光合细菌(Rhodobacter sphaeroides)生物制氢及其光生物反应器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界经济的发展和人类生活水平的提高得益于化石燃料(石油、天然气与煤炭)的广泛应用;然而,人类对化石燃料的过分依赖引起了诸多负面效应,能源成本持续增加,能源供应短缺,温室效应和环境污染将是未来社会所要面临的难题。氢气是一种清洁、高效的能源,被广泛视为化石燃料的替代者。光合生物制氢可以将有机废弃物的治理、太阳能的利用以及清洁能源的生产三者结合起来,是一种可再生的、环境友好的氢气生产方法。Rhodobacter sphaeroides ZX-5是近年来新发现的具有高效产氢能力的紫色非硫细菌,其光合制氢的应用前景和产业化潜力巨大。本文系统地研究了R. sphaeroides ZX-5的发酵生理代谢的基本特性,优化了光合细菌的光发酵过程,并设计了适合R.sphaeroides ZX-5光合产氢的光生物反应器。本论文的主要研究内容如下:
     本文确定了R. sphaeroides ZX-5生长和光合产氢的最适培养条件,其中最适温度,初始pH,接种量、装液量和种龄分别为30-35℃,pH 7.0,3.3%,90%和18-24h;光合产氢的最适碳源和氮源分别为30 mM苹果酸和7mM谷氨酸钠。研究发现R. sphaeroidesZX-5具有较强pH自调控能力,初始pH在6.0-10.0之间时,发酵结束时pH总能稳定在7.15±0.1。同时,分析了RCVBN培养基中三种维生素(烟酸、维生素B1、生物素)在R. sphaeroides ZX-5生长和产氢过程中的作用;其中烟酸作为NAD+/NADH的前体,直接影响光合产氢代谢过程中高能电子的传递,因此必须存在于发酵培养基中,否则无法进行光合制氢;维生素B1和生物素虽然不直接作用于氢气的生产阶段,但它们也是光合产氢所需要的,必须存在于种子培养基或发酵培养基中,二者择其一即可。
     基于对发酵液内部光强随菌体浓度及光程距离衰减规律的研究,建立了光衰减动力学模型,即I=Ioexp[-(0.4762+0.32660D660))·L];该模型较好的描述了发酵液深度(光程)、细胞浓度(OD660)和发酵液内部光强之间的关系。本文引入工程学的概念探求了光照强度、菌体生长和光合制氢三者之间的关系,创新性的首次提出了基于振荡-补光策略的新型光合制氢工艺。该工艺在保证较高的底物转化率(88.26%)的同时极大地提高了光合制氢的产氢速率,其最大产氢速率(165.9 ml H2/l·h)是目前文献报道的非固定化光合细菌产氢的最大速率;结果表明基于振荡-补光策略的新型光合制氢工艺是一种高效的、经济可行的光合生物制氢模式。另外,实验研究了不同培养模式下光照强度对光合细菌生长和产氢的影响,发现静置培养和振荡培养模式下光合制氢的最适光照强度分别为4000-5000 lux和7000-8000 lux。
     作者自主研发了2.91外循环-平板式光生物反应器,建立了基于在线ORP反馈调控的补料分批光发酵产氢系统。补料的时机取决于发酵体系中的ORP值,一旦反应体系中ORP值达到或超过-400 mV,电脑立即启动补料,避免了由人工补料引起的实验误差。经验证50g/1是最佳的苹果酸补料浓度。由于R. sphaeroides ZX-5具有pH自调控能力,在补料分批发酵过程中不需要对发酵体系的pH进行控制。整个补料分批发酵过程连续稳定运行了约160小时,期间共进行了三次补料;整个发酵过程的平均底物转化率为66.43%,其中第一次补料阶段的底物转化率最高(73.03%),远大于分批发酵过程的59.81%;同时,补料分批发酵过程中最大产氢速率高达102.33ml H2/l·h,而分批发酵的最大产氢速率仅为84.67m1 H2/l·h。因此,基于ORP反馈控制的补料分批光合制氢工艺可以同时获得高产氢速率和高氢气得率,并且该工艺的产氢能力在较长的时间范围内具有稳定性,适用于光合细菌的氢气生产。
     本文针对影响光生物反应器设计的若干因素进行了讨论。光谱中红光区域所占比例较多的光源(如白炽灯等)适用于R. sphaeroides ZX-5的光合制氢。光/暗周期实验预测了R. sphaeroides ZX-5在户外利用自然光照产氢时,可以耐受昼夜周期性的光照强度变化。在厌氧光合制氢过程中,当反应器顶部空间的总压强从1.082×105Pa减小至0.944×105 Pa时,光合制氢的底物转化率则从86.07%提高到95.56%,平均产氢速率也相应地从45.67ml H2/l·h增加到50.70ml H2/l·h;说明通过调节反应器顶部空间的气体总压强来降低反应体系中的氢分压,可以显著的提高光合制氢的氢气产量和氢气产生速率。在振荡培养模式下,120 rpm是R. sphaeroides ZX-5最适的振荡速率;另外,充分的混合对R. sphaeroides ZX-5光合制氢的促进效应仅在氢气生产阶段(即细胞生长静止期)起作用,而在细胞生长阶段采用振荡操作对光合制氢没有促进作用。
     基于对R. sphaeroides ZX-5生理代谢基本性质的了解以及对影响光生物反应器设计因素的分析,作者设计了三款不同类型的光生物反应器。从产氢性能上看,侧搅拌-平板式光生物反应器的最大产氢速率和氢气产量分别为141.65ml H2/l·h和3056 ml H2/1medium,均明显优于其他两种光生物反应器,取得了较好的放大产氢效果;说明采用侧搅拌的混合方式使得反应器内菌体和底物能够充分混合,促进了光合产氢的进行。
     作者将计算流体力学(CFD)技术应用于光合制氢系统的过程模拟,分析了光合试管中氢气从发酵液(液相)向气泡(气相)传递的相际传质过程,从微观角度阐述了振荡-补光制氢工艺对光合细菌产氢速率的促进作用。同时,运用CFD技术模拟了不同类型的光合制氢反应器内部流场的分布和特性,及其对光合细菌制氢的影响,为今后光生物反应器的设计与放大提供理论依据。
Economic growth and our lifestyle in the last few decades have been strongly dependent on fossil fuels as sources of energy. However, the excessive dependence on fossil fuels has caused severe problems to human beings due to continual rising of their cost, insecurity in their sustainability, as well as their impacts on global warming and environmental pollution. Hydrogen is a clean and efficient fuel, widely recognized as a potential energy substitute for fossil fuels. Photo-hydrogen production process can combine treatment of organic wastewater, utilization of solar energy and production of clean energy source, so it is considered the most environment-friendly hydrogen production method. Rhodobacter sphaeroides ZX-5, a recently isolated purple non-sulfur (PNS) bacterial strain, has displayed higher hydrogen-producing capabilities. In this study, the physiological and metabolic characteristics of R. sphaeroides ZX-5 were investigated systematically. Meanwhile, the process of photo-fermentation by R. sphaeroides ZX-5 with RCVBN medium was optimized, and the efficient photobioreactors for photo-hydrogen production were designed. The main contents of the paper are as follow:
     The optimum conditions for the cell growth and hydrogen production by R. sphaeroides ZX-5 in 38-ml anaerobic tubes were determined as follow:temperature 30-35℃, pH 7.0, inoculum size:3.3%, medium volume:34 ml medium/38 ml anaerobic tube and inoculum age: 18-24 h. Moreover, the optimal concentration of carbon source and nitrogen source used for hydrogen production were 30-mM DL-malic acid and 7-mM L-glutamic acid. In this study, a noteworthy pH self-adjustment phenomenon was found, that is, all final pH values remained stable at 7.15±0.1 during batch hydrogen production process, even when the initial pH values varied within the range of 6.0-10.0. The effects of vitamins (nicotinic acid, vitamin Bi and biotin) on the growth and hydrogen production of R. sphaeroides ZX-5 were investigated. The results showed that nicotinic acid, as a precursor of NAD+/NADH, plays a crucial role in effectively enhancing the phototrophic hydrogen synthesis. Lack of nicotinic acid in hydrogen production medium resulted in the failure of photo-hydrogen production. In addition, though vitamin B1 and biotin do not have direct impact on photo-hydrogen production, they are still essential and must exist in either growth medium or hydrogen production medium. Without either of them, photo-hydrogen production decreased seriously, regardless of the existence of nicotinic acid.
     The light attenuation kinetic model, I=Ioexp[-(0.4762+0.32660D660)·L],well described the relationship among optical path (L), cell density (OD660) and light intensity (I). Based on this kinetic equation, a novel cultural method of photosynthetic bacteria was originated, i.e., shaking and extra-light supplementation (SELS), which greatly increased the rate and substrate conversion efficiency of photo-hydrogen production. Under shaking and elevated illumination (7000-8000 lux), the culture was effective in promoting photo-H2 production, resulting in a 59% and 56% increase of the maximum and average hydrogen production rate, respectively, in comparison with the culture under standing and 4000-5000 lux conditions. Moreover, substrate conversion efficiencies to hydrogen of both cultures were of no significant difference (ca.89%). To our knowledge, the hydrogen-producing rate of 165.9 ml H2/l·h under the application of SELS approach is currently the highest hydrogen production rate of non-immobilized PNS bacteria. This optimal performance of photo-H2 production using SELS approach is a favorable choice of sustainable and economically feasible strategy to improve phototrophic H2 production efficiency. In addition, the optimum illumination condition for shaking-culture by strain ZX-5 increased to 7000-8000 lux, markedly higher than that for standing-culture (4000-5000 lux).
     A new outer-cycle flat-panel photobioreactor equipped with oxidation-reduction potential (ORP) control unit was designed. In order to obtain the high hydrogen yield, photo-hydrogen production by fed-batch culture with on-line ORP feedback control was developed. Once ORP reached the threshold value of -400 mV, the concentrated medium would be added to culture system automatically right away. The results indicated that the optimum feeding concentration of malic acid was 50 g/l. Besides, due to the intrinsic pH self-adjustment feature of R. sphaeroides ZX-5, the pH of fermentation broth during fed-batch process did not need to be controlled. The photo-fermentation process with three times feeding consumed a total of 160 hours. The average substrate conversion efficiency was improved to 66.43% throughout the entire repeated fed-batch photo-fermentation. The maximum substrate conversion efficiency of 73.03% was observed in the first fed-batch process, much higher than that obtained from batch culture process (59.81%). In addition, compared to the batch culture, a significantly higher maximum hydrogen production rate (102.33 ml H2/l·h) was achieved during fed-batch culture. The results demonstrated that photo-hydrogen production using fed-batch operation based on ORP feedback control appears to be capable of attaining high-rate and high-yield phototrophic H2 production at the same time.
     In order to develop high-effective and low-cost photobioreactor for biohydrogen production, it is necessary to determine and evaluate the distinct effects of as many parameters as possible. The artificial light sources (e.g. incandescent lamp) which emit light in the red-infrared region are suitable for illumination of the photobioreactor for hydrogen production. The results from light/dark cycle experiment set a solid base for operating photobioreactors under outdoor conditions which would be exposed to the diurnal cycle. The other factor evaluated was hydrogen partial pressure in the culture system. The substrate conversion efficiency increased from 86.07% to 95.56% along with the decrease of the total pressure in the photobioreactor from 1.082×105 Pa to 0.944×105 Pa, which indicated that reduction of hydrogen partial pressure by regulating the total pressure in the headspace of photobioreactor substantially improved hydrogen production in an anaerobic, photo-fermentation process. Additionally, the shaking velocity of 120 rpm was the optimum condition for hydrogen production by R. sphaeroides ZX-5. Meanwhile, shaking during hydrogen production phase (i.e., cell growth stationary phase) of photo-fermentation played a crucial role on effectively enhancing the phototrophic hydrogen production, rather than that during cell exponential growth phase.
     Based on the understanding of physiological and metabolic characteristics of R. sphaeroides ZX-5 and the analysis of key factors for photobioreactor design, three different kinds of bioreactors for photo-H2 production were developed. The maximum hydrogen production rate of 141.65 ml J2/l·h and the total hydrogen production of 3056 ml H2/l medium were obtained using the side-stirred flat-panel photobioreactor, which were markedly higher than that obtained using the other two kinds of photobioreactors. The results demonstrated that side stirring pattern is in favor of the good mixing of cells and substrate, thus speed up H2 production.
     Computational fluid dynamics (CFD) technology was applied to simulate mass transfer process of hydrogen from the fermentation broth (liquid phase) to the bubble (gas phase) in tube-photobioreactor, and the facilitating function of SELS approach in the photo-hydrogen production was described from the microscopic view. In addition, the distribution and characteristics of flow field in different kinds of photobioreactors was simulated with CFD technology. Also, the influences of the flow field on the growth and hydrogen production of R. sphaeroides ZX-5 were investigated systematically, which would provide a theoretical basis for photobioreactors design and scale-up in the future.
引文
[1]Baykara SZ. Hydrogen as fuel:a critical technology? Int J Hydrogen Energy,2005,30: 545-553.
    [2]Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng,2008,100:203-212.
    [3]Bockris JOM. The origin of ideason a hydrogen economy and its solution to the decay of the environment. Int J Hydrogen Energy,2002,27:731-740.
    [4]Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int J Hydrogen Energy,2008,33:6046-6057.
    [5]Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. Sustainable fermentative hydrogen production:challenges for process optimisation. Int J Hydrogen Energy,2002,27: 1339-1347.
    [6]傅秀梅,王亚楠,王长云,鹿守本,管华诗.生物制氢——能源、资源、环境与经济可持续发展策略.中国生物工程杂志,2007,2007(2):119-125.
    [7]肖建民.论氢能源与氢能源系统.世界科技研究与进展,1997,19(1):82-86.
    [8]Yuan K, Lin WR. Hydrogen in China:Policy, program and progress. Int J Hydrogen Energy,2010,35(7):3110-3113.
    [9]Das D, Veziroglu TN. Hydrogen production by biological processes:a survey of literature. Int J Hydrogen Energy,2001,26:13-28.
    [10]Ramachandran R, Menon RK. An overview of industrial uses of hydrogen. Int J Hydrogen Energy,1998,23:593-598.
    [11]Rosen MA, Scott DS. Comparative efficiency assessments for a range of hydrogen production processes. Int J Hydrogen Energy,1998,23:653-659.
    [12]Elam CC, Padro CEG, Sandrock G, Luzzi A, Lindblad P, Hagen EF. Realizing the hydrogen future:the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy,2003,28:601-607.
    [13]Veziroglu TN. Twenty years of the hydrogen movement,1974-1994. Int J Hydrogen Energy,1995,20:1-7.
    [14]Kraemer JT, Bagley DM. Improving the yield from fermentative hydrogen production. Biotechnol Lett,2007,29:685-695.
    [15]Nishio N, Nakashimada Y. High rate production of hydrogen/methane from various substrates and wastes. Adv Biochem Eng Biotechnol,2004,90:63-87.
    [16]Das KND. Improvement of fermentative hydrogen production:various approaches. Appl Microbiol Biotechnol,2004,65:520-529.
    [17]Hallenbeck PC, Benemann JR. Biological hydrogen production:fundamentals and limiting processes. Int J Hydrogen Energy,2002,27:1185-1193.
    [18]Manish S, Banerjee R. Comparison of biohydrogen production processes. Int J Hydrogen Energy,2008,33:279-286.
    [19]王昶,贾士儒,贾庆竹,马少娜.光合生物制氢技术.生物加工过程,2005,3(4):9-13.
    [20]李永峰,任南琪,胡立杰,史英.生物制氢系统及其产氢机制.能源环境保护,2005,19(2):5-7.
    [21]Kovacs KL, Tigyi G, L TT, Lakatos S, Kiss Z, Bagyinka CS. Structural rearrangements in active and inactive forms of hydrogenase from Thiocapsa roseopersicina. J Biol Chem, 1991,266:947-951.
    [22]李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展.生物技术通报,2003,4:1-5.
    [23]Akkerman I, Janssen M, Rocha J, Wijffels RH. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy,2002,27(11): 1195-1208.
    [24]Prince RC, Kheshgi HS. The Photobiological production of hydrogen:potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol,2005,31:19-31.
    [25]Yetis M, Gunduz U, Eroglu I, Yucel M, Turker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy, 2000,25:1035-1041.
    [26]Woodward J, Orr M, Cordray K, Greenbaum E. Enzymatic production of biohydrogen. Nature,2004,405:1014-1015.
    [27]Nandi R, Sengupta S. Microbial production of hydrogen:an overview. Crit Rev Microbiol,1998,24(1):61-84.
    [28]Mathews J, Wang G. Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energy,2009,34:7404-7416.
    [29]Benemann JR. Hydrogen biotechnology:progress and prospects. Nat Biotechnol,1996, 14:1101-1103.
    [30]Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng,2006,95(3):971-979.
    [31]Tao YZ, Chen Y, Wu YQ, He YL, Zhou ZH. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy,2007,32: 200-206.
    [32]Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol,2006,97: 500-505.
    [33]Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol.2000,73(1): 59-65.
    [34]Levin DB, Pitt L, Love M. Biohydrogen production:prospectsand limitations to practical application. Int J Hydrogen Energy,2004,29:173-185.
    [35]李建政,任南琪,林明,王勇.有机废水发酵法生物制氢中试研究.太阳能学报,2002,23(2):253-257.
    [36]Gest H, Kalnen MD. Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science.1949,109:558-559.
    [37]Sasikala K, Ramana CV, Rao PR, Kovacs KL. Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology. Adv Appl Microbiol,1993, 38:211-295.
    [38]Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Tech,2006,38:569-582.
    [39]Eroglu E, Giindiiz U, Yiicel M, Turker L, Eroglu I. Photobiological hydrogen production from olive mill wastewater as sole substrate sources. Int J Hydrogen Energy,2004,29: 163-171.
    [40]Kim MS, Baek JS, Lee JK. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy,2006,31:121-127.
    [41]朱章玉,俞吉安,林志新.光合细茵的研究及其应用.上海:上海交大出版社.1991.
    [42]koku H, Eroglu I, Gundiiz U, Eroglu E, Yucel M, Turker L. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy,2002,27: 1315-1329.
    [43]Nath K, Das D. Improvement of fermentative hydrogen production:various approaches. Appl Microbiol Biotechnol,2004,65:520-529.
    [44]Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS. Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrogen Energy, 2008,33:4755-4762.
    [45]Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. Continuous dark fermentative hydrogen production by mesophilic microflora:principles and progress. Int J Hydrogen Energy,2007,32(2):172-184.
    [46]Hussy I, Hawkes FR, Dinsdale R, Hawkes DL. Continuous fermentation hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy,2005,30:471-483.
    [47]Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng,2001,91:58-63.
    [48]Fang HHP, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy,2005,30:785-793.
    [49]Yokoi H, Mori S, Hirose J, Hayashi S, Takasoki Y. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett,1998, 20(9):895-899.
    [50]Kim MS, Baek JS, Yun YS, Sim SJ, Park SH, Kim SC. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process:Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy,2006,31:812-816.
    [51]Li R, Fang HHP. Hydrogen production characteristics of photoheterotrophic Rubrivivax gelatinosus L31. Int J Hydrogen Energy,2008,33:974-980.
    [52]Jung GY, Hyun OJ, Kim JR, Park S. Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett,1999,21:525-529.
    [53]Kars G, Gundiiz U, Rakhely G, Yiicel M, Eroglu I, Kovacs KL. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy,2008,33:3056-3060.
    [54]Kim MS, Baek JS, Lee JK. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy,2006,31:121-127.
    [55]Matsunaga T, Hatana T, Yamada A, Mitsufumi M. Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor. Biotechnol Bioeng,2000,86: 647-651.
    [56]Kondo T, Wakayamab T, Miyakeb J. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int J Hydrogen Energy,2006,31:1522-1526.
    [57]Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J Hydrogen Energy,2008,33:6886-6895.
    [58]Li X, Wang YH, Zhang SL, Chu J, Zhang M, Huang MZ, Zhuang YP. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy-shaking and extra-light supplementation approach. Int J Hydrogen Energy, 2009,34:9677-9685.
    [59]Melnicki MR, Bianchi L, Philippis RD, Melis A. Hydrogen production during stationary phase in purple photosynthetic bacteria. Int J Hydrogen Energy,2008,33:6525-6534.
    [60]Ren NQ, Liu BF, Ding J, Guo WQ, Cao GL, Xie GJ. The effect of butyrate concentration on photo-hydrogen production from acetate by Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy,2008,33:5981-5985.
    [61]Tao YZ, He YL, Wu YQ, Liu FH, Li XF, Zong WM, Zhou ZH. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrogen Energy,2008,33:963-973.
    [62]Zong WM, Yu RS, Zhang P, Fan MZ, Zhou ZH. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenerg,2009,33(10):1458-1463.
    [63]Ren NQ, Liu BF, Ding J, Xie GJ. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresour Technol,2009,100:484-487.
    [64]朱建良,冯有智.固氮类微生物产氢机理研究进展.南京工业大学学报:自然科学版,2003,25(1):102-106.
    [65]Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A. Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol,2003,21:152-156.
    [66]Paulette MV, Bernard B, Jacques M. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev,2001,25:455-501.
    [67]Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M, Kato J. Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. J Ferment Bioeng,1998,85:470-475.
    [68]Kem M, Klipp W, Klemme JH. Increased nitrogenase dependent H2 production by hup mutants of Rhodospirillum mbrum. Appl Envi Microbiol,1994,60(6):1986-1774.
    [69]Kondo T, Arakawa M, Hirai T, Wakayama T, Miyake J. Enhancement of hydrogen production by a photosynthetic bacterium Mutant with reduced pigment. J biosci bioeng, 2002,93(2):145-150.
    [70]Kim EJ, Kim JS, Kim MS, Lee JK. Efiect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrogen Energy,2006,31:531-538.
    [71]Miyake J, Kawamura S. Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. Int J Hydrogen Energy,1987,12: 147-149.
    [72]张全国,师玉忠,张军合.太阳光谱对光合细菌生长及产氢特性的影响研究.太阳能学报,2007,28(10):1135-1139.
    [73]Li X, Wang YH, Zhang SL, Chu J, Zhang M, Huang MZ, Zhuang YP. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5. Bioresour Technol,2011,102:1142-1148.
    [74]Uyar B, Eroglu I, Yiicel M, Giindiiz U, Turker L. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrogen Energy,2007,32(18):4670-4677.
    [75]Koku H, Eroglu I, Gundiiz U, Yiicel M, Turker L. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy,2003,28:381-388.
    [76]Tian X, Liao Q, Liu W, Wang YZ, Zhu X, Li J, Wang H. Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Int J Hydrogen Energy,2009,34:4708-4717.
    [77]Barbosa MJ, Rocha JM, Tramper J, Wijffels RH. Acetate as carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol,2001,85(1):25-33.
    [78]Fiβler J, Schirra C, Kohring GW, Giffhorn F. Hydrogen production from aromatic acids by Rhodopseudomonas palustris. Appl Micmbiol Biotechnol,1994,41(4):395-399.
    [79]Hillmer P, Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata H2 production bygrowing cultures. J Bacterial,1977,129:724-731.
    [80]Seifert K, Waligorska M, Laniecki M. Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy, 2010,35:4085-4091.
    [81]Eroglu E, Gunduz U, Yucel M, Eroglu I. Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. Int J Hydrogen Energy,2010,35:5293-5300.
    [82]Turkarslan S. Photobiological hydrogen peoduction by Rhodobacter sphaeroides O.U.001 by utilization of waste water form milk industry. In:Zaborsky OR, editor. Biohydrogen. New York:Plenum Press.1998.
    [83]Bollinger R, Zurrer M, Bachofen R. Photoproduetion of molecular hydrogen from waste water of a sugar refmery by photosynthetic bacteria. Appl Microbiol Biotechnol,1985, 23:147-151.
    [84]Sun Q, Xiao W, Xi D, Shi J, Yan X, Zhou Z. Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int J Hydrogen Energy,2010,35:4076-4084.
    [85]Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photo-bioreactor. Biochem Eng J,2008,39(2):369-375.
    [86]Ren NQ, Liu BF, Zheng GX, Xing DF, Zhao X, Guo WQ, Ding J. Strategy for enhancing photo-hydrogen production yield by repeated fed-batch cultures. Int J Hydrogen Energy, 2009,34:7579-7584.
    [87]Carlozzi P, Lambardi M. Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renew Energ,2009,34:2577-2588.
    [88]Shin JH, Yoon JH, Lee SH, Park TH. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell. Bioresour Technol,2010,101:S53-S58.
    [89]Karadag D, Puhakka JA. Direction of glucose fermentation towards hydrogen or ethanol production through on-line pH control. Int J Hydrogen Energy,2010,35:10245-10251.
    [90]Fascetti E, Todini O. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one-and two-stage chemostat. Appl Microbiol Biotechnol,1995,44:300-305.
    [91]Odom JM, Wall JD. Photopeoduction of H2 from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol,1983,45:1300-1305.
    [92]Miura Y, Saitoh C, Matsuoka S, Miyamoto K. Stably sustained hydrogen peoduction with high molar yield through a combination of a marine green alga and a photosynthetic bacteria. Biosci Biotech Biochem,1992,56:751-754.
    [93]Fiβler J, Kohring GW, Giffhorn F. Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Appl Microbiol Biotechnol,1995, 44:43-46.
    [94]徐向阳,俞秀娥,郑平.固定化光合细胞利用有机物产氢的研究.生物工程学报,1994,10(4):362-368.
    [95]李德峰,周雪花,李刚,杜金宇,张全国.光合细菌制氢试验装置及其技术研究进展.生物质化学工程,2009,43(4):56-61.
    [96]Miydmom K, Wable O, Benemann JR. Vertical tubular photobioreactor:design and operation. Biotechnol Lett,1989,10:703-710.
    [97]Carlozzi P, Pushparaj B, Degl'Innocenti A, Capperucci A. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Appl Microbiol Biotechnol,2006,73:789-795.
    [98]Chen CY, Lee CM, Chang JS. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors. Biochemical Engineering Journal,2006,32:33-42.
    [99]Chen CY, Chang JS. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem,2006,41: 2041-2049.
    [100]Chen CY, Lee CM, Chang JS. Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int J Hydrogen Energy,2006,31:2345-2355.
    [101]Eroglu E, Gundiiz U, Yucel M, Turker L, Eroglu I. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrogen Energy,2004,29(2):163-171.
    [102]Matsunaga T, Hatano T, Yamada A, Matsumoto M. Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor. Biotechnol Bioeng,2000, 68(6):647-651.
    [103]Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH. A pneumatically agitated fllat-panel photobioreactor with gas re-circulation:anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energy,2002,27: 1331-1338.
    [104]Nakada E, Nishikata S, Asada Y, Miyake J. Photosynthetic bacterial hydrogen production combined with a fuel cell. Int J Hydrogen Energy,1999,24:1053-1057.
    [105]Otsuki T, Uchiyama S, Fujiki K, Fukunaga S. Hydrogen production by a floating type bioreactor. In:Zaborsky OR, editor. Biohydrogen. New York:Plenum Press.1998. p.369-374.
    [106]Esper B, Badura A, Rogner M. Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci,2006,11(1):543-549.
    [107]Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW. Rings, ellipses and horseshoes:How purple bacteria harvest solar energy. Photosynth Res,2004,91(3): 207-214.
    [108]Argun H, Kargi F. Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution:Effects of light source and light intensity. Int J Hydrogen Energy,2010,35:1595-1603.
    [109]刘晶磷.光生物反应器光现象的理论研究.华南理工大学博士学位论文.1998.
    [110]张世强,宋家驹.测量型光生物反应器的研制.海洋技术,2007,26(1):26-28.
    [111]Weaver PF, Wall JD, Gest H. Characterization of Rhodopseudomonas Capusulata. Arch Microbiol,1975,5:207-216.
    [112]Bernofsky C, Swan M. An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem,1973,53:452-458.
    [113]Wimpenny JWT, Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol,1972,111:24-32.
    [114]Merugu R, Girisham S, Reddy SM. Bioproduction of hydrogen by Rhodobacter capsulatus KU002 isolated from leather industry effluents. Int J Hydrogen Energy,2010, 35:9591-9597.
    [115]Seifert K, Waligorska M, Laniecki M. Hydrogen generation in photobiological process from dairy wastewater. Int J Hydrogen Energy,2010,35:9624-9629.
    [116]Laurinavichene TV, Tekucheva DN, Laurinavichius KS, Ghirardi ML, Seibert M, Tsygankov AA. Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation. Int J Hydrogen Energy,2008,33:7020-7026.
    [117]Zhang C, Zhu X, Liao Q, Wang YZ, Li J, Ding YD, Wang H. Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy,2010,35:5284-5292.
    [118]Wang D, Zhang YP, Welch E, Li JL, Roberts GP. Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum. Int J Hydrogen Energy,2010,35:7377-7385.
    [119]Shi XY, Yu HQ. Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulata. Process Biochem, 2005,40:2475-2481.
    [120]Macler BA, Pelroy RA, Bassham JA. Hydrogen formation in nearly stoichiometric amounts by a Rhodopseudomonas sphaeroides mutant. J Bacteriol,1978,138(2): 446-452.
    [121]Kim MS, Moon KW, Lee SK, Kim SC, Kim MS. Production of hydrogen from glucose by Rhodopseudomonas sphaeroides. Korean J Appl Microbiol Biotechnol,1998,26(2): 89-95.
    [122]Willison JC. Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus. J Gen Microbiol,1998,134:2429-2439.
    [123]Conrad R, Schlegel HG. Influence of aerobic and phototrophic growth conditions on the distribution of glucose and fructose carbon into the Entner-Doudoroff and Embden-Meyerhoff pathways in Rhodopseudomonas sphaeroides. J Gen Microbiol, 1977,101:277-290.
    [124]Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng,2001,91:277-282.
    [125]Khanal SK, Chen WH, Li L, Sung SW. Biological hydrogen production:effects of pH and intermediate products. Int J Hydrogen Energy,2004,29:1123-1131.
    [126]VanNiel EWJ, Claassen PAM, Stams AJM. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng,2003,81:255-262.
    [127]Zheng XJ, Yu HQ. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage,2005,74:65-70.
    [128]Zhu HG, Suzuki T, Tsygankov AA, Asada Y, Miyake J. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrogen Energy,1999,24:305-310.
    [129]Zinchenko VV. Genetic regulation of nitrogen assimilation in photosynthetic bacteria. Russ J Genet,1999,35:1287-1301.
    [130]Yakunin AF, Hallenbeck PC. Regulation of nitrogenase activity in Rhodobacter capsulatus under dark microoxic conditions. Arch Microbiol,2000,173:366-372.
    [131]Shi XY, Yu HQ. Optimization of glutamate concentration and pH for H2 production from volatile fatty acids by Rhodopseudomonas capsulata. Lett Appl Microbiol,2005, 40:401-406.
    [132]Kern M, Klipp W, Klemme JH. Increased nitrogenase-dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum. Appl Environ Microbiol,1994,60:1768-1774.
    [133]Leonardo MR, Dailly Y, Clark DP. Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol,1996,178:6013-6018.
    [134]Dhawan S, Kuhad RC. Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri. Bioresour Technol,2002,84:35-38.
    [135]Vignais PM, Colbeau A, Willison JC, Jouanneau Y. Hydrogenase, nitrogenase and hydrogen metabolism in photosynthetic bacteria. Adv Microb Physiol,1985,26: 154-234.
    [136]Katsudaa T, Arimotoa T, Igarashia K, Azumaa M, Katoa J, Takakuwab S, Ooshima H. Light intensity distribution in the externally illuminated cylindrical photobioreactor and its application to hydrogen production by Rhodobacter capsulatus,. Biochem Eng J,2000, 5(2):157-164.
    [137]Nakada E, Asada Y, Arai T, Miyake J. Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J Ferment Bioeng,1995, 80(1):53-57.
    [138]Tsygankov AA, Laurinavichene TV. Influence of the degree and mode of light limitation on growth characteristics of the Rhodobacter capsulatus continuous cultures. Biotechnol Bioeng,1996,51(5):605-612.
    [139]Kim BW, Chang KP, Chang HN. Effect of light source on the microbiological desulfurization in a photobioreactor. Bioprocess Eng,1997,17:343-348.
    [140]Kitajima Y, El-Shishtawy RMA, Ueno Y, Otsuka S, Miyake J, Morimoto M. Analysis of compensation point of light using plane-type photosynthetic bioreactor. In:Zaborsky OR, editor. Biohydrogen. New York:Plenum Press.1998.
    [141]Srikanth S, Mohan SV, Devi MP, Babu ML, Sarma PN. Effluents with soluble metabolites generated from acidogenic and methanogenic processes as substrate for additional hydrogen production through photo-biological process. Int J Hydrogen Energy, 2009,34:1771-1779.
    [142]Kim NJ, Lee JK, Lee CG. Pigment reduction to improve photosynthetic productivity of Rhodobacter sphaeroides. J Microbiol Biotechnol,2004,14(3):442-449.
    [143]Klasson KT, Lundback KMO, Clausen EC, Gaddy JL. Kinetics of light limited growth and biological hydrogen-production from carbon-monoxide and water by Rhodospirillum Rubrum. J Biotechnol,1993,29:177-188.
    [144]Asada Y, Miyake J. Photobiological hydrogen production. J Biosci Bioeng,1999,88(1): 1-6.
    [145]Sasikala K, Ramana CV, Rao PR. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy,1991,16:597-601.
    [146]Wakayama T, Toriyama A, Kawasugi T, Arai T, Asada Y, Miyake J. Photohydrogen production using photosynthetic bacterium Rhodobacter sphaeroides RV; simulation of the light cycle of natural sunlight using an artificial source. In:Zaborsky OR, editor. Biohydrogen. New York:Plenum Press.1998.
    [147]Zabut B, El-Kahlout K, Yucel M, Gunduz U, Turker L, Eroglu I. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor. Int J Hydrogen Energy,2006,31(11): 1553-1562.
    [148]Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J. Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng,1994,77:575-578.
    [149]He DL, Bultel Y, Magnin JP, Willison JC. Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus. Enzyme Microb Technol,2006,38:253-259.
    [150]Shi XY, Yu HQ. Continuous production of hydrogen frommixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrogen Energy,2006,31:1641-1647.
    [151]Maeda I, Miyasaka H, Umeda F, Kawase M, Yagi K. Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxybutyrate) as sole substrate. Biotechnol Bioeng,2003,81: 474-481.
    [152]Ozmihci S, Kargi F. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. Int J Hydrogen Energy,2010,35:1106-1111.
    [153]Kapdan IK, Kargi F, Oztekin R, Argun H. Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy,2009,34:2201-2207.
    [154]Shi Y, Zhao XT, Cao P, Hu YY, Zhang L, Jia Y, Lu ZQ. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett,2009,31:1327-1333.
    [155]Tanwar P, Nand T, Ukey P, Manekar P. Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system. Bioresour Technol,2008,99(16):7630-7635.
    [156]Ding J, Xu Wang, Zhou XF, Ren NQ, Guo WQ. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production Bioresour Technol,2010, 101(18):7005-7013.
    [157]Mohan SV, Bhaskar YV, Krishna PM, Rao NC, Babu VL, Sarma PN. Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia:influence of fermentation pH and substrate composition. Int J Hydrogen Energy,2007,32:2286-2295.
    [158]Su HB, Cheng J, Zhou JH, Song WL, Cen KF. Hydrogen production from water hyacinth through dark-and photo-fermentation. Int J Hydrogen Energy,2010,35: 8929-8937.
    [159]Kargi F, Pamukoglu MY. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. Int J Hydrogen Energy,2009,34:2940-2946.
    [160]Kim JS, Ito K, Takahashi H. The relationship between nitrogenase activity and hydrogen evolution in Rhodopseudomonas palustris. Agric Biol Chem,1980,44: 827-833.
    [161]Gosman AD, Lekakou C, Politis S, Issa RI, Looney MK. Multidimensional modeling of turbulent two-phase in stirred vessels. AIChE J.1992,38(12):1946-1956.
    [162]张冰,任南琪,周雪飞.生物制氢反应器流场的数值模拟.太阳能学报,2008,29(12):1558-1562.
    [163]Wang X, Ding J, Guo WQ, Ren NQ. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation. Int J Hydrogen Energy,2010,35:10960-10966.
    [164]Wang X, Ding J, Ren NQ, Liu BF, Guo WQ. CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. Int J Hydrogen Energy,2009,34: 9686-9695.
    [165]Eroglu I, Tabanoglu A, Gundiiz U, Eroglu E, Yucel M. Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrogen Energy, 2008,33:531-541.
    [166]Modigell M, Holle N. Reactor development for a biosolar hydrogen production process. Renew Energ,1998,14:421-426.
    [167]Wakayama T, Nakada E, Asada Y, Miyake J. Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV. Appl Biochem Biotechnol,2000, 84-86:431-440.
    [168]Miyake J, Tatsuki W, Schnackenberg J, Arai T, Asada Y. Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng,1999, 88(6):659-663.
    [169]Miyake J, Mao XY, Kawamura S. Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. Int J Hydrogen Energy,1987, 12:147-149.
    [170]Giirgiin V, Kirchner G, Pfennig N. Fermentation of pyruvate by 7 species of phototrophic purple bacteria. Z Allg Mikrobiol,1976,16:573-587.
    [171]Levin DB, Pitt L, Love M. Biohydrogen production:prospects and limitations to practical application. Int J Hydrogen Energy,2004,29:173-185.
    [172]Dixon NM, Kell DB. The inhibition by CO2 of the growth and metabolism of microorganisms. J Appl Bacteriol,1989,67:109-136.
    [173]Liu BF, Ren NQ, Ding J, Xie GJ, Cao GL. Enhanced photo-H2 production of R.faecalis RLD-53 by separation of CO2 from reaction system. Bioresour Technol,2010,100: 1501-1504.
    [174]Hansfold GS, Humphrey AE. The effect of equipment scale and degree of mixing on continuous fermentation yield at low dilution rates. Biotechnol Bioeng,1966,8(1): 85-96.
    [175]Kalischewski K, Schiigerl K. Determination of the mass transfer coefficients of absorption of oxygen and carbon dioxide in different culture media. Ger Chem Eng, 1978,1:140-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700