强衰落GPS信号模型分析及捕获技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS信号的成功捕获是GPS定位和导航的最基本任务。随着GPS接收机使用范围和应用领域的扩大,在一些特殊的应用环境下(室内、城市街道、森林、峡谷等),由于人造建筑和自然景物对GPS信号造成的阻挡和多径效应等因素,GPS信号会发生很强的衰落,这给GPS信号的捕获带来极大的挑战。在发生了信号强衰落的环境下,传统的GPS信号捕获方法很难完成对GPS信号的捕获。因此,非常有必要研究新的理论与方法,提高在信号严重衰落的环境下的GPS信号捕获性能。
     本文以强衰落的GPS信号捕获为研究对象,重点针对“弱信号环境下的GPS接收机自适应结构”、“基于循环谱的GPS信号检测方法”、“乘性噪声对GPS信号检测的影响”、“GPS信号捕获中的远近效应及其解决方法”等关键技术开展了较为系统、深入的研究,主要工作和主要贡献总结如下:
     (1)研究了基于信号块处理的自适应GPS信号捕获结构。在分析了相应的GPS信号检测统计量的基础之上,推导了基于不同检测统计量的检测概率和虚警概率的解析式。进一步,提出了自适应GPS信号检测器结构,将双门限结构应用于GPS信号检测,提高了GPS接收机检测性能的稳定性,缩短了GPS信号的平均捕获时间。
     (2)分析了GPS信号的循环平稳特性,提出了基于循环平稳统计量的GPS信号伪随机码初始相位估计方法和多普勒载频估计方法,提高了GPS信号在强噪声和强干扰环境下的捕获性能。
     (3)研究了GPS信号在传播路径中所遇到的不同类型噪声,并且针对乘性噪声和加性高斯噪声共同作用下的GPS信号,提出了相应的检测方法,增强了在发生严重多径环境下的GPS信号检测性能。
     (4)针对GPS信号捕获中不同类型的远近效应,提出了先去强GPS信号,再捕获弱GPS信号的捕获方法,消除了由GPS信号强度差异带来的远近效应;通过部分相关方法减轻了由多普勒频移差异产生的远近效应;提出了基于循环谱的多径分集技术,减轻了由多径效应强度的不同所产生的远近效应。
     (5)将分裂基FFT和CORDIC技术相结合,应用于GPS接收机。仿真结果表明,联合使用分裂基FFT和CORDIC技术能够降低GPS接收机的硬件资源开销,提高GPS信号处理速度;研究了将SAW器件应用于GPS接收机的技术。分析了SAW卷积器在弱GPS信号捕获,以及在高动态下捕获GPS信号的优势。
     综上所述,本文立足于国内外微弱GPS信号捕获技术的研究现状,基于多种信号处理方法,系统地研究了如何进一步地提高微弱GPS信号的捕获性能。下一步,希望能够把本文提出的理论算法应用到下一代的全球卫星定位导航系统(GPSIII,GLONASS,GALILEO以及COMPASS)的信号处理中,进一步拓展本文中算法的应用领域和应用范围。
The successful GPS signal acquisition is the basic objective in the GPS basedpositioning and navigation technology. With the extension of the GPS application, theGPS signal encounters severe degredation in the challenging environments, indoor, onthe city streets, in the woods with dense leaves, in the cayon, etc. The fading is mainlyinduced by the signal blocking and the high dense multipath effect which degrades theGPS signal acquisition performance. The conventional GPS signal acquisition methodcan hardly achieve the successful acquisition in the challenging environment. Therefore,the study on the weak GPS signal aquisiton becomes extremely important.
     The primary research objectives include ‘the adaptive structure based weak GPSsignal acquisition’,‘the cyclic-spectrum based GPS signal acquisition’,‘the degradationby the multiplicative noise and the solutions’ and ‘the near-far problems in GPS signalacquisition and the solutions’. Around these topics the comprehensive and deep studieshave been performed in this dissertation. To present more concrete description on thestudy work, the research topics are introduced below:
     (1) For the various block GPS signal processing technologies, the correspondingdetection statistics of the GPS signal are analyzed; and the analytic expression of thedetection probability and the false alarm probability are presented for the variousstatistical variables. After that, the adaptive GPS signal acquisition structures areproposed; also, the double-dwell structure is employed to detect the GPS signal whichreduces the average acquisition time.
     (2) The cyclostationary features of the GPS signal are analyzed. With thetheorectic analysis, the cyclostatistics based GPS signal acquisition method is proposed.Even with the existence of the strong noise, the novel method improves the GPS signalacquisition performance effectively by utilizing the redundant periodic informationcontained in the correlation function of the GPS signal.
     (3) The two main types of the noise (the additive noise and multiplicative noise) inthe GPS signal channel are taken consideration into when acquiring the weak GPSsignal. After that, the GPS signal acquisition method degraded by the additive noise and the multiplicative noise is proposed. The novel acquisition method improves the GPSsignal acquisition performance hugely in the chanllenging environment with the highdense multipath effect.
     (4) The three different kinds of near-far problems in the GPS signal acquisition areanalyzed. The corresponding solutions are proposed which alleviate the acquisitioninterference between the different GPS signals and improve the acquisitionperformance.
     (5) The combination of the split-FFT and the CORDIC technologies are analyzedand studied for the GPS signal acquisition. The joint application of the split-FFT and theCORDIC technologies reduce the hardware expenditure in the GPS receiver design. Theapplication of the SAW device in the GPS receiver is also studied. The advantages ofthe SAW device on the electromagnetic wave interference resistence and the GPS signalacquisition based on SAW device in high dynamic environment are analyzed.
     As a conclusion, after comprehensively investigating the fading GPS signal, servalsignal processing methods are employed to acquire the weak GPS signal for the betteracquisition performance. In this dissertation the feasible algorithms for acquiring theGPS singal degraded by the strong noise are proposed; the simulations and experimentshave been performed to verify the effectiveness of the novel GPS acquisition algorithms.In the near future, the studied algorithms in this dissertation will be employed in theglobal positioning and navigation signal processing of the next generation (GPS III,GLONASS, GALILEO and COMPASS).
引文
[1] A. T. Balaei, A. G. Dempster. A statistical inference technique for GPS interference detection.IEEE Transactions on Aerospace and Electronic Systems,2009,45(4):1499-1511
    [2] R. K. Deergha, M. N. S. Swamy. New approach for suppression of FM jamming in GPSreceiver. IEEE Transactions on Aerospace and Electronic Systems,2006,42(4):1464-1474
    [3] M. G. Amin, Zhao Liang, A. R. Lindsey. Subspace array processing for the suppression of FMjamming in GPS receiver. IEEE Transactions on Aerospace and Electronic Systems,2004,40(1):80-92
    [4] R. Wang, M. Yao, Z. Cheng, et al. Interference cancellation in GPS receiver using noisesubspace tracking algorithm. Signal Processing,2010,91(2):338-343
    [5] C. Gernot, K. O’Keefe, G. Lachapelle. Assessing three new GPS combined L1/L2C acquisitionmethods. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):2239-2247
    [6] N. Jardak, N. Samama. Indoor positioning based on GPS-repeaters: performance enhancementusing on open code loop architecture. IEEE Transactions on Aerospace and Electronic Systems,2009,45(1):347-359
    [7]梁坤,王剑,施浒立.高灵敏度GPS接收机中的互相关减轻算法研究.电子学报,2010,36(6):1098-1102
    [8] Min Li, A. G. Dempster, A. T. Balaei, et al. Switchable beam steering/null steering algorithmfor CW interference mitigation in GPS C/A code receiers. IEEE Transaction on Aerospace andElectronic Systems,2011,47(3):1564-1579
    [9] P. D. Huang, Y. M. Pi. Urban environment solutions to GPS signal near-far effect. IEEEAerospace and Electronic System Magazine,2011,26(5):18-27
    [10]黄鹏达,皮亦鸣.恒虚警GPS信号自适应捕获研究.电子学报,2011,20(7):1716-1720
    [11]李仰志,程剑,吕晶,等.基于Walsh变换的GPS C/A码快速捕获算法.电子学报,2011,20(6):1384-1388
    [12]覃新贤,韩承德,谢应科. GPS软件接收机中的一种实用高灵敏度快速捕获算法.电子学报,2010,38(1):99-104
    [13] G. MacGougan, K. Siu, L. Garin, et al. Performance analysis of a stand-alone high-sensitivityreceiver. GPS Solutions,2002,6(3):179-195
    [14] Van. Diggelen. Global locate indoor GPS chipset&services. GPS Symposium2001,2001:85-91
    [15] B. Peterson, D. Bruckner, S. Heye. Measuring GPS Signal Indoors. Proceedings of the10thInternational Technical Meeting of the Satellite Division of The Institute of Navigation,Vol.1997:615-624
    [16] E. D. Kaplan, C. J. Hegarty. Understanding GPS: principles and applications. Norwood, MA.:Artech House Inc.,2006
    [17] J. J. Jr. Spilker. GPS signal structure and theoretical performance, Global positioning system:theory and application. Washington: Ed. B.W.Parkinson and J.J.Jr.Spilker,1996,88-89
    [18] S. Stavrou, S. R. Saunders. Factors influencing outdoor to indoor radio wave propagation.12thInternational Conference on Antennas and Propagation (ICAP2003),2003,2:581-585
    [19]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展.全球定位系统,2006,2:1-4
    [20] S. Aguirre, L. H. Loew, L. Yeh. Radio propagation into buildings at912,1920, and5990MHz.Proceedings of3rd IEEE ICUPC,1994:129-134
    [21] G. Lachapelle, E. Cannon, R. Klukas, et al. Hardware simulator models and methodologies forindoor performance assessment of high sensitivity receivers. Canadian Aeronautics and SpaceJournal,2004,50(3):151-168
    [22] J. K. Ray. Mitigation of GPS code and carrier phase multipath effects using a multi-antennasystem:[Dissertation]. Calgary: University of Calgary,2000
    [23] O. Landron, M. J. Feuerstein, T. S. Rappaport. A comparison of theoretical and empiricalreflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEETrans on Antennas Propagation,1996,44:341-351
    [24] C. Ma, G. Jee, G. MacGougan, et al. GPS signal degradation modeling. Proceedings of the14thInternational Technical Meeting of the Satellite Division of The Institute of Navigation (IONGPS2001),2001:882-893
    [25] A. Steingass, A. Lehner. Measuring the navigation multipath channel-a statistical analysis.Proceedings of the ION GNSS International Technical Meeting of the Satellite Division,2004:1157-116
    [26] R. Klukas, G. Lachapelle, C. Ma, et al. GPS signal fading model for urban centers. IEEProceedings-Microwaves, Antennas and Propagation,2003,150(4):245-52
    [27] J. R. A. Watson. High-sensitivity GPS L1signal analysis for indoor channel modeling:
    [Dissertation]. Calgary: The University of Calgary,2005
    [28] A. Jahn. Propagation considerations and fading countermeasures for mobile multimediaservices. International Journal of Satellite Communications,2001,19(3):223-250
    [29] P. Boulton, A. Read, G. MacGougan, et al. Proposed models and methodologies for verificationtesting of AGPS-equipped cellular mobile phones in the laboratory, Proceedings of the GPS-02Conference,2002:200-212
    [30] W. B. Parkinson, P. K. Enge. Differential GPS, Global positioning system: theory andapplications. Ed. B. W. Parkinson and J. J. Jr. Spilker.2ed. Washington DC: AmericanInstitute of Aeronautics and Astronautics, Inc.,1995,3-49
    [31] R. D. J. van Nee. Multipath and multi-transmitter interference in spread-spectrumcommunication and navigation systems. Delft,The Netherlands: Delft University Press,1995,208
    [32] M. S. Braasch. Multipath effects, Global positioning systems: theory and applications. Ed. B.W. Parkinson and J. J. Jr. Spilker.1ed. Washington DC: American Institute of Aeronautics andAstronautics, Inc.,1994,547-568
    [33] P. Fenton, B. Falkenberg, T. Ford, et al. NovAtel GPS receiver: The high performance OEMsensor of the future. Institute of Navigation Satellite Division’s4thInternational TechnicalMeeting,1991, ION GPS-91:49-58
    [34] A. J. van Dierendonck, P. Fenton, T. Ford. Theory and performance of narrow correlatorspacing in a GPS receiver. Journal of the Institute of Navigation,1992,39(3):265-283
    [35] L. Garin, J. Rousseau. Enhanced strobe correlator multipath rejection for code and carrier.Proceedings of ION GPS-97,1997:559-568
    [36] L. Garin, F. van Diggelen, J.-M. Rousseau. Strobe and edge correlator multipath mitigation forcode. Proceedings of the9th International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GPS1996),1992:657-664
    [37] Seung-Hyun Kong. Statistical analysis of urban GPS multipaths and pseudo-rangemeasurement errors. IEEE Trans. on Aerospace Electronic and Systems,2011,47(2):1101-1113
    [38] M. T. Brenneman, Y. T. Morton, Q. Zhou. GPS Multipath Detection with ANOVA forAdaptive Arrays. IEEE Trans. on Aerospace Electronic and Systems,2010,46(3):1171-1184
    [39] W. Geren, T. Murphy, T. Pankaskie. Analysis of airborne GPS multipath effects usinghigh-fidelity EM model. IEEE Trans. on Aerospace Electronic and Systems,2008,44(2):711-723
    [40] A. Giremus, J.-Y. Tourneret, V. Calmettes. A Particle Filtering Approach for JointDetection/Estimation of Multipath Effects on GPS Measurements. IEEE Trans. on AerospaceElectronic and Systems,2007,55(4):1275-1285
    [41] P. W. Ward. GPS receiver search techniques. Proceedings of the IEEE1996Position, Locationand Navigation Symposium,1996:604-611
    [42] P. Misra, P. Enge. Global positioning system: signals, measurements, and performance. Lincoln,Massachusetts: Ganga-Jamuna Press,2001
    [43] S. M. Deshpande. Study of interference effects of signal acquisition:[Dissertation]. Calgary:University of Calgary,2004
    [44] D. Lin, J. Tsui, Howell Dana. Direct P(Y) code acquisition algorithm for software GPSreceivers. Proceedings of Institute of Navigation,1999, ION GPS-99:363-366
    [45] D. M. Lin, J. B. Y. Tsui, Y. T. J. Morton. Sensitivity limit of a stand-alone GPS receiver and anacquisition method. Proceeding of Institute of Navigation,2002, GPS-2002:1663-1667
    [46] D. M. Lin, J. B. Y. Tsui. Comparison of acquisition methods for software GPS receiver.Proceedings of Institute of Navigation,2000, GPS-2000:2385-2390
    [47] M.L. Psiaki. Block acquisition of weak GPS signals in a software receiver. Proceedings of theInstitute of Navigation GPS2001Conference,2001:2838-2850
    [48] Q. Zhengdi. Optimal gain in the process of GPS signal acquisition. Proceedings of IONGPS-2000,2000:891-894
    [49] G. MacGougan. High-sensitivity GPS performance analysis in degraded signal environments:[Dissertation]. Calgary:University of Calgary,2003
    [50] N. S. Sudhir, J. K. Ray. Receiver sensitivity analysis and results. Proceeding of the Institute ofNavigation,2001, ION GPS-2001:1420-1426
    [51] G. P. Mattos. Solutions to the cross-correlation and oscillator stability problems for indoor C/Acode GPS. Proceedings of the15th International Technical Meeting of the Satellite Division ofThe Institute of Navigation (ION GPS2002),2003:655-659
    [52] J. L. Shewfelt, R. Nishikawa, C. Norman, et al. Enhanced sensitivity for acquisition in weaksignal environments through the use of extended dwell times. Proceedings of the Institute ofNavigation,2001, ION GPS-2001:155-162
    [53] G. M. Djuknic, R. E. Richton. Geolocation and assisted GPS. Computer,2001,34(2):123-125
    [54] D. Akopian, J. Syrjarinne. A fast positioning method without navigation data decoding forassisted GPS receivers. IEEE Trans. on Vehicular Technology,2009,58(8):4640-4645
    [55] M. Moeglein, N. Krasner. An introduction to SnapTrack wireless-assisted GPS technologyTM.GPS Solutions,2000,4(3):16-26
    [56] G. MacGougan, K. O’Keefe, R. Klukas. Accuracy and reliability of tightly coupledGPS/ultra-wideband positioning for surveying in urban environment. GPS Solutions,2010,14(4):351-364
    [57] J. Syrjarinne, T. Kinnari. Analysis of GPS time-transfer accuracy in GSM and UMTS networksand possibilities to improve sensitivity. Proceedings of the15th International TechnicalMeeting of the Satellite Division of The Institute of Navigation (ION GPS2002), Vol.2002:184-191
    [58] J. Syrjarinne. Studies of modern techniques for personal positioning:[Dissertation]. Tampere:Tempere University of Technology,2001
    [59] T. Kinnari. Accurate time transfer in assisted GPS:[Dissertation]. Tampere: TempereUniversity of Technology,2001
    [60] T. Haddrell, A. R. Pratt. Understanding the indoor GPS signal. Proceedings of the Institute ofNavigation,2001, ION GPS-2001:1487-1499
    [61] P. Enge, R. Fan, A. Tiwari, et al. Improving GPS coverage and continuity: indoors anddowntown. Proceeding of the Institute of Navigation,2001, ION GPS-2001:3067-3076
    [62] D. Van Nee, A. Coenen. New fast GPS code acquisition technique using FFT. GPS Solutions,1991,27(2):158-160
    [63] J. A. Starzyk, Z. Zhu. Averaging correlation for C/A code acquisition and tracking in frequencydomain. Proceeding of the44th IEEE Midwest Symposium on Circuit and System,2001,2:905-908
    [64] N. I. Ziedan, J. L. Garrison. Bit synchronization and Doppler frequency removal at very lowcarrier ration using a combination of the viterbi algorithm with a extended Kalman filter.Proceedings of Institute of Navigation,2003, GPS-2003:616-627
    [65] M. Moreau, P. Axelrad, J. L. Garrison, et al. GPS receiver architecture and expectedperformance for autonomous GPS navigation in highly electric orbits. Proceedings of the ION55th Annual Meeting, June28,19991999.V653-65
    [66] S. M. Kay. Fundamentals of statistical signal processing: detection theory. Englewood Cliffs,NJ: Prentice Hall International,1998
    [67] H. Meyr, M. Moeneclaey, S. Fechtel. Digital ommunication receivers: synchronization, channelestimation, and signal processing. New York, NY: John Wiley&Sons, Inc.,1997
    [68] J. B.-Y. Tsui. Fundamentals of global positioning system receiver. New York: Wiley,2002
    [69] C. J. Kim, H. J. Lee, H. S. Lee. Adaptive acquisition of PN sequences for DSSScommunications. IEEE Transactions on Communications,1998,46(8):993-996
    [70] M. A. Khalighi, M. H. Bastani. Adaptive CFAR processor for nonhomogeneous environments.IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):889-897
    [71] J. A. Ritcey. Performance analysis of the censored mean-level detector. IEEE Transactions onAerospace and Electronic Systems,1986,22(4):443-454
    [72] M. Shor, N. Levanon. Performance of order statistics CFAR. IEEE Transactions on Aerospaceand Electronic Systems,1991,27(2):214-224
    [73] P. P. Gandhi, S. A. Kassam. Analysis of CFAR processors in nonhomogeneous background.IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):427-445
    [74] C. H. Lim, H. S. Lee. Performance of order-statistics CFAR detector with non-coherentintegration in homogeneous situations. IEE Proceedings-Radar, Sonar and Navigation,1993,140(5):291-296
    [75] J. A. Ritcey. Detection analysis of the MX-MLD with non-coherent integration. IEEETransactions on Aerospace and Electronic Systems,1990,26(3):569-576
    [76] V. G. Hansen, J. H. Sawyers. Detectability loss due to greatest-of selection in a cell-averagingCFAR detector. IEEE Transactions on Aerospace and Electronic Systems,1980,16(1):115-118
    [77] S. D. Himonas, M. Barkat. Automatic censored CFAR detection for non-homogeneousenvironments. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):286-304
    [78] B. B. Ibrahim, A. H. Aghwami. Direct sequence spread spectrum matched filter acquisition onfrequency-selective Rayleigh fading channels. IEEE Journal on Selected Areas inCommunications,1994,12(5):885-890
    [79] J. K. Holmes, C. C. Chen. Acquisition time performance of PN spread-spectrum systems. IEEETransactions on Communications,1977,25(8):778-784
    [80] M. Villanti. Synchronization strategies for spread spectrum and TDMA communications:
    [Dissertation]. Bologna: University of Bologna,2005
    [81] A. Polydoros, C. L. Weber. A unified approach to serial search spread spectrum codeacquisition-Part Ι: General Therory. IEEE Transactions on Communications,1984,32(5):542-549
    [82] G. E. Corazza, C. Caini, A. Vanelli-Coralli. Polydoros. DS-CDMA code acquisition in thepresence of correlated fading-Part Ι: Theoretical aspects. IEEE Transactions onCommunications,2004,52(7):1160-1168
    [83] Y. K. Jeong, K. B. Lee, O.-S. Shin. Differentially coherent combining for slot synchronizationin inter-cell asynchronous DS/SS systems. Personal, Indoor and Mobile Radio Communication,2000. PIMRC2000. The11th IEEE International Symposium on,2000,2:1405-1409
    [84] H. Elders-Boll, U. Dettmar. Efficient differentially coherent code/doppler acquisition of weakGPS signals. Spread Spectrum Techniques and Application,2004IEEE8th InternationalSymposium on,2004,731-735
    [85] M. H. Zarrabizadeh, E. S. Sousa. A differentially coherent PN code acquisition receiver forCDMA systems. IEEE Transactions on Communication,1997,45(11):1456-1465
    [86] L. E. Miller, J. S. Lee. BER expressions for differentially detected π/4DQPSK Modulation.IEEE Transactions on Communication,1998,46(1):71-81
    [87] O. Shin, K. Lee. Differentially coherent combining for double-dwell code acquisition inDS/CDMA systems. IEEE Transactions on Communication,2003,51(7):1046-1050
    [88] M. Villanti, P. Salmi, G. E. Corazza. Differential post detection integration techniques forrobust code acquisition. IEEE Transactions on Communications,2007,55(11):2172-2184
    [89] G. E. Corazza, R. Pedone, M. Villanti. Frame acquisition for continuous and discontinuoustransmission in the forward link of satellite systems. International Journal of SatelliteCommunications Networks,2006,24(2):185-201
    [90] G. E. Corazza, R. Pedone. Generalized and average likelihood ratio testing for post detectionintegration. IEEE Transactions on Communications,2007,55(11):2159-2171
    [91] M. Zarrabizadeh, E. Sousa. A differentially coherent PN code acquisition receiver for CDMAsystems. IEEE Transactions on Communications,1997,45(11):1456-1465
    [92] K. Miller. Multidimensional Gaussian distributions. New York: Wiley,1964
    [93] C. E. Corazza, P. Salmi, A. Vanelli-Coralli, et al. Differential and non-coherent post detectionintegration techniques for the return link of satellite W-CDMA systems. Personal, Indoor andMobile Radio Communications,2002, the13thIEEE International Symposium on,2002,1:300-304
    [94] W. Suwansantisuk, M. Z. Win, L. A. Shepp. On the performance of wide-bandwidth signalacquisition in dense multipath channels. IEEE Transactions on Vehicle Technology,2005,54(5):1584-1594
    [95] R. Pedone. Theory of code and frame synchronization with applications to advanced wirelesscommunication systems:[Dissertation]. Bologna: University of Bologna,2006
    [96] G. E. Corazza, R. Pedone. Maximum likelihood post detection integration methods for satellitemobile systems. IEEE Wireless Communications Networks Conference,2003,2:227-232
    [97] G. E. Corazza, R. Pedone. Generalized and average post detection integration methods for codeacquisition. Proceeding IEEE International Symposiums of Spread Spectrum TechnlogyApplications,2004:207-211
    [98] G. E. Corazza. Closed-form distribution for soft differential detection in fast rice fading withdiversity. European Transactions on Telecommunications,1998,9(1):33-36
    [99]高凯,王世练,张尔扬.双门限自适应调整PN码捕获及其性能分析.通信学报,2005,26(2):56-65
    [100] O.-S. Shin, K. B. Lee. Double-dwell code acquisition with differentially coherent combining inDS/CDMA systems.12th IEEE International Symposim on Personal, Indoor and Mobile RatioCommunications,2001:D-6-D-10
    [101] A. Polydoros, C. Weber. A unified approach to serial search spread-spectrum codeacquisition-Parts Ι. IEEE Transactions on Communications,1984,32(5):542-560
    [102] S. Lee, J. Kim. Optimum threshold for double-dwell DS-SS code acquisition system in PCSchannel mode. Electronics Letters,1998,34(7):634-635
    [103] B. Long, H. Moon. Detection and false alarm probability of PN code acquisition in DS-CDMAsystem. Electronics Letters,1997,33(11):926-928
    [104] J. H. Kim, S. V. Sarin, Hyunseo Oh, et al. A robust code acquisition architecture fornon-coherent systems using dual digital matched filters. Vehicular Technology Conference,1998.48th IEEE (VTC98),1998,3:2297-2300
    [105] U. Madhow, M. B. Pursley. Mathematical modeling and performance analysis for a two-stageacquisition scheme for direct sequence spread-spectrum CDMA. IEEE Transactions onCommunications,1995,43(9):2511-2520
    [106] B. Y. Chung, C. Chien, H. Samueli, et al. Performance analysis of an all-digital BPSK DS-SSIF receiver. IEEE Journal on Selected Areas in Communications,1993,11(7):1096-1106
    [107] Hae-Sock Oh, Dong-Seog Han, Dil-Houm Park, et al. Adaptive double-dwell pn codeacquisition in direct sequence spread-spectrum systems.21st Century Military CommunicationsConference Proceedings (MILCOM2000),2000,1:139-143
    [108] W. Zhuang. Noncoherent hybrid parallel PN code acquisition for CDMA Mobilecommunications. IEEE Transactions on Vehicular Technology,1996,45(4):643-656
    [109] D. M. Dicarlo, C. L. Weber. Multiple dwell serial search: performance and application to directsequence code acquisition. IEEE Transactions on Communications,1983,31(5):650-659
    [110] B. N. Vejlgaard, P. Mogensen, J. B. Knudsen. Adaptive threshold settings in code phaseacquisition for the double dwell architecture. Vehicular Technology Conference Proceedings,2000(VTC2000),1:259-263
    [111] J. Simsa. Direct sequence spread spectrum code search acquisition in fading channel: meanacquisition time of serial search multiple dwell detector. MILCOM97Proceedings,1997,3:1356-1360
    [112] Wern-Ho Sheen, Sauz Chlou. Performance of multiple-dwell pseudo-noise code acquisitionwith I-Q detector on frequency-nonselective multipath fading channels. Seventh IEEEInternational Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC'96),1996,5(1):868-872
    [113] W. A. Gardner. Exploitation of spectral redundancy in cyclostationary signals. IEEE SignalProcessing Magazine,1991,8(2):14-36
    [114] W. A. Gardner. Statistical spectral analysis: a nonprobabilistic theory. Englewood Cliffs, NJ:Prentice-Hall,1987
    [115] W. A. Gardner. Introduction to random process with applications to signals and systems.Second ed. NY: McGraw-Hill,1990
    [116] W. A. Brown. On the theory of cyclostationary signals. Department of Electrical Engineeringand Computer Science:[Dissertation]. Davis: University of California,1987
    [117] W. A. Gardner. Signal interception: a unifying theoretical framework for feature detection.IEEE Transactions on Communications,1988,36(8):897-906
    [118] W. A. Gardner. The role of spectral correlation in design and performance analysis ofsynchronizers. IEEE Transactions on Communications,1986,34(11):1089-1095
    [119] W. A. Gardner, C. K. Chen. Interference-tolerant time-difference-of-arrival estimation formodulated signals. IEEE Transactions on Acoustics, Speech, and Signal Processing,1988,36(9):1385-1395
    [120] W. A. Gardner, C. K. Chen. Signal-selective time-difference-of-arrival estimation for passivelocation of manmade signal sources in highly corruptive environments. IEEE Transactions onSignal Processing,1992,40(5):1168-1184
    [121] B. G. Agee, S. V. Schell, W. A. Gardner. Spectral self-coherence restoral: a new approach toblind adaptive signal extraction using antenna arrays. Proceedings of the IEEE,1990,78(4):753-767
    [122] S. V. Schell. Exploitation of spectral correlation for signal-selective direction finding.Department of Eletrical Engineering and Computer Science, Unverisity of California, Davis,1990
    [123] W. A. Gardner, L. E. Franks. Characterization of cyclostationary random signal processes.IEEE Transactions on Information Theory,1975,21(1):4-14
    [124] W. A. Gardner, W. A. Brown. Frequency-shift filtering theory for adaptive co-channelinterference removal. Twenty-Third Asilomar Conference on Signal, Systems and Computers,1989:562-567
    [125] W. A. Gardner, S. Venkataraman. Performance of optimum and adaptive frequency-shift filtersfor co-channel interference and fading. Proceedings of the Twenty-Fourth Annual AsilomarConference of Signals, Systems, and Computer,1990,1:242
    [126] J. H. Ree, T. C. Hsia. The performance of time-dependent adaptive filters for interferencerejection. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(8):1373-1385
    [127] W. A. Gardner. Spectral characterization of n-th order cyclostationarity. Proceedings of theIEEE Fifth ASSP Workshop on Spectrum Estimation and Modeling,1990:251-255
    [128] W. A. Gardner, C. M. Spooner. Higher order cyclostationarity, cyclic cumulants, and cyclicpolyspectra. Proceedings of the1990International Symposium on Information Theory and ItsApplications (ISITA’90),1990:355-358
    [129] C. M. Spooner, W. A. Gardner. Exploitation of higher-order cyclostationarity for weak-signaldetection and time-delay estimation. IEEE Sixth SP Workshop on Statistical Signal and ArrayProcessing,1992:197-201
    [130] W. A. Gardner, T. L. Archer. Exploitation of cyclostationarity for indentifying the volterrrakernels of nonlinear systems. IEEE Transactions on Information Theory,1993,39(2):535-542
    [131] A. Punchihewa, O. A. Dobre, Q. Zhang, et al. The nth-order cyclostationary of OFDM signalsin time dispersive channels.42ndAsilomar Conference on Signals, Systems and Computers,2008:574-580
    [132] Z. T. Huang, Y.-Y. Zhou, W.-L. Jiang, et al. Joint estimation of Doppler andtime-difference-of-arrival exploiting cyclostationary property. IEE Proceedings-Radar, Sonarand Navigation,2002,149(4):161-165
    [133] H. C. So, P. C. Ching, Y. T. A. Chan. New algorithm for explicit adaption of time delay. IEEETransactions on Signal Processing,1994,42(7):1816-1820
    [134] A. A. Zaikin, L. Lopez, J. P. Baltanas, et al. Vibrational resonance in a noise-induced structure.Phys. Rev. E66,2002,66(1):011106
    [135] D. Middleton. Non-Gaussian noise models in signal processing for telecommunications: newmethods and results for class A and class B noise models. IEEE Transactions on InformationTheory,1999,45(4):1129-1146
    [136] J. Lee, I. Song, H. Kwon, et al. Locally optimum detection of signals in multiplicative andfirst-order Markov additive noises. IEEE Transactions on Information Theory,2008,54(1):219-234
    [137] I. Song, S. A. Kassam. Locally optimal detection of signals in a generalized observation model:the random signal case. IEEE Transactions on Information Theory,1999,36(3):516-530
    [138] S. Haykin. Communication Systems.4th ed., Danvers, MA: John Wiley&Sons, Inc.,2001,61-68
    [139] I. Song, T. C. Uhm. Multiplicative noise model and composite detection. Radar and SignalProcessing, IEE Proceedings,1991,138(6):531-538
    [140] W. Li, E. Todorov, R. E. Skelton. Estimation and control of systems with multiplicative noisevia linear matrix inequalities. IEEE American Control Conference,2005,3:1811-1816
    [141] R. D. Yates, D. J. Goodman. Probability and Stochastic Processes.2nd Ed. Danvers: MA: JohnWiley and Sons., Inc.,2005
    [142] G. Zhou, G. B. Giannakis. Estimating coupled harmonics in additive and multiplicative noise.Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems andComputers,1993:1250-1254
    [143] G. Zhou, G. B. Giannakis. Comparison of higher-order and cyclic approaches of estimatingrandom amplitude harmonics. IEEE Signal Processing Workshop on Higher-Order Statistics,1993:225-229
    [144] C. Macabiau. Signal quality monitoring for protection of GBAS users against evil waveforms.Proceedings of the13th International Technical Meeting of the Satellite Division of the Instituteof Navigation (ION GPS2000),2000,1202-1211
    [145] C. Ma, G.-I. Jee, G. MacGougan, et al. GPS signal degradation modeling. Proceedings of the14th International Technical Meeting of the Satellite Division of the Institutue of Navigation(ION GPS2001),2001,882-893
    [146] G. MacGougan, G. Lachapelle, R. Nayak, et al. Overview of GNSS signal degradationphenomena. International Symposium on Kinematic Systems in Geodesy, Geomatics andNavigation,2001,87-100
    [147] R. Lupas, S. Verdu. Near-far resistant of multiuser detector in asynchronous channel. IEEETransactions on Communications,1990,38(4):142-153
    [148] R. Prasad, M. Jansen. Near-far-effects on performance of DS/SS CDMA systems for personalcommunication networks. IEEE Transactions on Communications,1993,6(5):710-713
    [149] G. Lopez-Risueno, G. Seco-Granados. CN0estimation and near-far mitigation for GNSS indoorreceivers. IEEE61stVehicular Technology Conference(VTC2005-Spring),2005,4:2624-2628
    [150] J. Raquet, G. Lachapelle, W. Qiu, et al. Development and testing of a mobile pseudoliteconcept for precise positioning. Navigation,1996,43(2):149-165
    [151] H. Mahmood, C. Comaniciu. Location assisted routing for near-far effect mitigation in wirelessnetworks. International Conference on Collaborative Computing: Networking, Applications andWorksharing,2005
    [152] J.-P. M. G. Linnartz, R. Hekmat, R.-J.Venema. Near-far effects in land mobile random accessnetworks with narrow-band Rayleigh fading channels. IEEE Transactions on VehicularTechnology,1992,41(1):77-90
    [153] N. F. Zein, T. G. Clarkson. Reduction of the near-far effect in a fast-frequency-hoppingreceiver. IEE Colloquium on Spread Spectrum Techniques for Radio Communication Systems,1992:8/1-8/5
    [154] R. M. Harris. Coherent frequency exchange keying helps to overcome the 'near-far' effect inmobile satellite communications. IEE Colloqium on Spectrally Efficient Techniques forSatellite Communications,1994:2/1-2/10
    [155] N. Grami, S. A. Al-Semari. Capacity of slotted ALOHA under Nakagami fading with near-farand shadowing effects. Electronics Letters,1999,35(7):1419-1421
    [156] M. Tangemann. Near-far effects in adaptive SDMA systems. Sixth IEEE InternationalSymposium on Personal, Indoor and Mobile Radio Communications,'Wireless: Merging Ontothe Information Superhighway'(PIMRC'95),1995:1293
    [157] S. S. H. Wijayasuriya, G. H. Norton, J. P. McGeehan. A near-far resistant algorithm to combateffect of fast fading in multi-user DS-CDMA systems. Third IEEE International Symposium onPersonal, Indoor and Mobile Radio Communications(PIMRC'92),1992:645-649
    [158] P. H. Madhani, P. Axelrad, K. Krumvieda, et al. Application of successive interferencecancellation to the GPS pseudolite near-far problem. IEEE Transactions on Aerospace andElectronic Systems,2003,39(2):481-488
    [159] J. W. Cooley, J. W. Tukey. An Algorithm for the machine calculation of complex Fourier feries.Math Computation,1965,19(90):297~301
    [160] P. Duhamel, H. Hollmann. Split-radix FFT algorithm. Electronic Letters,1984,20:14-16
    [161] Daisuke Takahashi. An extended split-radix FFT algorithm. IEEE Signal Processing Letters,2001,8(5):145-147
    [162] K. J. Bowers, R. A. Lippert, R. O. Dror, et al. Improved twiddle access for fast Fouriertransforms. IEEE Transactions on Signal Processing,2010,58(3):1122-1130
    [163] H. V. Sorensen, M. T. Heideman, C. S. Burrus. On computing the split-radix FFT. IEEETransactions on Acoustics, Speech, and Signal Processing,1986,34(1):152-156
    [164] J. W. Cooley, J. W. Tukey. An algorithm for the machine computation of complex Fourierseries. Mathmatics Computation,1965,19:297-301
    [165] Y. Voronenko, M. Puschel. Algebraic signal processing theory: Cooley-Tukey type algorithmfor real DFTs. IEEE Transactions on Signal Processing,2009,57(1):205-222
    [166] Y. Jiang, T. Zhou, Y. Tang, et al. Twiddle-factor-based fft algorithm with reduced memoryaccess. Parallel and Distributed Processing Symposium, Proceedings International(IPDPS2002),2002:70-77
    [167] G. D. Bergland. A fast Fourier transform algorithm using base8iterations. Mathematics ofComputation,1968,22(102):275-279
    [168] S. Bouguezel, M. O. Ahmad, M. N. S. Swamy. Improved radix-4and radix-8FFT algorithms.Proceedings of2004International Symposium on Circuits and Systems (ISCAS '04),2004:561-564
    [169] W. H. Lin, W. L. Mao, H. W. Tsao, et al. Acquisition of GPS software receiver usingsplit-radix FFT. IEEE International Conference on Systems, Man and Cybernetics(SMC '06),2006:4608-4613
    [170] J. E. Volder. The CORDIC trigonometric computing technique. IRE Trans on ElectronicComputing,1959, EC-8(3):330-334
    [171] R. Andraka. A survey of CORDIC algorithms for FPGAs. Proceedings ACM/SIGDAConference,1998:191-200
    [172] H. M. Ahmed, J. M. Delosme, M. Morf. Highly concurrent computing structure for matrixarithmetic and signal processing. IEEE Computation Magazine,1982,15(1):65-82
    [173] A. M. Despain. Fourier transform computations using CORDIC Iterations. IEEE Transactionson Computers,1974,23(10):993-1001
    [174] W. J. Duh, J. L. Wu. Implementing the discrete cosine transform by using CORDIC techniques.1989International Symposium on VLSI Technology, Systems and Applications,1989:281-85
    [175] J. Duprat, J. M. Muller. The CORDIC algorithm: new results for fast VLSI implementation.IEEE Transactions on Computers,1993,42(2):168-178
    [176] Y. H. Hu, S. Naganathan. A Novel implementation of chirp Z-transformation using a CORDICprocessor. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(2):352-354
    [177] Y. H. Hu, S. Naganathan. An angle recording method for CORDIC algorithm implementation.IEEE Transactions on Computers,1993,42(1):99-102
    [178] C. Mazenc, X. Merrheim, J. M. Muller. Computing functions arccos and arcsin using CORDIC.IEEE Transactions on Computers,1993,42(1):118-122
    [179] M. Garrido, J. Grajal. Efficient memoryless CORDIC for FFT computation. IEEE InternationalConference on Acoustics, Speech and Signal Processing(ICASSP2007),2007:II-113-II-116
    [180] Y. H. Hu. CORDIC-based VLSI architectures for digital signal processing. IEEE SignalProcessing Magazine,1992,9(3):16-35
    [181] D. P. Morgan. History of SAW devices. Frequency Control Symposium,1988. Proceedings ofthe1988IEEE International,1998:439-460
    [182] A. Pohl. A review of wireless SAW sensors. IEEE Transactions on Ultrasonics, Ferroelectricsand Frequency Control,2000,47(2):317-332
    [183] K. Tsubouchi, T. Tomioka, T. Sato, et al. An asynchronous spread spectrum wireless-modemusing a SAW convolver. IEEE1988Ultrasonics Symposium Proceedings,1988,1:213-218
    [184] D. P. Morgan, J. M. Hannah. Correlation of long spread-spectrum waveforms using a SAWconvolver/recirculation loop sub-system.1976Ultrasonics Symposium,1976:436-440
    [185] D. P. Morgan, J. M. Hannah. Correlation of Long Sequences Using a SAW Convolver andRecirculation Loop.1975Ultrasonics Symposium,1975:189-192
    [186] J. M. Hannah, D. P. Morgan, J. H. Nash, et al. Code synchronisation system using cascadedsurface acoustic wave convolvers.1978Ultrasonics Symposium,1978:557-560
    [187] D. P. Morgan, J. M. Hannah. Correlation of long sequences by a surface-acoustic-waveconvolver, with application to spread-spectrum communication. Electronics Letters,1975,11(9):193-195
    [188] D. P. Morgan, J. M. Hannah. Surface wave recirculation loops for signal processing. IEEETransactions on Sonics and Ultrasonics,1978,25(1):30-43
    [189] D. P. Morgan, J. M. Hannah, J. H. Collins. Spread-spectrum synchronizer using a SAWconvolver and recirculation loop. Proceedings of the IEEE,1976,64(5):751-753
    [190] H. Nakase, K. Tsubouchi. Novel narrowband interference rejection for asynchronous spreadspectrum wireless modem using a SAW convolver. IEEE Second International Symposium onSpread Spectrum Techniques and Applications(ISSTA92),1992:267-270
    [191] K. Tsubouchi, N. Mikoshiba. An asynchronous multi-channel spread spectrum transceiverusing a SAW convolver. Ultrasonics Symposium,1989. Proceedings. IEEE1989:165-172
    [192] K. takahashi, S. Kameda, H. Nakase, et al. SS-CDMA flexible wireless network: approximatelysynchronized CDMA modem for uplink. IEEE International Conference onCommunications(ICC2001),2001,10:3012-3016
    [193] J. S. Cha, S. Kameda, M. Yokoyama, et al. New binary sequences with zero-correlationduration for approximately synchronized CDMA. Electronics Letters,2000,36(11):991-993
    [194] G. Schrom, W. Pietsch, L. Reindl, et al. Real-time signal analysis with the Wigner distributionusing a SAW convolver. IEEE4thInternational Symposium on Spread Spectrum Techniquesand Applications Proceedings,1996:800-803
    [195] D. P. Morgan. General analysis of bilinear SAW convolvers. Electronics Letters,1981,17(7):265-267
    [196] H. Engan, K. A. Ingebrigtsen, A. R nnekleiv. Design of SAW convolver for processing MSKmodulated waveforms. Electronics Letters,1980,16(24):908-909
    [197] V. V. Proklov, V. N. Kurskii, O. A. Byshevski-Konopko. Peculiarities of spread spectrumsignals orthogonalization in the SAW-Based processor for the integrated GSM/CTDMAair-interface for furture mobile communications. IEEE Sixth International Symposium onSpread Spectrum Techniques and Applications,2000,2:681-684

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700