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium on, 1994, pp. 256 -259.
    [25] Roessgen M., Boashash B. Time-frequency peak filtering applied to FSK signals. Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium on, 1994, pp. 516 -519.
    [26] Durak L., Arikan O. Short-time Fourier transform: two fundamental properties and an optimal implementation. IEEE Trans. Signal Processing, 2003, 51(5), pp. 1231-1242.
    [27] Kay S., Boudreaur-Bartels G. On the optimality of the Wigner distribution for detection. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’85, 1985, 10, pp. 1017-1020.
    [28] Barbarossa S. Analysis of multicomponent of LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Processing, 1995, 43(6), pp. 1511-1515.
    [29] Barbarossa S., Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Trans. Signal Processing, 1997, 45(2), pp. 316-327.
    [30] 宗凯, 俞卞章, 李会方. 一种基于时频分析的神经网络检测方法. 信号处理, 2001, 17(1), pp. 80-85.
    [31] 李英祥. 低截获概率信号非平稳处理技术研究. 博士学位论文, 成都: 电子科技大学, 2003.
    [32] Khalil N.H. Wavelet analysis of instantaneous correlations with application to frequency hopped signals. Doctoral Thesis, Naval Postgraduate School, Monterey, CA, 1997.
    [33] Wight J.S. Study of the interception of LPI radar. Contractor Report (No. 93-664), Defence Research Establishment Ottawa, Canada, 1993.
    [34] Farrell T.C., Prescott G. A low probability of intercept signal detection receiver using quadrature mirror filter bank trees. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’96, 1996, 3, pp. 1558-1561.
    [35] Farrell T.C., Prescott G. A nine-tile algorithm for LPI signal detection using QMF filterbank trees. Proceedings of the 15th Annual Military Communications conference, MILCOM’96, 1996, 3, pp. 974-978.
    [36] Medley M., Saulnier G.J., Das P. Radiometric detection of direct-sequence spread spectrum signals with interference excision using the wavelet transform. SUPERCOMM/ICC’94, Conference Record, 1994, 3, pp. 1648-1652.
    [37] Ozaktas H.M., Arikan O., Kutay M. A., et al. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Processing, 1996, 44(9), pp. 2141-2149.
    [38] Tao R., Deng B, Wang Y. Research progress of the fractional Fourier transform in signal processing. Science in China, (Series F), 2006, 49(1), pp. 1-25.
    [39] Qi L., Tao R., Zhou S. Y., et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China, (Series F), 2004, 47(2), pp. 184-198.
    [40] Yetik I.S., Nehorai A. Beamforming using the fractional Fourier transform. IEEE Trans. Signal Processing, 2003, 51(6), pp.1663-1668.
    [41] Sun H.B., Liu G.S., Gu H., et al. Application of the fractional Fourier transform to moving target detection in airborne SAR. IEEE Trans. Aerospace and Electronic Systems, 2002, 38(4), pp.1416-1424.
    [42] Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Trans. Commun., 2001, 49(6), pp. 1011-1020.
    [43] 孙晓兵, 保铮. 分数阶 Fourier 变换及其应用. 电子学报, 1996, 24(12), pp. 60-65.
    [44] 赵兴浩, 陶然, 邓兵等. 分数阶傅立叶变换的快速计算新方法. 电子学报, 2007, 35(6), pp.1089-1093.
    [45] Huang D.F., Chen B.S. The filter bank approach for the fractional Fourier transform. Proc. IEEE ICASSP, 1999, 3, pp. 1709-1712.
    [46] 邓兵, 陶然, 杨曦. 分数阶 Fourier 域的采样及分辨率分析. 自然科学进展, 2007, 17(5), 655-661.
    [47] 董永强, 陶然, 周思永等. 含未知参数的多分量 chirp 信号的分数阶傅立叶分析. 北京理工大学学报, 1999, 19(5), pp. 612-616.
    [48] 董永强, 陶然, 周思永等. 基于 Radon-Ambiguity 变换和分数阶傅立叶变换的 chirp 信号检测及参数估计. 北京理工大学学报, 2003, 23(3), pp. 371-374.
    [49] 杜东平, 唐斌. 基于 FrFT 和子空间正交的 LFM 信号参数估计. 电子科技大学学报, 2004, 33(3), pp. 247-349.
    [50] 陈鹏, 侯朝焕, 梁亦慧. 基于离散分数阶傅立叶变换的水下动目标线性调频回波检测算法的研究. 兵工学报, 2007, 28(7), pp. 834-838.
    [51] 殷敬伟, 惠俊英, 蔡平等. 分数阶 Fourier 变换在深海远程水声通信中的应用. 电子学报, 2007, 35(8), pp. 1499-1504.
    [52] Djurovic I., Stankovic S., Pitas I. Digital watermarking in the fractional Fourier transform domain. Journal of Network and Computer Applications, 2001, 24, pp. 167-173.
    [53] Hennelly B., Sheridan J.T. Fractional Fourier transform-based image encryption: phase retrieval algorithm. Optics Communications, 2003, 336, pp. 61-80.
    [54] Yang S.Q., Chen W.D. Classification of MPSK signals using cumulant invariants. Journal of Electronics, 2002, 19(1), pp. 100-103.
    [55] 王民胜. 时频分析在信号处理中的应用. 博士学位论文, 西安: 西安电子科技大学, 1994.
    [56] Ravier P., Amblard P.O. Combining an adapted wavelet analysis with fourth-order statistics for transient detection. Signal Processing, 1998, 79(2), pp. 115-128.
    [57] Ravier P., Amblard P.O. Wavelet packets and de-noising based on higher-order-statistics for transient detection. Signal Processing, 2001, 81(9), pp. 1909-1926.
    [58] 邬佳, 赵知劲. 基于四阶累积量的直扩信号检测方法. 杭州电子科技大学学报, 2005, 25(4), pp. 50-53.
    [59] Gardner W.A. Introduction to random processes with applications to signals and systems. New York: Macmillan, 1985.
    [60] Gardner W.A. Measurement of spectral correlation. IEEE Trans. Acoust. Speech, Signal Processing, 1986, ASSP-34(5), pp. 1111-1123.
    [61] Gardner W.A. The role of spectral correlation in design and performance analysis of synchronizers. IEEE Trans. Commun., 1986, 34(11), pp. 1089-1095.
    [62] Gardner W. A. Statistical spectral analysis: a nonprobabilistic theory. Englewood Cliffs. NJ: Prentice-Hall, 1987.
    [63] Gardner W.A. The spectral correlation theory of cyclostationary time-series. Signal Processing, 1986, 11(1), pp. 13-36.
    [64] Brown W.A., Loomis H., Jr. Digital implementations of spectral correlation analyzers. IEEE Trans. Signal Processing, 1993, 4(2), pp. 703-720.
    [65] Yeung G.K., Gardner W.A. Search-efficient methods of detection of cyclostationary signals. IEEE Trans. Signal Processing, 1996, 44(5), pp. 1214-1223.
    [66] Gardner W.A. Spectral correlation of modulated signals: Part I-analog modulation. IEEE Trans. Commun., 1987, 35(6), pp. 584-594.
    [67] Gardner W.A., Brown W.A., Chen C.K. Spectral correlation of modulated signals: Part II-digital modulation. IEEE Trans. Commun., 1987, 35(6), pp. 595-601.
    [68] Gardner W.A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 1991, 8(2), pp. 14-36.
    [69] Gardner W.A. Two alternative philosophies for estimation of the parameters of time-series. IEEE Trans. Inform. Theory, 1991, 37(1), pp. 216-218.
    [70] Gardner W.A., Brown W.A. Fraction-of-time probability for time-series that exhibit cyclostationarity. Signal Processing, 1991, 23(3), pp. 273–292.
    [71] Gardner W.A., Chen C.K. The random processes tutor. McGraw-Hill, New York, 1991.
    [72] Gardner W.A. Signal interception: a unifying theoretical framework for feature detection. IEEE Trans. Commun., 1988, 36(8), pp. 897-906.
    [73] Gardner W.A. Structural characterization of locally optimum detectors in terms of locally optimum estimators and correlators. IEEE Trans. Inform. Theory, 1982, 28(6), pp. 924-932.
    [74] Gardner W.A., Spooner C.M. Signal interception: performance advantages of cyclic-feature detectors. IEEE Trans. Commun., 1992, 40(1), pp. 149-159.
    [75] Izzo L., Paura L., Tanda M. Signal interception in non-Gaussian noise. IEEE Trans. Commun., 1992, 40(6), pp. 1030-1037.
    [76] Gelli G., Izzo L., Paura L. Cyclostationarity-based signal detection and source location in non-Gaussian noise. IEEE Trans. Commun., 1996, 44(3), pp. 368-376.
    [77] Gardner W.A., Spooner C.M. Detection and source location of weak cyclostationary signals: simplifications of the maximum-likelihood receiver. IEEE Trans. Commun., 1993, 41(6), pp. 905-916.
    [78] Gardner W.A., Chen C.K. Signal-selective time-difference-of-arrival estimation for passive location of manmade radio source in highly corruptive environments, Part I: theory and method. IEEE Trans. Signal Processing, 1992, 40(5), pp. 1168-1184.
    [79] Gardner W.A., Chen C.K. Signal-selective time-difference-of-arrival estimation for passive location of manmade radio source in highly corruptive environments, Part II: algorithms and performance. IEEE Trans. Signal Processing, 1992, 40(5), pp. 1185-1197.
    [80] Brousseau N., Salt J.W. Real-time analysis of a spread spectrum environment with an optoelectronic cyclic cross correlation: proof-of-concept experiments. NTIS, No. AD-A303463, Oct. 1995.
    [81] Ristic V.M. Development of an acousto-optic correlator for the detection of LPI signals. MIC-97-04849/HDIVI, 1996.
    [82] Gillman A.M. Non co-operative detection of LPI/LPD signals via cyclic spectral analysis. ADA361720/XAB, March 1999.
    [83] 崔滔, 魏本涛. 频域谱相关自适应滤波的 LPI 信号可检测性与密集信号分选能力研究. 电子对抗, 1997, 2, pp. 1-8.
    [84] Dandawate A.V. Testing for presence of kth-order cyclostationarity. IEEE Signal Processing Workshop on Higher-Order Statistics, USA: IEEE Press, 1993, pp. 240-244.
    [85] Dandawate A.V., Ginnakis G.B. Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Processing, 1994, 42 (9), pp. 2355-2369.
    [86] French C.A., Gardner W.A. Spread-spectrum despreading without the code. IEEE Trans. Commun., 1986, 34(4), pp. 404–407.
    [87] Schell S.V., Gardner W.A. Detection of the number of cyclostationary signals in unknown interference and noise. Proc. 24th Annual Asilomar Conf. Signals, Syst., and Comput., Pacific Grove, CA, 1990, pp. 473–477.
    [88] 黄春琳, 姜文利等. 对低截获概率相位编码信号检测的有限多循环检测器. 电子学报, 2002, 30(6), pp. 916-918.
    [89] 黄春琳, 柳征等. 基于循环谱包络的扩谱直序信号的码片时宽、载频、幅度估计. 电子学报, 2002, 30(9), pp. 1353-1356.
    [90] Fusco T., Izzo L., Napolitano A., et al. On the second-order cyclostationairy properties of long-code DS-SS signals. IEEE Trans. Commun., 2006, 54(10), pp. 1741-1746.
    [91] Shamsunder S., Giannakis G.B. Estimation of multicomponent random amplitude polynomial phase signals using higher-order cyclic cumulants. Proc. Conf. Signals, Syst., Comput., Pacific Grove, CA, 1993, pp. 1191-1195.
    [92] Shamsunder S., Giannakis G.B., Friedlander B. Estimating random amplitude polynomial phase signals: a cyclostationary approach. IEEE Trans. Signal Processing, 1995, 43(2), pp. 492-505.
    [93] Zhou G. Random amplitude and polynomial phase modeling of nonstationary processes using higher-order and cyclic statistics. Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1995.
    [94] 毛用才 , 保铮 . 复加性白高斯噪声中随机幅值多项式相位信号的Cramer-Rao 下界. 通信学报, 1997, 18(9), pp. 50-54.
    [95] 毛用才, 保铮. 应用循环平稳方法对实测雷达数据的分析. 西安电子科技大学学报, 1997, 24(3), pp. 319-322.
    [96] 毛用才, 保铮. 估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析. 电子学报, 1999, 27(4), pp. 135-136.
    [97] Gini F., Giannakis G.B. Hybrid FM-polynomial phase signal modeling: parameter estimation and Cramer-Rao bounds. IEEE Trans. Signal Processing, 1999, 47(2), pp. 363–377.
    [98] Morelande M.R., Zoubir A.M. On the performance of cyclic moments-based parameter estimators of amplitude modulated polynomial phase signals. IEEE Trans. Signal Processing, 2002, 50(3), pp. 590-606.
    [99] Serpedin E., Panduru F., Sari I., et al. Bibliography on cyclostationarity. Signal Processing, 2005, 85(12), pp. 2233-2303.
    [100] Gardner W.A., Napolitano A., Paura L. Cyclostationarity: half a century of research. Signal Processing, 2006, 86(4), pp. 639-697.
    [101] 柯宏发, 李玮. 扩频信号的自回归滑动平均谱估计识别技术研究. 现代电子技术, 2002, 138(7), pp. 49-51.
    [102] Yu X.H., Shi Y.W. Cross-spectral ESPRIT method for LFM parameterestimation in colored noise. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(5), pp. 551-555.
    [103] 刘亚, 薛磊, 刘小秋. 一种新的 LPI 信号的测向方法. 电子信息对抗技术, 2006, 21(6), pp. 7-10.
    [104] Ostman T., Parlcvall S. An improved MUSIC algorithm for estimation of time delays in asynchronous DS-CDMA system. IEEE Trans. Commun., 1999, 47(11), pp. 1628-1631.
    [105] Wu W.C., Chen K.C. Root-MUSIC based joint identification and timing estimation of asynchronous CDMA system over Rawleigh fading channel. IEICE Trans. Fundamentals of Electronics, Commun. and Computer Sciences, 1998, E81-A(8), pp. 1550-1559.
    [106] 高勇, 肖先赐. 谱相关理论用于去除测向交叉定位中的虚假定位. 系统工程与电子技术, 1998, 5, pp. 22-27.
    [107] 高勇, 肖先赐. 存在干扰信号时对低截获概率信号的测向. 电子科技大学学报, 1998, 27(3), pp. 246-250.
    [108] Wight J.S. Study of the interception of LPI radar. NTIS, MIC9603768, 1993.
    [109] Forsythe K.W., Monticciolo P., Sklar J.R. Spatial adaptive filtering for LPI signal detection. Proceeding of the Tactical Commun. Conf., 1994, pp. 507-508.
    [110] 王永良, 彭应宁. 空时自适应信号处理. 北京, 清华大学出版社,2000.
    [111] Tsatsanis M.K., Giannakis G.B. Blind estimation of direct sequence spread spectrum signals in multipath. IEEE Trans. Signal Processing, 1997, 45(5), pp. 1241-1252.
    [112] Farrell T.C., Chakrabarti S. A potential use for artificial neural networks in the detection of frequency hopped low probability of intercept signals. IEEE Wichita Conference on Communications, Networking and Signal Processing, 1994, pp.25-30.
    [113] 黄春琳, 邱玲, 沈振康. 数字调制信号的神经网络识别方法. 国防科大学报, 1999, 21(2), pp. 58-61.
    [114] 庄婵飞, 赵知劲. 模拟调制信号的神经网络识别方法. 杭州电子工业学院学报,2002, 22(2), pp. 34-36.
    [115] 孟建. 一种用于多载频信号的包络分析方法. 第八届电子战新概念新理论新技术学术年会,2000, pp. 265-270.
    [116] Gevargiz J., Das P.K., Milstein, L.B. Adaptive narrow-band interference rejection in a DS spread-spectrum intercept receiver using transform domain signal processing techniques. IEEE Trans. Commun., 1989, 37(12), pp.1359-1366.
    [117] Hakin S., Li. X.B. Detection of signals in chaos. Proceeding of IEEE, 1995, 83(1), pp. 95-122.
    [118] Lee M.K. Signal detection in communication systems under uncertainty environment. Ph.D. Dissertation, City University of Hong Kong, 2005.
    [119] Mallat S.G., Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing, 1993, 41(12), pp. 3397-3415.
    [120] Alkhansari M.G., Huang T. S. A fast orthogonal matching pursuit algorithm. Proc. IEEE ICASSP, 1998, 3, pp. 1389-1392.
    [121] Bennett W.R. Statistics of regenerative digital transmission. Bell System Tech. J., 1958, 37, pp. 1501-1542.
    [122] Dragan Y.P. Periodically correlated random processes, and transformers with periodically varying parameters. Otbor i Peredavca Informacii, 1969, 22, pp. 27-33 (in Russian).
    [123] Dragan Y.P. The spectral properties of periodically correlated stochastic processes. Otbor i Peredavca Informacii, 1971, 30, pp. 16-24 (in Russian).
    [124] Dragan Y.P. Biperiodically correlated random processes. Otbor i Peredavca Informacii, 1972, 34, pp.12-14 (in Russian).
    [125] Dragan Y.P., Ja P. Properties of counts of periodically correlated random processes. Otbor i Perdavca Informacii, 1972, 33, pp. 9-12 (in Russian).
    [126] Dragan Y.P. The representation of a periodically correlated random process by stationary components. Otbor i Peredavca Informacii, 1975, 45, pp. 7-20 (in Russian).
    [127] Dragan Y.P. Harmonizability and spectral distribution of random processes with finite mean power. Dokl. Akad. Nauk. (Ukrain) SSR Ser. A, 1978, 8, pp. 679-684 (in Russian).
    [128] Gladyshev E.G. Periodically correlated random sequences. Soviet Math. Dokl., 1961, 2, pp. 385-388.
    [129] Gladyshev E.G. Periodically correlated random sequences. Dokl. Akad. Nauk SSSR, 1961, 137, pp. 1026-1029 (in Russian).
    [130] Gladyshev E.G. Periodically and semi-periodically correlated random processes with continuous time. Teor. Verojatnost. i Primenen., 1963, 8, pp. 184-189 (in Russian).
    [131] Gladyshev E.G. Periodically and almost periodically correlated with continuous time parameter. Theory of Probability and Its Applications, 1963, 8, pp. 173–177.
    [132] Gudzenko L.I. On periodically nonstationary processes. Radiotekhnika i Electronika, 1959, 4(6), pp. 1062-1064.
    [133] Gudzenko L.I. On periodic nonstationary processes. Radio Eng. Electron. Phys., 1959, 4(6), pp. 220-224 (in Russian).
    [134] Nedoma J. Uber die ergodizitat and r-ergozitatstationarer wahrscheinlichkeitsmasse. Zeitschrift fur Wahrscheinlichkeitstheorie, 1963, 2, pp. 90-97.
    [135] Franks L.E. Signal Theory. Prentice-Hall, Englewood Cliffs, NJ, 1969.
    [136] Gardner W.A., Franks L. Characterization of cyclostationary random signal processes. IEEE Trans. Information Theory, 1975, 21(1), pp. 4-14.
    [137] Boyles R., Gardner W.A. Cycloergodic properties of discrete-parameter nonstationary stochastic processes. IEEE Trans. Information Theory, 1983, 29(1), pp. 105-114.
    [138] Dandawate A.V., Giannakis G.B. Modeling (almost) periodic moving average processes using cyclic statistics. IEEE Trans. Signal Processing, 1996, 44(3), pp. 673-684.
    [139] Giannakis G.B. Cyclostationary signal analysis. The Digital Signal Processing Handbook (Eds.: Madisetti V.K., Williams D.B.), CRC Press and IEEE Press, Boca Raton, FL and New York, 1998 (Chapter 17).
    [140] Hurd H.L., Bloomfield P., Lund R.B. Periodic correlation in meteorological time series. Fifth International Meeting on Statistical Meteorology, 1992, pp. 1-6.
    [141] Kacimov A.R., Obnosov Y.V., Yakimov N.D. Groundwater flow in a medium with a parquet-type conductivity distribution. Journal of Hydrology, 1999, 226(3-4), pp. 242-249.
    [142] Finelli C.J., Jenkins J.M. A cyclostationary least mean squares algorithm for discrimination of ventricular tachycardia from sinus rhythm. International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, MD, 1991, vol. 13, pp. 740-741.
    [143] Dragan Y.P., Yavorsky I.N. Rythmics of sea waves and underwater scoustic signals. Naukova Dumka, Kiev, Ukraine, 1982 (in Russian).
    [144] Pagano M., Parzen E. An approach to modeling seasonally stationary time-series. Journal of Econometrics, 1979, 9(1-2), pp. 137-153.
    [145] Sherman P.J. Random processes from rotating machinery. in: A.G. Miamiee (Ed.), Proceedings of Workshop on Nonstationary Stochastic Processes and theirApplications, World Scientific, New Jersey, 1991, pp. 211-218.
    [146] Campbell J., Gibbs A., Smith B. The cyclostationary nature of crosstalk interference from digital signals in multipair cable—Part I: fundamentals. IEEE Trans. Commun., 1983, 31(5), pp. 629-637.
    [147] Tong L., Guanghan X., Kailath T. Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Trans. Information Theory, 1994, 40(2), pp. 340-349.
    [148] Tong L., Xu G., Hassibi, B., et al. Blind channel identification based on second-order statistics: a frequency-domain approach. IEEE Trans. Information Theory, 1995, 41(1), pp. 329-334.
    [149] Tugnait J.K. On blind identifiability of multipath channels using fractional sampling and second-order cyclostationary statistics. IEEE Trans. Information Theory, 1995, 41(1), pp.308-311.
    [150] Ding Z., Li Y. On channel identification based on second-order cyclic spectra. IEEE Trans. Signal Processing, 1994, 42(5), pp. 1260-1264.
    [151] Graef F.K. Joint optimization of transmitter and receiver for cyclostationary random signal processes. Proceedings of the NATO Advanced Study Institute on Nonlinear Stochastic Problems, Reidel, Algarve, Portugal, 1983, pp. 581-592.
    [152] Smith B.M. Potter P.G. Design criteria for crosstalk interference between digital signals in multipair cable. IEEE Trans. Commun., 1986, COM-34, pp. 593-599.
    [153] Gardner W.A. Cyclic Wiener filtering: theory and method. IEEE Trans. Commun, 1993, 41(1), pp. 151-163.
    [154] Agee B.G. The baseband modulus restoral approach to blind adaptive signal demodulation. Proceedings of Digital Signal Processing Workshop, 1988.
    [155] Agee B.G. The property restoral approach to blind adaptive signal extraction. Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, University of California, Davis, CA, 1989.
    [156] Pateros C., Saulnier G. Interference suppression and multipath mitigation using an adaptive correlator direct sequence spread spectrum receiver. Proceedings of IEEE ICC, 1992, pp. 662-666.
    [157] Madhow U., Honig M. MMSE interference suppression for direct-sequence spread-spectrum CDMA. IEEE Trans. Commun., 1994, 42(12), pp. 3178-3188.
    [158] Rapajic P., Vucetic B. Adaptive receiver structures for asynchronous CDMA systems. IEEE J. Sel. Areas Commun., 1994, 12(4), pp. 685-697.
    [159] Pateros C., Saulnier G. An adaptive correlator receiver for direct-sequencespread-spectrum communication. IEEE Trans. Commun., 1996, 44, pp. 1543-1552.
    [160] Madhow U. Blind adaptive interference suppression for direct-sequence CDMA. Proc. IEEE, 1998, pp. 2049-2069.
    [161] Strom E., Miller S. Properties of the single-bit singleuser MMSE receiver for DS-CDMA systems. IEEE Trans. Commun., 1999, 47(3), pp. 416-425.
    [162] Stojanovic M., Catipovic J., Proakis J. Adaptive receivers for underwater acoustic communications: their relation to beamforming and diversity combining. Proceedings of COMCON, vol. 4, 1993.
    [163] Agee B.G., Kelly P., Gerlach D. The backtalk airlink for full exploitation of spectral and spatial diversity in wireless communication systems. Proceedings of Fourth Workshop on Smart Antennas in Wireless Mobile Communications, 1997.
    [164] Gardner W.A. The role of spectral correlation in design and performance analysis of synchronizers. IEEE Trans. Commun. COM-34 (11) (1986) 1089–1095.
    [165] Mengali U., Pezzani E. Tracking properties of phaselocked loops in optical communication systems. IEEE Trans. Commun., 1978, COM-26, pp. 1811-1818.
    [166] Moeneclaey M. Linear phase-locked loop theory for cyclostationary input disturbances. IEEE Trans. Commun., 1982, 30(10), pp. 2253-2259.
    [167] Yoon C.Y., Lindsay W.C. Phase-locked loop performance in the presence of CW interference and additive noise. IEEE Trans. Commun., 1982, COM-30, pp. 2305-2311.
    [168] Moeneclaey M. The optimum closed-loop transfer function of a phase-locked loop used for synchronization purposes. IEEE Trans. Commun., 1983, COM-31, pp. 549-553.
    [169] Wang Y., Ciblat P., Serpedin E., et al. Performance analysis of a class of nondata-aided frequency offset and symbol timing estimators for flatfading channels. IEEE Trans. Signal Processing, 2002, 50(9), pp. 2295-2305.
    [170] Ciblat P., Serpedin E. A fine blind frequency offset estimator for OFDM/OQAM systems. IEEE Trans. Signal Processing, 2004, 52(1), pp. 291-296.
    [171] Gini F., Giannakis G.B. Frequency offset and symbol timing recover in flat-fading channels: a cyclostationary approach. IEEE Trans. Commun., 1998, 46(3), pp. 400-411.
    [172] Spooner, C.M. Chen C.K., Gardner W.A. Maximum likelihood two-sensor detection and TDOA estimation for cyclostationary signals. Abstracts of Sixth Multidimensional Signal Processing Workshop of the IEEE/ASSP Society, Pacific Grove, CA, 1989, pp. 119-120.
    [173] Gelli G., Napolitano A., Paura L. Spectral-correlation based estimation of channel parameters by noncoherent processing. Proceedings of China 1991 International Conference on Circuits and Systems, Sheuzhen, China, 1991, pp. 354-357.
    [174] Gardner W.A., Spooner C.M. Comparison of autocorrelation and cross-correlation methods for signalselective TDOA estimation. IEEE Trans. Signal Processing, 1992, 40(10), pp. 2606-2608.
    [175] Gardner W.A., Chen C.K. Selective source location by exploitation of spectral coherence. Proceedings of the Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling, Minneapolis, MN, 1988, pp. 271-276.
    [176] Gardner W.A., Chen C.K. Interference-tolerant time difference-of-arrival estimation for modulated signals. IEEE Trans. Acoustics Speech Signal Process., 1988, ASSP-36(9), pp. 1385-1395.
    [177] Mazzenga F. Blind adaptive parameter estimation for CDMA systems using cyclostationary statistics. Eur. Trans. Telecommun. Relat. Technol., 2000, 11(5), pp. 495-500.
    [178] Agee B.G., Schell S.V., Gardner W.A. Self-coherence restoral: a new approach to blind adaptation of antenna arrays. Proceedings of the 21st Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1987, pp. 589-593.
    [179] Wu Q., Wong M. Blind adaptive beamforming for cyclostationary signals. IEEE Trans. Signal Processing, 1996, 44(11), pp. 2757-2767.
    [180] Gardner W.A. Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity. Proceedings of the IEEE, 1988, 76, pp. 845-847.
    [181] Agee B.G. The property restoral approach to blind adaptive signal extraction. Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, University of California, Davis, CA, 1989.
    [182] Agee B.C., Schell S.V., Gardner W.A. Spectral self coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays. Proc. IEEE, 1990, 78(4), pp. 753-767.
    [183] Schell S.V. Exploitation of spectral correlation for signal-selective directionfinding. Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, University of California, Davis, CA, 1990.
    [184] Biedka T., Agee B.G. Subinterval cyclic MUSIC-robust DF with inaccurate knowledge of cycle frequency. Proceedings of 25th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 1991, 1, pp. 262-266.
    [185] Izzo L., Paura L., Poggi G. An interference-tolerant algorithm for localization of cyclostationary-signal sources. IEEE Trans. Signal Processing, 1992, 40(7), pp. 1682-1686.
    [186] Schell S.V., Gardner W.A. Blind adaptive spatio-temporal filtering for wideband cyclostationary signals. IEEE Trans. Signal Processing, 1993, 41, pp. 1961-1964.
    [187] Gelli G. Power and timing parameter estimation of multiple cyclostationary signals from sensor array data. Signal Processing, 1995, 42(1), pp. 97-102.
    [188] Lee J.-H., Lee Y.-T., Shih W.-H. Efficient robust adaptive beamforming for cyclostationary signals. IEEE Trans. Signal Processing, 2000, 48(7), pp. 1893-1901.
    [189] Lee J.-H., Lee Y.-T. A novel direction finding method for cyclostationary signals. Signal Processing, 2001, 81(6), pp. 1317-1323.
    [190] Lee J.-H., Lee Y.-T. Robust technique for estimating the bearings of cyclostationary signals. Signal Processing, 2003, 83(5), pp. 1035-1046.
    [191] Gelli G., Mattera D., Paura L. Blind wide-band spatio-temporal filtering based on higher-order cyclostationarity. IEEE Trans. Signal Processing, 2005, 53(4), pp. 1282-1290.
    [192] Yan H., Fan H.H. Wideband cyclic MUSIC algorithm. Signal Processing, 2005, 85(3), pp. 643-649.
    [193] Giannakis G.B., Zhou G. Parameter estimation of cyclostationary AM time series with application to missing observations. IEEE Trans. Signal Processing, 1994, 42(9), pp. 2408-2419.
    [194] Zhou G., Giannakis G.B. Retrieval of self-coupled harmonics. IEEE Trans. Signal Processing, 1995, 43(5), pp. 1173-1185.
    [195] Ghogo M., Swami A., Nandi A.K. Nonlinear leastsquares estimation for harmonics in multiplicative and additive noise. Signal Processing, 1999, 79(2), pp. 43-60.
    [196] Ghogo M., Swami A., Garel B. Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise. IEEE Trans. SignalProcessing, 1999, 47, pp. 3235-3249.
    [197] Zhou G., Giannakis G.B. Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics. IEEE Trans. Signal Processing, 1995, 43(9), pp. 1445-1460.
    [198] Friedman J.S., King J.P., Pride III J.P. Time difference of arrival geolocation method, etc. US Patent No. 4,888,593, December 19, 1989.
    [199] Gardner W.A., Agee B.G. Self-coherence restoring signal extraction apparatus and method. US Patent No. 5,255,210, October 19, 1993.
    [200] Gardner W.A., Schell S.V. Method and apparatus for multiplexing communications signals through blind adaptive spatial filtering. US Patent No. 5,260,968, November 9, 1993.
    [201] Gardner W.A., Schell S.V., Agee B.G. Self-coherence restoring signal extraction and estimation of signal direction of arrival. US Patent No. 5,299,148, March 29, 1994.
    [202] Sullivan M.C. Wireless geolocation system. US Patent No. 5, 999, 131, December 7, 1999.
    [203] Krikorian K.V., Rosen R.A. Technique for robust characterization of weak RF emitters and accurate time difference of arrival estimation for passive ranging of RF emitters. US Patent No. 6, 646, 602, November 11, 2003.
    [204] Gardner W.A. Non-parametric signal detection and identification of modulation type for signals hidden in noise: an application of the new theory of cyclic spectral analysis. Proceedings of Ninth Symposium on Signal Processing and its Applications, 1983, pp. 119-124.
    [205] Rostaing P. Detection of modulated signals by exploiting their cyclostationarity properties: application to sonar signals. Ph.D. Dissertation, University of Nice Sophia Antipolis, Nice, France, 1996 (in French).
    [206] Gardner W.A., Spooner C.M. Cyclic spectral analysis for signal detection and modulation recognition. Proc. IEEE Conf. Military Communications, San Diego, CA, 1988, pp. 419-423.
    [207] Rostaing P., Thierry E., Pitarque T. Asymptotic performance analysis of cyclic detectors. IEEE Trans. Commun., 1999, 47(1), pp. 10-13.
    [208] Li Y., Ding Z. ARMA system identification based on second-order cyclostationarity. IEEE Trans. Signal Processing, 1994, 42(12), pp. 3483-3494.
    [209] Tanda M. Cyclostationarity-based algorithms for signal interception in non-Gaussian noise. Ph.D. Dissertation, Dipartimento di Ingegneria Elettronica,Universita` di Napoli Federico II, Napoli, Italy, February 1992 (in Italian).
    [210] Izzo L., Tanda M. Delay-and-multiply detectors for signal interception in non-Gaussian noise. Proceedings of 15th GRTESI Symposium on Signal and Image Processing, Juan-Les-Pins, France, 1995.
    [211] Bukofzer D. Optimum and suboptimum detector performance for signals in cyclostationary noise. IEEE J. Ocean. Eng., 1987, OE-12, pp. 97-115.
    [212] Izzo L., Paura L., Tanda M. Optimum and suboptimum detection of weak signals in cyclostationary non-Gaussian noise. Eur. Trans. Telecommun. Relat. Technol., 1990, 1(3), pp. 233-238.
    [213] Napolitano A., Paura L., Tanda M. Signal detection in cyclostationary generalized Gaussian noise with unknown parameters. Eur. Trans. Telecommun. Relat. Technol., 1992, 3(1), pp. 39-43.
    [214] Besson O., Stoica P. Simple test for distinguishing constant from time varying amplitude in harmonic retrieval problem. IEEE Trans. Signal Processing, 1999, 47(4), pp. 1137-1141.
    [215] Gerr N.L., Hurd H.L. Graphical methods for determining the presence of periodic correlation. J. Time Ser. Anal., 1991, 12, pp. 337-350.
    [216] Vecchia A.V., Ballerini R. Testing for periodic autocorrelations in seasonal time series data. Biometrika, 1991, 78 (1), pp.53-63.
    [217] Gournay P., Nicolas P. Cyclic spectral analysis and time-frequency analysis for automatic transmission classification. Proceedings of Quinzieme Colloque GRETSI, Juan-les-Pins, F, 1995 (in French).
    [218] Marchand P. Detection and classification of digital modulations by higher order cyclic statistics. Ph.D. Dissertation, INPG-Nat. Poly. Inst. Grenoble, Grenoble, France, 1998 (in French).
    [219] Boiteau D., Martret C. Le. A general maximum likelihood framework for modulation classification. Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), 1998, 4, pp. 2165-2168.
    [220] Marchand P., Lacoume J.L., Martret C. Le. Multiple hypothesis modulation classification based on cyclic cumulants of different orders. Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), 1998, 4, pp. 2157-2160.
    [221] Ferreol A., Chevalier P., Albera L. Second-order blind separation of first- and second-order cyclostationary sources--application to AM, and deterministic sources. IEEE Trans. Signal Processing, 2004, 52(4), pp. 845-861.
    [222] Antoni J., Guillet F., El Badaoui M., et al. Blind separation of convolved cyclostationary processes. Signal Processing, 2005, 85(1), pp. 51-66.
    [223] Ferreol A., Chevalier P. On the behavior of current second and higher order blind source separation methods for cyclostationary sources. IEEE Trans. Signal Processing, 2000, 48(6), pp. 1712-1725.
    [224] Abed-Meraim K., Xiang Y., Manton J.H., et al. Blind source separation using second-order cyclostationary statistics. IEEE Trans. Signal Processing, 2001, 49(4), pp. 694-701.
    [225] Izzo L., Napolitano A., Tanda M. Spectral-correlation based methods for multipath channel identification. Eur. Trans. Telecommun. Relat. Technol., 1992, 3(1), pp. 341-348.
    [226] Gelli G., Izzo L., Napolitano A., et al. Multipath channel identification by an improved Prony algorithm based on spectral correlation measurements. Signal Processing, 1993, 31(1), pp. 17-29.
    [227] Izzo L., Napolitano A., Paura L. Cyclostationarity exploiting methods for multipath-channel identification. in: W.A. Gardner (Ed.), Cyclostationarity in Communications and Signal Processing, IEEE Press, New York, 1994, pp. 91–416.
    [228] Giannakis G.B. Polyspectral and cyclostationary approaches for identification of closed-loop systems. IEEE Trans. Automat. Control, 1995, 40(5), pp. 882-885.
    [229] Gardner W.A. Identification of systems with cyclostationary input and correlated input/output measurement noise. IEEE Trans. Automat. Control, 1990, 35(4), pp. 449-452.
    [230] Gardner W.A. A new method of channel identification. IEEE Trans. Commun., 1991, 39(6), pp. 813-817.
    [231] Chevreuil A., Serpedin E., Loubaton P., et al. Blind channel identification and equalization using nonredundant periodic modulation precoders: performance analysis. IEEE Trans. Signal Processing, 2000, 48(6), pp. 1570-1586.
    [232] Mazzenga F. On the identifiability of a channel transfer function from cyclic and conjugate cyclic statistics. European Trans. Telecommun. Relat. Technol., 2000, 11(3), pp. 293-296.
    [233] Chen Y., Nikias C.L. Identifiability of a band limited system from its cyclostationary output autocorrelation. IEEE Trans. Signal Processing,1994, 42(2), pp. 483-485.
    [234] Tong L., Xu G., Kailath T. Blind identification and equalization based on secondorder statistics: a time domain approach. IEEE Trans. Inform. Theory, 1994, 40(2), pp. 340-349.
    [235] Tugnait J.K. On blind identifiability of multipath channels using fractional sampling and second-order cyclostationary statistics. IEEE Trans. Inform. Theory, 1995, 41(1), pp. 308-311.
    [236] Liu H., Xu G., Tong L., et al. Recent developments in blind channel equalization: from cyclostationarity to subspaces. Signal Processing, 1996, 50, pp.83-99.
    [237] Tugnait J.K. Blind equalization and estimation of FIR communication channels using fractional sampling. IEEE Trans. Commun., 1996, 44(3), pp. 324-336.
    [238] Wong H.E., Chambers J.A. Two-stage interference immune blind equaliser which exploits cyclostationary statistics. Electron. Lett., 1996, 32(19), pp. 1763-1764.
    [239] Serpedin E., Giannakis G.B. Blind channel identification and equalization with modulation induced cyclostationarity. IEEE Trans. Signal Processing, 1998, 46(7), pp. 1930-1944.
    [240] Gelli G., Verde F. Two-stage interference-resistant adaptive periodically time-varying CMA blind equalization. IEEE Trans. Signal Processing, 2002, 50(3), pp. 662-672.
    [241] Tugnait J.K., Luo W. Linear prediction error method for blind identification of periodically time-varying channels. IEEE Trans. Signal Processing, 2002, 50(12),pp. 3070-3082.
    [242] Bradaric I., Petropulu A.P., Diamantaras K.I. Blind MIMO FIR channel identification based on secondorder spectra correlations. IEEE Trans. Signal Processing, 2003, 51(6), pp. 1668-1674.
    [243] Gardner W.A., Archer T.L. Exploitation of cyclostationarity for identifying the Volterra kernels of nonlinear systems. IEEE Trans. Inform. Theory, 1993, 39(3) pp. 535-542.
    [244] Mattera D. Identification of polyperiodic Volterra systems by means of input-output noisy measurements. Signal Processing, 1999, 75(1), pp. 41-50.
    [245] 黄小晶. 循环平稳随机过程的后向转移概率及其在功率谱密度计算中的应用. 通信学报, 1992, 4, pp. 99-105.
    [246] 黄春琳, 姜文利, 周一宇. 窄带强干扰下直接扩谱序列信号的有限多循环检测器. 通信学报, 2003, 24(3), pp. 105-112.
    [247] 黄知涛, 姜文利, 周一宇. 多循环频率循环时延估计方法及性能分析. 电子学报,2004, 32(l), pp.102-108.
    [248] 朱德君. 谱相关理论在电子侦察中的应用. 电子对抗, 1995, 2, pp. 43-58.
    [249] 朱近康. 扩频通信的频谱相关检测方法. 通信学报. 1998, 19(12), pp.8-14.
    [250] 余敬东, 郭伟, 李牧. 直接序列扩频通信的循环谱检测和参数估计技术. 电子科技大学学报, 1996, 25(9), pp. 439-444.
    [251] 金梁, 姚敏立, 殷勤业. 宽带循环平稳信号的二维空间谱估计. 通信学报, 2000, 21(3), pp. 7-11.
    [252] 赵旦峰, 赵春晖, 宋朝玲等. 循环谱理论在 MSK 扩频信号检测与识别中的应用. 哈尔滨工程大学学报, 2001, 22(5), pp. 62-64.
    [253] 黄知涛, 周一宇, 姜文利. 基于循环平稳特性的源信号到达角估计方法. 电子学报, 2002, 30(3), pp. 372-375.
    [254] 李力, 屈梁生. 二阶循环统计量在机械故障诊断中的应用. 西安交通大学学报, 2002, 36(9), pp. 943-946.
    [255] 罗利春. 谱相关的原理、功能与α 截面谱表示. 物理学报, 2002, 51(10), pp. 2177-2182.
    [256] 张仔兵. 连续相位调制信号的循环平稳特性及被动检测技术研究. 博士学位论文, 成都: 电子科技大学, 2005.
    [257] 杨世永, 李宏伟. 基于三阶循环累积量的二维谐波信号的参数估计. 电子学报, 2005, 33(10), pp. 1808-1811.
    [258] 余国文, 王宏远. 强干扰下几乎循环平稳正弦信号 LSFD 估计. 电子学报, 2006, 34(6), pp. 1008-1011.
    [259] 张仔兵, 李立萍, 肖先赐. 调制指数为整数和半整数的连续相位调制的盲检测. 电子与信息学报, 2006, 28(10), pp. 1770-1773.
    [260] 李建东, 冯祥. 基于支持矢量机和循环累积量的调制识别算法. 系统工程与电子技术, 2007, 29(4), pp. 520-523.
    [261] 毛用才. 几种复高阶循环平稳信号的参数估计研究. 博士学位论文, 西安: 西安电子科技大学, 1997.
    [262] 张贤达, 保铮. 非平稳信号分析与处理. 北京: 国防工业出版社, 1998.
    [263] 罗利春. 无线电侦察信号分析与处理. 北京: 国防工业出版社, 2003.
    [264] Gardner W.A. Stationarizable random processes. IEEE Trans. Information Theory, 1978, 24(1), pp. 8-22.
    [265] Gardner W.A. Representation and estimation of cyclostationary processes. Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Massachusetts (reprinted as Signal and Image Processing Lab Technical Report No. SIPL-82-1, Department of Electrical and Computer Engineering, University of California, Davis, CA, 95616, 1982), 1972.
    [266] Roberts R.S., Brown W.A., Loomis H.H., Jr. Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine, 1991, 8(2), pp. 38-49.
    [267] Roberts R.S., Brown W.A., Loomis H.H., Jr. A review of digital spectral Correlation analysis: theory and implementation. (Cyclostationarity in Communications and Signal Processing. Ed.: Gardner W.A.), IEEE Press, New York, 1994, pp. 455-479.
    [268] Hlawatsch F., Boudreaux-Bartels G.F. Linear and quadratic time-frequency representations. IEEE Signal Processing Magazine, 1992, ((2), pp. 21-67.
    [269] Kuehls J.F., Geraniotis E. Presence detection of binary phase shift keyed and direct sequence spread spectrum signals using a prefilter delay and multiply device. IEEE Journal on Sel.Areas Commun., 1990, 8(5), pp. 915-933.
    [270] Krasner N.F. Optimal detection of digitally modulated signals. IEEE Trans. Commun., 1982, 30(5), pp. 885-895.
    [271] Polydoros A., Holmes J.K. Autocorrelation techniques for wideband detection of FH/DS waveform in random tone Interference. Proceedings of MILCOM’83, pp. 776-780.
    [272] Polydoros A., Weber C.L. Detection performance considerations for direct-sequence and time-hopping LPT waveforms. IEEE Journal on SAIC, 1985, 13(5), pp. 727-744.
    [273] Polydoros A., Woo K.T. LPI detection of frequency-hopping signals using autocorrelation techniques. IEEE Journal on SAIC, 1985, 13(5), pp. 714-726.
    [274] 金艳, 姬红兵. 基于循环自相关的PSK信号盲参数估计新方法. 西安电子科技大学学报, 2006, 33(6), pp. 892-893(901).
    [275] 赵树杰. 信号检测与估计理论. 西安: 西安电子科技大学出版社, 1998.
    [276] Rezeanu S.C., Ziemer R.E., Wickert M.A. Joint maximum-likelihood parameter estimation for burst DS spread-spectrum transmission. IEEE trans. Commun., 1997, 45(2), pp. 227-238.
    [277] Carlemalm C., Logothetis A. Blind signal detection and parameter estimation for an asynchronous CDMA system with time-varying number of transmission paths. Proceedings of the Ninth IEEE S.P Workshop on Statistical Signal and Array Processing, 1998, pp.296-299.
    [278] Manimoham V.B., Fitzgerald W.J. Blind frequency offset and delay estimation of linearly modulated signals using second order cyclic statistics. Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal, 1998,4, pp. 2337-2340.
    [279] Mazzenga E., Vatalaro F. Parameter estimation in CDMA multiuser detection using cyclostationary statistics. Electronics Letters, Italy, 1996, 32(3), pp. 179-181.
    [280] Zhang Z., Li L.; Xiao X.Carrier frequency and chip rate estimation based on cyclic spectral density of MPSK signals. ICCCAS 2004, 2004, 2, pp. 859-862.
    [281] Li X., Yi M., Xiao X. Low SNR BPSK signal chip rate estimation using a wavelet based spectral correlation algorithm. Circuits and Systems MWSCAS-2002, 2002, pp. 247-249.
    [282] 肖先赐. BPSK 信号检测的小波相关法.信号处理, 1999, 15(1), pp. 81-84.
    [283] Chan Y.T., Plews J.W., Ho K.C. Symbol rate estimation by the wavelet transform. IEEE International Symposium on Circuits and Systems, 1997, pp. 177-180.
    [284] Chan Y.T., Plews J.W., Ho K.C. Modulation identification of digital signals by the wavelet transform. IEE Proc.-Radar, Sonar Navig., 2000, 147(4), pp. 169-176.
    [285] 王立乾, 赵国庆, 郑文秀. 基于现代谱估计的 PSK 信号频率估计方法. 现代电子技术, 2003, 166(23), pp. 44-47.
    [286] 金艳, 姬红兵. 基于循环自相关的PSK信号估计的噪声影响分析. 电子与信息学报, 已录用, 待发表.
    [287] Kay S., Salisbury S. Improved active sonar detection using autoregressive prewhiteners. Journal of the Acoustic Society of America, 1990, 87(4), pp. 603- 1611.
    [288] 梁亦慧, 陈鹏, 侯朝焕等. 基于水下动目标 LFM 回波检测的累积归一化算法. 电声技术, 2006, 8, pp. 4-7.
    [289] Li W.P. Wigner distribution method equivalent to dechirp method for detecting a chirp signal. IEEE Trans. on Acoust., Speech, Signal Processing, 1987, 35(8), pp. 1210-1211.
    [290] 邵智超, 吴彦鸿, 贾鑫. 基于时频分析的 LFM 信号检测与参数估计. 装备指挥技术学院学报, 2004, 15(2), pp. 71-75.
    [291] Barbarossa S., Scaglione A., Giannakis G.B. Product high-order ambiguity function for rnulticomponent polynomial-phase signal modeling. IEEE Trans. Signal Processing, 1998, 46(3), pp. 691-708.
    [292] 陈浩, 张晔, 王立国. 基于 CWT 的线性调频信号参数检测方法. 哈尔滨工业大学学报. 2004, 36(5), pp. 674-676.
    [293] Morelande M.R., Zoubir A.M. Detection of phase modulated signals in additive noise. IEEE Signal Processing, 2001, 8(7), pp. 199-202.
    [294] Morelande M.R., Zoubir A.M. Detection of a random amplitude modulation in polynomial phase signals. Conference Record of the Thirty-Third Asilomar on Signals, Systems, and Computers, 1999, 1, 700-704.
    [295] 赵宏钟. 毫米波多普勒制导雷达信号处理方法研究. 博士学位论文, 长沙: 国防科学技术大学, 2003.
    [296] 章潜五. 随机信号分析. 西安: 西安电子科技大学出版社, 1985.
    [297] 赵宏钟, 付强. 基于循环平稳的复调频信号检测性能研究. 电子学报, 2004, 32(6), pp. 942-945.
    [298] Kumaresan R., Verma S. On estimating the parameters of chirp signals using rank reduction techniques. Proc. 21st Asilomar Conf., Pacific Grove, CA, 1987, pp. 555-558.
    [299] Djuric P.M., Kay S.M. Parameter estimation of chirp signals. IEEE Trans. Acoust., Speech, Signal Processing, 1990, 38(12), pp. 2118-2126.
    [300] Peleg S., Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Trans. Aerosp. Electron. Syst., 1991, 27(4), pp. 607-616.
    [301] Peleg S., Porat B. Estimation and classification of polynomial phase signals. IEEE Trans. Inform. Theory, 1991, 37(2), pp. 422-430.
    [302] Peleg S., Friedlander B. The discrete polynomial-phase transform. IEEE Trans. Signal Processing, 1995, 43(8), pp. 1901-1914.
    [303] Ikram M.Z., Abed-Meraim K., Hua Y. Estimating the parameters of chirp signals: an iterative approach. IEEE Trans. Signal Processing, 1998, 46(12), pp. 3436-3441.
    [304] Swami A. Multiplicative noise models: parameter estimation using cumulants. Signal Processing, 1994, 36(3), pp. 355-373.
    [305] Zhou G., Giannakis G.B. On estimating random amplitude modulated harmonics using higher-order spectra. IEEE J. Oceanic Eng., 1994, 19(4), pp. 529-539.
    [306] Besson O., Stoica P. Sinusoidal signals with random amplitude: least-squares estimators and their statistical analysis. IEEE Trans. Signal Processing, 1995, 43(11), pp. 2733-2744.
    [307] Besson O., Stoica P. Two subspace-based methods for frequency estimation of sinusoidal signals with random amplitude. Proc. Inst. Elect. Eng., Radar, Sonar, Navigation, 1997, 144(4), pp. 169-176.
    [308] Besson O., Stoica P. Nonlinear least-squares approach to frequency estimationand detection for sinusoidal signals with arbitrary envelope. Digital Signal Processing, Rev. J., 1999, 9(1), pp. 45-56.
    [309] Ghogho M., Swami A., Nandi A. Non-linear least squares estimation for harmonics in multiplicative and additive noise. Proc. 9th IEEE SSAP Workshop Portland, OR, 1998, pp. 407-410.
    [310] Zhou G., Giannakis G.B., Swami A. On polynomial phase signals with time-varying amplitudes. IEEE Trans. Signal Processing, 1996, 44(3), pp. 848-861.
    [311] Besson O, Ghogho M, Swami A. Parameter estimation for random amplitude chirp signals. IEEE Trans. Signal Processing, 1999, 47(12), pp. 3208-3219.
    [312] Peleg S., Porat B. LFM signal parameter estimation from discrete transform observations. IEEE Trans. Aerosp. Electron. Syst., 1991, 27(4), 607-616.
    [313] Francos J.M., Friedlander B. Bounds for estimation of multicomponent signals with random amplitude and deterministic phase. IEEE Trans. Signal Processing, 1995, 43(5), pp. 1161-1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700