有关OFDM系统的信道估计和干扰消除技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于OFDM系统具有较高的频带利用率和良好的抗多径衰落性能,可以很好的解决频率选择性信道上的高速数据通信,因而广泛应用于宽带无线通信领域。
     符号时间的增加,使得OFDM系统具有良好的抗多径性能,但同时也使OFDM系统对于无线移动信道的时变性更加敏感。特别是,多普勒扩展会破坏子载波间的正交性,造成子载波间的功率泄漏,从而产生子载波间干扰(ICI), ICI在严重影响整个系统性能的同时,也给信道估计带来了困难。
     本文的研究工作主要是围绕时变衰落信道上OFDM系统的信道估计和干扰消除技术展开的,在借鉴前人研究成果的基础上,提出一些新的思路和一些新的算法,并在滤波器组理论框架下对OFDM系统进行了分析。主要的研究成果如下:
     (1)提出两种适用于近似线性信道(即信道在一个OFDM符号时间内近似线性变化)的OFDM信道和ICI系数估计算法。一种是频域估计方法,另一种是时域估计方法。相比较而言,时域方法需要估计的参数比频域方法的要少,仿真结果表明,当多普勒频移增加时,时域方法具有更好的鲁棒性。
     (2)对ICI进行了比较详细的分析,推导了Jakes信道模型下ICI功率的上下界,并通过仿真分析了不同信道条件下,ICI的功率、分布特性及对OFDM系统性能的影响。
     (3)在ICI分析的基础上,对时变信道上的MMSE准则进行了修正,基于修正MMSE准则提出一种并行迭代均衡算法消除ICI。仿真结果表明该算法的性能较普通的PIC算法有明显提高,但收敛速度较慢。
     (4)提出一种基于LMMSE准则的ICI直接消除算法,该算法对慢速和快速时变信道都适用。文中推导了在时变信道下解的一般形式,以及在Jakes谱瑞利衰落信道上的结果。仿真结果表明这种方法对信道的变化速度有较好的鲁棒性,不足之处是当信道失配时,性能会有比较明显的降低。
     (5)提出一种基于非最大抽取FIR滤波器组预编码器的盲信道估计和均衡的方法,给出了均衡器的最优解及输出信噪比公式,该方法的最大优点是不受信道零点位置的限制。
     (6)在多率滤波器组的理论框架下对OFDM系统进行分析,给出OFDM系统在单用户和多用户情况下,基于滤波器组传送多路复用器结构的统一模型。
OFDM system is widely applied in wireless broadband communications as it has high frequency efficiency and good performance over frequency-selective channels.
     The increasing of symbol duration makes OFDM more robust against multipath transmission, whereas, it makes OFDM more sensitive to the time varying of wireless mobile channels. Doppler frequency expansion due to the channel variation destroys the orthogonality among different subcarriers, causes power leakage and introduces intercarrier interference (ICI). The ICI degrades the performance of OFDM systems and makes channel estimation more challenging as well.
     The objective of this thesis is to propose new solutions and algorithms related on OFDM channel estimation and interference cancellation techniques over time-varying channels based on the literatures, and analyze OFDM system based on the framework of filterbank theory.
     The contributions of this thesis are as follows:
     (1) Propose two algorithms for channel and ICI coefficients estimation in OFDM system over approximately linear channel (channel characteristics in time-domain vary in an approximately linear way during one OFDM symbol time), one is in frequency-domain, the other is in time-domain. The parameters need to estimate in time-domain method are less than those in frequency-domain method. The simulation results show that the time-domain method is more robust when Doppler frequency is high.
     (2) Study the ICI in detail. Derive the upper and lower bounds of ICI power on Jakes channel model, analyze the effects of the ICI power distribution on the performance of OFDM system under different channel conditions with MATLAB simulations.
     (3) With the ICI analysis, Modify the MMSE criterion over time-varying channel and propose a novel parallel iterative equalization method to mitigate the ICI. Simulation results demonstrate that the proposed method outperforms the traditional parallel iterative cancellation method in BER performance, but has relatively slower convergence speed.
     (4) Propose a direct ICI mitigation solution based on the LMMSE criterion which is both applicable over the channels varying in slow speed and in high speed. We derive the general formulation on time-varying channel, and the special case on Jakes channel as well. Simulation results illustrate that this solution has robustness against the variation speed. But if there is a mismatch of channel model, the performance will degrade.
     (5) Propose a blind and equalization method based on a nonmaximally decimated filterbank precoder and give the expressions of the optimal equalization solution and the SNR on the output end of the channel. The great strength of this method is that it can estimate unknown FIR channels without limitations of the location of zeros.
     (6) Analyze the OFDM system under the framework of filterbank theory. Present a general system model for OFDM in both single user and multiuser scenarios based on the filterbank-constructed transmultipexer structures.
引文
[1]M. L. Doelz, E. T. Heald and D. L. Martin, Binary data transmission techniques for linear systems. Proc. IRE, May 1957, vol.45, no.5, pp.656-661.
    [2]R. W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Technical Journal, Dec.1966, vol.45, no.10, pp. 1775-1796.
    [3]B. R. Saltzberg, Performance of an efficient parallel data transmission system. IEEE Transactions on Communication Technology, Aug.1967, vol.15, no.6, pp.805-811.
    [4]R. W. Chang and R. A. Gibbey, A theoretical study of performance of an orthogonal multiplexing data transmission scheme. IEEE Transactions on Com-munication Technology, Aug.1969,vol.16, no.4, pp.529-540.
    [5]B. Hirosaki, An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Transactions on Communicatons, July 1981, vol.29, no.7, pp.982-989.
    [6]L. J. Cimini, Jr., Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communica-tions, July 1985, vol.33, no.7, pp.665-675.
    [7]ANSI/IEEE Std.802.11-1999, Part 11:Wireless LAN Medium Access Control (MAC) and Phusical Layer (PHY) specifications.
    [8]ANSI/IEEE Std.802.11 a-2000, Part 11:Wireless LAN Medium Access Control (MAC) and Phusical Layer (PHY) specifications, Amendment 1; High-speed Physical Layer (PHY) in the 5GHz band.
    [9]T1.413 Issue 2. ANSI T1E1.4/98-007R4, June,12,1998.
    [10]L. J. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. Jul.1985, vol.33, no.7, pp.665-675.
    [11]ETSI, Radio broadcasting systems:digital audio broadcasting to mobile, portable and fixed receivers, European Telecommunication Standard, ETS 300-401, Feb.1995.
    [12]Tuttlebee, W. H. W, Consumer digital radio:from concept to reality. Electronics and Communication Engineering Journal, Dec.1998, vol.10, no.6, pp.263-276.
    [13]ETSI, Digital video broadcasting:framing structure, channel coding and modulation for digital terrestrial television. European Telecommunication Standard, Aug.1997, EN 300-744.
    [14]Reimers, DVB-T:the COFDM-based system for terrestrial television, Electronics and Communication Engineering Journal, Feb.1997, vol.9, no.1, pp.28-32.
    [15]H. Sari, G. Karam and I. Jeanclaude, Transmission techniques for digital terrestrial TV broadcasting. IEEE Communications Magazine, Feb.1995, vol. 33, no.2,pp.100-109.
    [16]ETSI, Broadband Radio Networks (BRAN):HIPERLAN type 2 technical specification:Physical (PHY) layer. Aug.1999,.
    [17]R. V. Nee, G Awater, M. Morikura, etc, New high-rate wireless LAN standards. IEEE Communications Magazine, Dec.1999, vol.37, no.12, pp.82-88.
    [18]Y. Li and L. J. Cimini, Bounds on the interchannel interference of OFDM in time-varying impairments. IEEE Trans. Communications, vol.49, no.3, Mar. 2001, pp.401-404.
    [19]Evans B G, Baughan K. Visions of 4G Electronics and Communication Engineering Journal,2000 (12):293-303.
    [20]S. Hara, R. Prasad, Overview of multicarrier CDMA. IEEE Communications Magazine, Dec.1997, vol.35, no.12, pp.126-133.
    [21]Jun Cai, Jon W. Mark, and Xuemin Shen, Fast Fading Channel Estimation in Multicarrier-CDMA Systems. GLOBECOM 2001,25-29, Nov.2001, vol.5, pp.3135-3139.
    [22]Chirag S. Patel, Gordon L. Stuber and Thomas G. Pratt, Analysis of OFDM/MC-CDMA under imperfect channel estimation and jamming. Proceedings of IEEE WCNC 2004, Atlanta, Georgia,21-25, March 2004, pp. 954-958.
    [1]Justin Chuang, Nelson Sollenberger, Beyond 3G:wideband wireless data access based on OFDM and dynamic packet assignment. IEEE Communications Magazine, Jul.2000, vol.38, Issue 7, pp.78-87.
    [2]Evans B G, Baughan K, Visions of 4G Electronics and Communication Engineering Journal, Dec.2000, no.12, pp.293-303.
    [3]A. F. Molisch, Wideband wireless digital communications. Pearson Education Inc.,2001.
    [4]T. S. Rappaport, Wireless communications, principles and practice. Prentise-Hall Inc.,1996.
    [5]佟学俭,罗涛,OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003.
    [6]J. Loenard, J. R. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun., vol. 33, no.7, Jul.1985, pp.665-675.
    [7]Richard van Nee, Ramjee Qrasad, OFDM wireless multimedia communications. Norwood, MA:Artech House,1999.
    [8]Prokis J G, Digital Communications, McGraw_Hill,2001.
    [9]J-J. van de Beek, Ove Edvors and M. Sandell, etc, On channel estimation in OFDM systems. Proc. IEEE 45th Vehicular Technology Conf, Chicago, IL, USA, vol.2,25-28, Jul.1995, pp.815-819.
    [10]R.H. Clarke, A statistical theory of mobile-radio reception. Bell Systems Technical Journal, vol.47,1968, pp.957-1000.
    [11]Pahlavan, Kaveh, Wireless information networks, John Wiley & Sons, Inc.,1995.
    [12]Zhao Y., Huang A., A novel channel estimation methods for OFDM mobile communication systems based on pilot signals and transform domain processing. Proc. IEEE 47th Vehicular Technology Conference, Phoenix, USA, 4-7, May,1997, vol.3, pp.2089-2093.
    [13]A. R. S. Vahai and B. R. Saltzberg, Multi-carrier digital communications: theory and applications of OFDM, New York:Kluwer Academic/Plenum,1999.
    [14]Edfors Ove, Sandell Magnus and Jan-Jaap van de Beek, etc, OFDM channel estimation by singular value decomposition, Proc. IEEE 46th Vehicular Technology Conf, Atlanta, GA, USA, vol.2,28. Apr.-1 May,1996, pp. 923-927.
    [15]张贤达,保铮,通信信号处理,北京:国防工业出版社,2000.
    [16]P. A. Bello, Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst., vol.11, Dec.1963, pp.360-393.
    [17]Y. Li and L. J. Cimini. Bounds on the interchannel interference of OFDM in time-varying impairments. IEEE Trans. Commun., vol.49, no.3, Mar.2001, pp. 401-404.
    [18]J. K. Cavers, An analysis of the pilot-symbol assisted modulation for Rayleigh-fading channels, IEEE Trans. Vehicle Technology, vol.40, no.4, Nov.1991, pp. 686-693.
    [19]IEEE 802.11 Working Group, ANSI/IEEE Standard 802.11, part 11:Wireless LAN medium access control (MAC) and physical (PHY) Layer specifications. IEEE 802.11,1999.
    [20]IEEE 802.16 Working Group, ANSI/IEEE Standard 802.16, part 16:Air interface for fixed broadband wireless access systems. IEEE 802.16,2004.
    [21]Said F. and Aghvami H., Linear two dimensional pilot assisted channel estimation for OFDM systems, Proc. IEEE Conf. on Telecommun.,29 Mar.-1 Apr.,1998, pp.32-36.
    [22]王文博,郑侃,宽带无线通信OFDM技术,北京:人民邮电出版社,2003.
    [1]M. Russell and G. L. Stuber, Interchannel interference analysis of OFDM in a mobile environment, Proc. IEEE 45th Vehicular Technology Conf., Chicago, IL, USA, vol.2,25-28 Jul.1995, pp.820-824.
    [2]Edfors Ove, Sandell Magnus and Jan-Jaap van de Beek, etc, OFDM channel estimation by singular value decomposition, Proc, IEEE 46th Vehicular Technology Conf., Atlanta, GA, USA, vol.2,28. Apr.-1 May,1996, pp. 923-927.
    [3]Jones V. K. and Raileigh G., Channel estimation for wireless OFDM systems, Proc. IEEE GLOBECOM'98, vol.2,8-12 Nov.,1998, pp.980-985.
    [4]J-J. van de Beek, Ove Edvors and M. Sandell, etc, On channel estimation in OFDM systems. Proc. IEEE 45th Vehicular Technology Conf., Chicago, IL, USA,25-28, vol.2, Jul.1995, pp.815-819.
    [5]Armstrong J, Grant P M and Povey G, Polynomial cancellation coding of OFDM to reduce intercarrier interference due to Doppler spread, Proc.of IEEE GLOBECOM, vol.5,8-12 Nov,1998, pp.2771-2776.
    [6]Negi R and Cioffi J., Pilot tone selection for channel estimation in a mobile OFDM system, IEEE Trans. Consumer Electronics,1998, vol.44, no.8, pp. 1122-1128.
    [7]Hsieh M H and Wei C H., Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels, IEEE Trans. Consumer Electronics,1998, vol.44, no.1, pp.217-225.
    [8]J. K. Cavers, An analysis of the pilot-symbol assisted modulation for Rayleigh-fading channels, IEEE Trans. Vehicle Technology, vol.40, no.4, Nov.1991, pp. 686-693.
    [9]Zhao Y., Huang A., A novel channel estimation methods for OFDM mobile communication systems based on pilot signals and transform domain processing. Proc. IEEE 47th Vehicular Technology Conference, Phoenix, USA, 4-7, May,1997, vol.3, pp.2089-2093.
    [10]Li Y(Geoffrey), Cimini L J. and Sollenberger N.R., Robust channel estimation for OFDM systems with rapid dispersive fading, IEEE Trans. Commun.,1998, vol.46, no.7,pp.902-915.
    [11]W. G Jeon, K. H. Chang and Y. S. Cho, An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels, IEEE Trans. Commun,. Vol.47, no.1, Jan.1999, pp.27-32.
    [12]Lindbom L, Sternad M and Ahlen A., Tracking of the time-varying mobile radio channels-Part I:The Wiener LMS algorithm, IEEE Trans. Commun.,2001, vol. 49, no.12, pp.2207-2217.
    [13]Yang B, Letaief K B and Cheng R S, etc., Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling. IEEE Trans.Commun., vol.49, no.3,2001, pp.467-478.
    [14]Yang B, Cao Z and Letaief K B., Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems, IEEE Trans. Commun., vol.49, no.12,2001, pp.1977-1987.
    [15]Adireddy S, Tong L and Viswanathan H, Optimal placement of training for frequency-selective block-fading channels, IEEE Trans. Information Theory, vol.48, no.8,2002, pp.2338-2353.
    [16]Coleri S, Ergen M and Bahai A, Channel estimation techniques based on pilot arrangement in OFDM systems, IEEE Trans. Broadcasting, vol.48, no.9,2002, pp.223-229.
    [17]Ohno S, Giannakis G B., Optimal Training and Redundant Precoding for Block Transmissions with Application to Wireless OFDM, IEEE Transactions on Commun., vol.50, no.12,2002, pp.2113-2123.
    [18]Gorokhov A and Linnartz J-P., Robust OFDM receiver for dispersive time varying channels:equalization and channel acquisition, Proc. IEEE ICC, vol.1, 28 Apr.-2 May,2002, pp.470-474.
    [19]Linnartz J P and Gorokhov A, New equalization approach for OFDM over dispersive and rapidly time varying channel, Proc. IEEE Int. Symposium Personal Indoor Mobile Radio Commun., vol.2,18-21 Sept.,2000, pp.1375-1379.
    [20]Mostofi Y, Cox D C and Bahai A, ICI mitigation for mobile OFDM receivers, Proc. IEEE International Conf. on Commun.(ICC), Anchorage, Alaska, USA, vol.5,11-15 May 2003, pp.3351-3355.
    [22]Cai X and Giannakis G B., Low-complexity ICI suppression for OFDM over time-and frequency-selective Rayleigh fading channels, Proc. of Conf. on Signals, Systems and Computers, vol.2,3-6 Nov.2002, pp.1822-1826.
    [23]Choi Y.-S., Voltz P. J. and Cassara F. A., On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels, IEEE Trans. Commun., vol.49, no.8,2001, pp.1375-1387.
    [24]Yu H., Kim M.-S. and Lee S.-K., Channel estimation and equalization for high speed mobile OFDM systems, Conf. Record of 37th Asilomar cof. on Signals, Systems and Computers, vol.1,9-12 Nov.2003, pp.693-697.
    [25]Ma Shaodan., Woong Ngai. and Ng T. S., Time domain equalization for OFDM systems, Proc. ISCAS,2006, pp.3946-3949.
    [26]Cui T. and Tellambura C., Joint frequency offset and channel estimation for OFDM systems using pilot symbols and virtual carriers, IEEE Trans. On Wireless Coomun.,2007,6(4):1193-1202.
    [27]Y.-H. Yeh and S.-G Chen, Reduction of Doppler-induced ICI by interference prediction, Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Commun., vol.1,5-8 Sept.2004, pp.653-657.
    [28]M. Munster and L. Hanzo, Second-order channel parameter estimation assisted cancellation of channel variation-induced inter-subcarrier interference in OFDM systems, Proc. International Conf. on EUROCON'21, Trends in Commun., vol.1,4-7 Jul.2001, pp.1-5.
    [29]Y.-S. Choi, P. J. Voltz and F. A. Cassara, On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels, IEEE Trans. Commun., vol.49, no.8, Aug.2001, pp.1375-1387.
    [30]X. Qian and L. Zhang, Interchannel interference cancellation in wireless OFDM sustems via Gauss-Seidel method, Proc. International Conf. Communication Technology, vol.2,9-11 Apr.2003, pp.1051-1055.
    [31]G Li, H. Yang and L. Cai, etc, A low-complexity equalization technique for OFDM system in time-variant multipath channels, Proc. IEEE Vehicular Technology Conf.-fall, vol.4,6-9 Oct.2003, pp.2466-2470.
    [32]X. Huang and H.-C. Wu, Intercarrier interference analysis for wireless OFDM in mobile channels, Proc. IEEE Wireless Commun. And Networking Conf., vol.4,3-6 Apr.2006, pp.1848-1853.
    [33]X. Cai and G B. Giannakis, Bounding performance and suppressing intercarrier interference in wireless mobile OFDM, IEEE Trans. Commun., vol.51, no.12, Dec.2003, pp.2047-2056.
    [34]Haykin S., Adaptive Filtering Theory, Forth Edition, Prentice Hall, Inc., Englewood Cliffs, N.J.,1995.11, pp.22-27.
    [35]Steendam H and Moeneclaey M., Analysis and optimization of the performance of OFDM on frequency-selective time-selective channels, IEEE Trans. Commun., vol.47, no.12,1999,pp.1811-1819.
    [36]Kim Y H., Song I, Kim H G and Chang T., Performance analysis of a coded OFDM system in time-varying multipath Rayleigh fading channels, IEEE Trans. on Vehicular Technology, vol.48, no.5,1999, pp.1610-1615.
    [37]Said F. and Aghvami H., Linear two dimensional pilot assisted channel estimation for OFDM systems, Proc. IEEE Conf. on Telecommun.,29 Mar.-1 Apr.1998, pp.32-36.
    [38]Molisch F.A.,许希斌,赵明等译,宽带无线数字通信,北京:电子工业出版社,2002,pp.30.
    [1]W. G Jeon, K. H. Chang and Y. S. Cho, An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels, IEEE Trans. Commun,. Vol.47, no.1, Jan.1999, pp.27-32.
    [2]M. Toeltsch, A. F. Molisch, Equalization of OFDM-systems by interference cancellation techniques, Proc.2001 IEEE International Conference on Communications,11-14 June 2001, vol.6, pp.1950-1954.
    [3]Y. Mostofi, D. C. Cox and A. Bahai, ICI mitigation for mobile OFDM receivers. Proc.2003 IEEE International Conference on Communications,11-15 May 2003, vol.5, pp.3351-3355.
    [4]A. Stamoulis, S. N. Diggavi and N. Al-Dhahir, Estimation of fast fading channels in OFDM. Proc.2002 IEEE Wireless Communications and Networking Conf.,17-21 Mar.2002, vol.1, pp.465-470.
    [5]M. Guillaud and D. T.M. Slock, Channel modeling and associated inter-carrier interference equalization for OFDM systems with high doppler spread. Proc. 2003 IEEE International Conference on Acoustics, Speech and Signal Processing, vol.4,6-10 Apr.2003, pp. IV-237-240.
    [6]M. Russell and G. L. Stuber, Interchannel interference analysis of OFDM in a mobile environment, Proc. IEEE Vehicular Technology Conf, vol.2,25-28 Jul. 1995, pp.820-824.
    [7]X. Huang and H.-C. Wu, Intercarrier interference analysis for wireless OFDM in mobile channels, Proc. IEEE Wireless Commun. And Networking Conf., vol.4,3-6 Apr.2006, pp.1848-1853.
    [8]Gorokhov A and Linnartz J-P., Robust OFDM receiver for dispersive time varying channels:equalization and channel acquisition, Proc. IEEE ICC, vol.1, 28 Apr.-2 May 2002, pp.470-474.
    [9]X. Cai and G. B. Giannakis, Bounding performance and suppressing intercarrier interference in wireless mobile OFDM, IEEE Trans. Commun., vol.51, no.12, Dec.2003, pp.2047-2056.
    [10]Y. Li and L. J. Cimini, Bounds on the interchannel interference of OFDM in time-varying impairments. IEEE Trans. Communications, vol.49, no.3, Mar. 2001, pp.401-404.
    [11]J. K. Cavers, An analysis of the pilot-symbol assisted modulation for Rayleigh fading channels. IEEE Trans. Vehicle Technology, vol.40, no.4, Nov.1991, pp. 686-693.
    [12]J. Li and M. Kavehrad, Effects of time selective multipath fading on OFDM systems for broadband mobile applications. IEEE. Communications Letters, vol. 3, no.12, Dec.1999, pp.332-334.
    [13]Y. H. Kim, I. Song and H. G. Kim, etc, Performance analysis of a coded OFDM system in time-varying multipath Rayleigh fading channels. IEEE Trans. Vehicle Technology, vol.48, no.5, Sep.1999, pp.1610-1615.
    [14]Zhao Y, Huang A., A novel channel estimation methods for OFDM mobile communication systems based on pilot signals and transform domain processing. Proc. IEEE 47th Vehicular Technology Conference, Phoenix, USA, 4-7, May,1997, vol.3, pp.2089-2093.
    [15]D. Guo, L. K. Rasmussen, S. Sun and T. J. Lim, A matrix-algebraic approach to linear parallel interference cancellation in CDMA," IEEE Transactions on Communications, Jan.2000, vol.48, pp.152-161.
    [16]S. Verdu, Multiuser Detection, Cambridge University Press,1998.
    [17]Haykin S., Adaptive Filtering Theory, Forth Edition, Prentice Hall, Inc., Englewood Cliffs,N.J.,1995.11, pp.22-27.
    [18]Negi R and Cioffi J., Pilot tone selection for channel estimation in a mobile OFDM system, IEEE Trans. Consumer Electronics, Aug.1998, vol.44, no.8, pp.1122-1128.
    [19]张贤达,保铮,通信信号处理,北京:国防工业出版社,2000,pp.22-37.
    [1]Qureshi S.U. H.. Adaptive Equalization. Proc. IEEE, vol.73, Sept.1985. pp.1349-1387.
    [2]W. A. Gardner, A new method of channel identification, Trans. on Communications,1991, vol. COM-39, pp.813-817.
    [3]L. Tong, G Xu, T. Kailath, A new approach to blind identification and equalization of multipath channels. Proc. of 25th Asilomar Conf. Signals, Systems and Computers, Nov.1991, pp.856-860.
    [4]L. Tong, Blind channel identification and equalization using spectral correlation measurements, Part Ⅰ:frequency-domain analysis, in Cyclostationarity in communications and signal processing, IEEE Press, New York,1994, pp. 417-436.
    [S]L. Toag, Blind channel identification and equalization using spectral correlation measurements, Part Ⅱ:time-domain analysis, in Cyclostationarity in communications and signal processing, IEEE Press, New York,1994, pp. 437-454.
    [6]Treichler J. R., Larimore M.G., Harp J. C.. Practical blind demodulators for high-order QAM signals. Proc. IEEE, vol.86, Oct.1998, pp.1907-1926.
    [7]Godard D. N.. Self-recovering equalization and carrier tracking in two-dimensional communication systems. IEEE Trans.Commun.vol.COM-28, Nov. 1980, pp.1867-1875.
    [8]Sato Y., A method of self-recovering equalization for multilevel amplitude-modulation systems. IEEE Trans. Commun., COM-23(6), Jun.1975, pp. 679-682.
    [9]Endres T. J., Hulyalkar S. N., et al., Low-complexity and low-latency implementation of Godard/CMA update. IEEE Trans. on Commun., Feb.2001, vol.49, pp.219-225.
    [10]Treichler J. R., Agee B. G., A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust. Speech Signal Process, ASSP-31(2), Apr. 1983, pp.459-472.
    [11]Treichler J. R., Larimore M. G., New processing techniques based on the constant modulus adaptive algorithm. IEEE Trans. Acoust. Speech Signal Process, ASSP-33(2), Apr.1985, pp.420-431.
    [12]Picchi G., Prati G., Blind equalization and carrier recovery using a stop-and-go decision-directed algorithm. IEEE Trans. Commun., COM-35, Sep.1987, pp. 877-887.
    [13]Weerackody V., Kassam S. A., laker K. R., Blind equalization using lattice filters. Proceedings of the International Conference on Communication, ICC'98, 1988.
    [14]Bellini S., Bussgang techniques for blind equalization. Proceedings of Globecom,1986,pp.1634-1640.
    [15]White L. B., Blind equalization of constant modulus signals using an adaptive observer approach. IEEE Trans. Commun.,44(2), Feb.1996, pp.134-136.
    [16]Tanrikulu O., Constantinides A. G., Chambers J. A, New normalized constant modulus algorithm with relaxation. IEEE Signal Process. Lett.,4(9), Sep.1997, pp.256-258.
    [17]Papadial C. B., Slock, D. T. M., Normalized sliding window constant modulus and decision-directed algorithms:a link between blind equalization and classical adaptive filtering. IEEE Trans. Signal Process.,45(1), Jan.1997, pp.231-235.
    [18]Oh K. N., Chin Y. O., Modified constant modulus algorithm:blind equalization and carrier phase recovery algorithm. Proceedings of ICC'95, Seattle, WA, Jun. 1995,pp.498-502.
    [19]Oh K. N., Chin Y. O., New blind equalization techniques based on constant modulus algorithm. Presented at Globecom'95,1995.
    [20]Hatzinakos D., Nikias C. L., Blind equalization using a trispectrum-based algorithm. IEEE Trans. Commun., vol.39, May 1991, pp.669-682.
    [21]Tong L., Xu G., Kailath T., Blind identification and equalization based on second-order statistics:A time domain approach. IEEE Trans. Inform. Theory, vol.40, Mar.1994, pp.340-349.
    [22]Ghosh M.,Weber C.L..Blind deconvolution using a maximum likelihood channel estimator. Computers and Communications, Conference Proceedings, Mar.1991, pp.448-452.
    [23]赵成林,刘泽民,周正.一种应用三阶倒谱的盲均衡新算法[J].北京邮电大学学报,19(2),1996,pp.16-21.
    [24]Wang X., H. Vincent Poor. Blind multiuser detection:A subspace approach. IEEE Transactions on Signal Processing,44(2), Mar.1998, pp.677-690.
    [25]Liu H., Xu G. A subspace method for signature waveform estimation in synchronous CDMA systems. In Proc.29th Asilomar conf. Signal Syst. Comput., 1996.
    [26]Torlak M., Xu G..Blind multiuser channel estimation in asynchronous CDMA systems. IEEE Transactions on Signal Processing,45(1),Jan.1997, pp.137-147.
    [27]Haykin S.. Adaptive filter theory.3rd ed. Beijing, Publishing house of electronics industry,1998.
    [28]Cadzow J.A.. Blind deconvolution via cumulant extrema. IEEE Signal Processing Mag., May 1996, pp.24-42.
    [29]Papadias C. B., Paulraj A. J.. A constant modulus algorithm for multiuser signal separation in presence of delay spreading using antenna arrays. IEEE Signal Processing Letters, Vol.4, No.6, Jun.1997, pp.179-181.
    [30]Mendel J.. Tutorial on higher-order statistics (spectra) in signal processing and system theory:theoretical results and some applications. Proc.IEEE, Vol.79, March 1991, pp.278-305.
    [31]Goursat M., Benveniste A., Ruget G. Robust identification of nonminimum phase system:Blind adjustment of a linear equalizer in data communications. IEEE Trans. Automat. Contr., Vol. AC-25, Jun.1980, pp.385-399.
    [32]Brillinger D. R.. Time series data analysis and theory. Holt, Tinehart and Winston Inc., New York,1975.
    [33]Shen J., Ding Z.. Direct blind MMSE channel equalization based on second order statistics. IEEE Transactions on Signal Processing,48(4), Apr.2000, pp.1015-1022.
    [34]Gesbert D.,Sorelius J.,Stoica P.,et al..Blind multiuser MMSE detector for CDMA signals in ISI channels. IEEE Com. Letters,3(8), Aug.1999, pp. 233-235.
    [35]Binning Chen, Athina P. Petropulu, Frequency domain blind MIMO system identification based on second-and higher order statistics. IEEE Trans. on Signal Processing, vol.49, no.8, Aug.2001, pp.1677-1688.
    [36]Xu Daofeng, Cong Jin, Yang Luxi, et al.. Blind identification and blind equalization of MIMO channels based on QR factorizaion. Proceedings of IEEE Int. Workshop VLSI Design & Video Tech., Suzhou, China,28-30, May 2004, pp.234-237.
    [37]W. A. Gardner. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magzine, vol.8, Apr.1991, pp.14-36.
    [38]Zhi Ding, Y. Li. On channel identification based on second-order cyclic spectra. IEEE Trans. Signal Processing, May 1994, vol.42, No.5, pp.1260-1264.
    [39]D. Slock. Blind fractionally-spaced equalization, perfect reconstruction filter banks and multichannel linear prediction. Proc. ICASSP, Adelaide, Australia, May 1994, pp. Ⅳ 585-588.
    [40]J. K. Tugnait. On linera predictors for MIMO channels and related blind identification and equalization. IEEE Signal Processing Letters, Nov.1998, vol. SPL-5, pp.289-291.
    [41]Giannakis G. B., Filterbanks for blind channel identification and equalization. IEEE Signal Processing letters,1997,4(6):184-187.
    [42]X. G Xia, New precoding for intersymbol interference cancellation using nonmaximally decimated multirate filter banks with ideal FIR equalizers. IEEE Trans, on Signal Processing,1997,45(10):2431-2441.
    [43]C. Tepedelenlioglu and G. B. Giannakis, Transmitter redundancy for blind estimation and equalization of time-and frequency-selective channels. IEEE Trans. Signal Processing,2000,48(7):2029-2043.
    [44]S. Anna, Giannakis G B. and Barbarossa Sergio. Redundant filterbank precoders and equlizers, part I:unification and optimal designs. IEEE Trans. Signal Processing,1999,47(7):1988-2006.
    [45]S. Anna., Giannakis G. B. and Barbarossa Sergio, Redundant filterbank precoders and equlizers, part Ⅱ:blind channel estimation, synchronization, and direct equalization, IEEE Trans. Signal Processing,1999,47(7): 2007-2022.
    [46]P. P. Vaidyanathan and Bojan Vrcelj, Transmultiplexers as precoders in modern digital communication:a tutorial review. Proceedings ISCAS, Vancouver, BC, May 2004,5:V-405-V-412.
    [47]Lampe M., Rohling H.. Reducing out-of-band emissions due to nonlinearities in OFDM systems. IEEE Vehicular Technology Conference, vol.3, May 1999, pp. 2255-2259.
    [48]W. Rudin. Real and complex analysis.3rd ed., McGraw-Hill, New York,1987.
    [49]E. Zervas, J. Proakis, V. Vyuboglu. Effect of constellation shaping on blind equalization. In Simon Haykin, editor, Adaptive signal processing, Proc. SPIE, 1991, pp.178-187.
    [50]S. Haykins. Adaptive filter theory.3rd ed., Prentice Hall Inc., New York,1996.
    [1]P. P. Vaidyanathan, Filter banks in digital communications. IEEE Circuits and Systems Magazine,2001,1(2):4-25.
    [2]R. E. Crochiere, L. R. Rabiner, Multirate digital signal processing. Englewood Cliffs, NJ:Prentice Hall,1983.
    [3]A. N. Akansu, P. Duhamel, X. Lin, M. Courville, Orthogonal transmultiplexers in communication:a review. IEEE Trans. on Signal Processing,1998,46(4): 979-995.
    [4]X. G. Xia, New precoding for intersymbol interference cancellation using nonmaximally decimated multirate filter banks with ideal FIR equalizers. IEEE Trans. on Signal Processing,1997,45(10):2431-2441.
    [5]Giannakis G. B., Filterbanks for blind channel identification and equalization. IEEE Signal Processing letters,1997,4(6):184-187.
    [6]B. Vrcelj, P. P. Vaidyanathan, Theory of MIMO biorthogonal partners and their application in channel equalization. Proc. IEEE ICC, vol.2,11-14 June 2001, pp.377-381.
    [7]M. A. Tzannes, M. C. Tzannes and J. G. Proakis, etc, DMT systems, DWMT systems, and digital filter banks. Proc. IEEE Int. Conf. on Commun., vol.1,1-5 May 1994, pp.311-315.
    [8]P. P. Vaidyanathan, Y. P. Lin, S. Akkarakaran and S. M. Phoong, Optimality of principal component filter banks for discrete multitone communication systems. Proc. IEEE Int. Symp. on Circuits and Systems(ISCAS), vol.1,28-31 May 2000, pp.128-131.
    [9]G. Cherubini, E. Eleftheriou, S. Olcer and J. M. Cioffi, Filter bank modulation techniques for very high speed digital subscriber lines. IEEE Communications Magazine,2000,38(5):98-104.
    [10]Z. Wang, Giannakis G. B., Wireless multicarrier communications, where Fourier meets Shannon. IEEE Signal Processing Magazine,2001, (5):29-48.
    [11]C. Tepedelenlioglu and G. B. Giannakis, Transmitter redundancy for blind estimation and equalization of time- and frequency-selective channels. IEEE Trans. Signal Processing,2000,48(7):2029-2043.
    [12]Giannakis G. B., Filterbanks for blind channel identification and equalization. IEEE Signal Processing letters,1997,4(6):184-187.
    [13]S. Anna, Giannakis G. B. and Barbarossa Sergio. Redundant filterbank precoders and equlizers, part Ⅰ:unification and optimal designs. IEEE Trans. Signal Processing,1999,47(7):1988-2006.
    [14]S. Anna., Giannakis G. B. and Barbarossa Sergio, Redundant filterbank precoders and equlizers, part Ⅱ:blind channel estimation, synchronization, and direct equalization, IEEE Trans. Signal Processing,1999,47(7): 2007-2022.
    [15]X. G. Xia, W. Su and H. L. Liu, Filterbank precoders for blind equalization: polynomial ambiguity resistant precoders (PARR). IEEE Trans. Circuits and Systems—Ⅰ:Fundamental Theory and Applycations,2001,48(2):193-209.
    [16]Y. Lin and S. Phoong, Minimum redundancy for ISI free FIR filterbank transceivers. IEEE Trans. Signal Processing,2002,50(4):842-853.
    [17]Y. Lin and S. Phoong, Perfect discrete multitone modulation with optimal transceivers, IEEE Trans. Signal Processing,2000,48(6):1702-1712.
    [18]P. P. Vaidyanathan and Bojan Vrcelj, Transmultiplexers as precoders in modern digital communication:a tutorial review. Proceedings ISCAS, Vancouver, BC, May 2004,5:V-405-V-412.
    [19]B. Vrcelj and P. P. Vaidyanathan, Pre-and Post-processing for optimal noise reduction in cyclic prefix based channel equalizers. IEEE, vol.1,28 Apr.-2 May 2002, pp.217-221.
    [20]N. J. Fliege, Multirate Digital Signal Processing. Chichester:John Wiley & Sons,1994.
    [21]T. Q. Nguyen, Partial spectrum reconstruction using digital filter bank. IEEE Trans. Signal Processing,1993,41(9):2778-2795.
    [22]Giannakis G B., Wang, Z., Scaglione, A., and Barbarossa,S., Amour— generalized multicarrier transceivers for blind CDMA regardless of multipath, IEEE Trans. Comm., Dec.2000, pp 2064-2076.
    [23]Bellanger M., On computational complexity in digital transmultiplexer filters. IEEE Trans. Comm., Jul.1982, vol.30, no.7, part 2, pp.1461-1465.
    [24]P. P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications:a tutorial. Proc. IEEE, Jan.1990, vol.78, no.1, pp.56-93.
    [25]B. Muquet, Z. Wang, Giannakis G B., Cyclic prefixing or zero padding for wireless multicarrier transmissions?. IEEE Trans. Communications, Dec.2002, vol.50, no.12, pp.2136-2148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700