胰腺癌特异性microRNAs的筛选及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:胰腺癌恶性程度极高,是消化系统第二大恶性肿瘤,在肿瘤死亡原性诱因中列第四位,是5年生存率最低的恶性肿瘤,而缺乏早期诊断手段和化疗耐药是导致胰腺癌高死亡率的主要原因。胰腺癌早期诊断率低,导致95%以上的胰腺癌患者在明确诊断时肿瘤已进入进展期,手术虽是根治胰腺癌的唯一方法,但根治性手术切除率仅15-20%;化疗是胰腺癌主要的辅助治疗手段,然而,肿瘤细胞对化疗药物产生的耐药性严重地影响了疗效。因此,提高早期胰腺癌的诊断率、扭转胰腺癌耐药,是提高胰腺癌的治疗效果和改善预后的关键。
     近年来,人们在研究中发现,microRNAs (miRNAs)是稳定存在于外周血中一种候选的肿瘤标志物,同时与肿瘤耐药密切相关。miRNAs是近年来发现的一系列内源性单链非编码的小RNAs分子,长度约22个核苷酸。其广泛分布于真核生物中。miRNAs常以基对相互原则与靶信使RNA (mRNA)的3’端的非翻译区完全或不完全配对,降解靶信使RNA或阻遏其转录后翻译。对组织分化、细胞分化、凋亡等正常的生理过程起到重要的调控作用。最近多项研究发现,若干miRNAs在各种肿瘤组织中的表达水平有不同程度上调或下调,这一现象初步揭示了肿瘤发生、进展、耐药与miRNAs表达量及种类之间存在相关性,为逆转现状,从根本上改善肿瘤预后提供新的途径。
     目的:在胰腺癌中,寻找具有潜在诊断价值的外周血特异性miRNAs,探索胰腺癌耐药相关的miRNAs,并通过调控miR-155在胰腺癌早期抑制]hMLH1表达改善胰腺癌预后。探索miRNAs对于胰腺癌早期诊断、治疗和指导预后的价值。
     方法:
     1、人胰腺癌组织和外周血特异性miRNAs表达谱的建立:①建立利用实时定量PCR(Real-time PCR)对临床血浆标本中循环miRNAs进行定量测定的技术平台;②采用基于qPCR(quantitative PCR)的TaqMan低密度阵列(TaqMan low density array, TLDA)技术,对健康个体、胰腺癌和胰腺炎患者血浆标本中的循环miRNAs进行初步分析,建立人胰腺癌、胰腺炎外周血特异性miRNAs表达谱;③在筛选结果中,选择5种在胰腺癌中呈差异表达的miRNAs进行验证(let-7b、miR-miR-363、miR-942、miR-645、miR-190b)。
     2、耐药相关miRNAs筛选:①cck-8法验证胰腺癌耐药(耐健泽、耐5-fu、耐阿霉素)细胞株的耐药性;②利用miRNAs芯片技术比较人胰腺癌耐药(耐健泽、耐5-fu、耐阿霉素)细胞株与非耐药细胞株的miRNA表达差异;③根据表达谱结果,应用real-time PCR对部分差异表达的miRNA进行验证。
     3、探索与胰腺癌早期事件相关的miR-155的作用机制及其指导治疗、改善预后的意义:①应用双荧光素酶报告基因及Western Blot的方法探索miR-155下游潜在靶基因hMLH1;②应用免疫组化方法研究其与胰腺癌临床预后的关系。
     结果:
     1、①建立了循环miRNAs定量检测方法;②在胰腺癌、胰腺炎、正常人的血浆中共检测到188种miRNAs。胰腺癌与胰腺炎相比,有6条显著上调、1条显著下调(P<0.01);胰腺癌和胰腺炎相比,有10条显著上调,9条显著下调(P<0.01);③验证结果显示,miR-942在胰腺癌与健康人外周血中表达呈显著差异(P=0.023)。
     2、①SW1990的阿霉素、氟尿嘧啶和吉西他滨的耐药株的耐药性分别是亲本株的12.57、133.68和438.96倍;②与亲本株相比,在SW1990/Gem细胞株中差异表达显著的miRNAs有58条,在SW1990/Adm细胞株中有59条,在SW1990/5-Fu细胞株中有47条。在SW1990/Gem、5-Fu两个耐药株中同时呈现显著差异的miRNAs14条,在SW1990/Gem、Adm两个耐药株中同时呈现显著差异的miRNAs22条,在SW1990/5-Fu、Adm两个耐药株中同时呈现显著差异的miRNAs 12条;其中3个耐药株中同时呈现显著差异的miRNAs7条;即miR-33a、33b、1285、486-5p、99b*、125a-3p、200c*在吉西他滨、氟尿嘧啶、阿霉素3株耐药株中的表达与亲本株相比差异具有显著性(P<0.05);③文献检索胰腺癌耐药相关基因,及在其它肿瘤中调控上述基因的miRNAs,并与本研究的筛选结果进行比对。其中miR-34a、424、449a、497、451、21和miR-101在胰腺癌耐药株中呈差异表达;④应用实时荧光定量(Real Time-PCR)的方法对miR-486-5p、miR-125a-3p、miR-99b*、miR-1285进行验证,结果与芯片的结果一致,且均存在显著差异(P<0.05)
     3、①hMLH1是miR-155的靶基因;②miR-155通过与hMLH1的3’-UTR区不完全配对,抑制mRNA翻译;③hMLH1与胰腺癌的恶性进展及预后相关。
     结论:
     1、建立成熟的循环miRNAs定量检测方法;初步建立胰腺癌miRNAs表达谱;has-mir-942可能成为胰腺癌血清特异性肿瘤标记物,具有潜在的早期诊断价值。
     2、初步建立胰腺癌耐药相关miRNAs表达谱,其中miR-486-5p、miR-99b*、miR-125a-3p、miR-1285是潜在的与胰腺癌多药耐药相关的上游调控基因,验证其差异表达可能成为对耐药人群早期诊断的依据,进而通过指导个体化治疗改善预后;明确与其他肿瘤耐药相关的miRNAs (miR-34a、424、449a、497、451、21和miR-101)亦在胰腺癌miRNAs耐药谱中呈现差异表达,为进一步验证其在胰腺癌耐药机制中的作用提供线索。
     3、MiR-155通过下调靶基因hMLH1调控胰腺癌的恶性进展。
Background Pancreatic cancer is one of the most aggressive tumor and continues to be a major unsolved health problem. It is the second most frequent gastrointestinal malignancy with poor prognosis, and the fourth leading cause of cancer deaths in America and has the lowest 5-year survival rate among all malignancies. The high mortality rate for pancreatic cancer is primarily due to diagnosis mostly at advanced stage no sensitive and specific tools of early detection. Furthermore, the conventional treatment approaches, such as surgery, chemotherapy, or combinations of both, have had little impact on the natural course of this aggressive neoplasm. Although surgical resection remains the only curative treatment, around 15-20% of patients have resectable disease, only around 20% of them survive to 5 years. For locally advanced, unresectable, and metastatic disease, chemotherapy seems to hold the greatest promise, but the dismal prognosis is partly due to its intrinsic and extrinsic drug resistance characteristics. Pancreatic cancer remain a challenging problem during the 21st century. However, improvements in early detection and increasing the drug sensitive could be novel strategies to prolong substantially rvival of patients with this disease.
     The microRNAs (miRNAs) are a group of small RNAs, which are single-stranded and consist of 18-25 nucleotides (~22 nt). They do not code for any protein or peptide; however, they regulate gene expression by multiple mechanisms. It is commonly accepted that mature miRNAs regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNA, causing degradation of mRNA or inhibition of their translation to functional proteins. miRNAs play important roles in many normal biological processes; however, the aberrant miRNA expression and its correlation with the development and progression of cancers is an emerging field.
     Recently, miRNAs have received increasing attention in the field of cancer research. miRNA alterations are involved in the initiation and progression of human cancer. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target proteincoding genes involved in cancer. miRNAs could be used as biomarkers for diagnosis of cancer, prediction of prognosis and to constitute a novel target for cancer treatment. Importantly, some miRNAs could regulate the formation of cancer stem cells and the acquisition of epithelial-mesenchymal transition, which are critically associated with drug resistance. Moreover, some miRNAs could target genes related to drug sensitivity, resulting in the altered sensitivity of cancer cells to anti-cancer drugs. Therefore, the study of miRNAs holds much promise for improving diagnosis and treatment of pancreatic cancer.
     Objective 1、To indentify and validate the expression patterns of miRNAs associated pancreatic cancer's diagnosis and drug resistance.2、To validate targeting of miR-155 by hMLHl induced cancer advance.
     Methods 1.Detection of Human pancreatic cancer based on measurement of a pancreatic cancer-expressed miRNAs in Plasma①To investigate the feasibility of identifing specific circulating miRNAs as Potential markers for diagnosis of pancreas-related disease and to establish the approaches of blood-based miRNAs cancer detection by using Real-time PCR;②Using qPCR-based expression profiling (TaqMan low density arrays, TLDA) followed by Real-Time quantitative Polymerase Cycle Reaction (RT-qPCR) validation, we compared the levels of circulating miRNAs in plasma samples from 20 pancreatic cancer patients,6 Pancreatitis patients and 5 matched healthy controls.③To further explore the potential roles of these circulating miRNAs, let-7b、miR-miR-363、miR-942、miR-645、miR-190b, using qPCR between pancreatic cancer and healthy control.
     2. To investigate the involvement of miRNAs in drug-resistant of pancreatic cancer cell lines①The drug resistance of SW1990/ ADM, SW1990/ 5Fu and SW1990/ GEM cells was evaluated using CCK-8 assay.②③High-throughput analysis of the miRNAs profile in a panel of adriamycin- (SW1990/ADM), 5-fluorouracil- (SW1990/5Fu) and gemcitabine resistant (SW1990/GEM) cells was assessed using a microarray platform and subsequent validation with qPCR.
     3.To confirm the possible mechanisms of inducing mortality in pancreatic cance①To explore the miR-155 target gene hMLH1 using dual luciferase reporter assay validation, PCR and Western Blot.②A total of 43 patients with pancreatic cancer underwent surgical resection were included. Expression of hMLH1 in tumor and para-tumor tissues was determined by immunohistochemistry. The relationship between hMLH1 expression and clinicopathological and prognostic variables were evaluated.
     Results 1.①We established a novel approach to test the miRNAs in plasma.②We established a list of likely blood-based miRNAs biomarker candidates for pancreatic cancer and Pancreatitis patients. The data indicated that a total of 188 miRNAs could be detected. Compared the levels of circulating miRNAs from pancreatic cancer and Pancreatitis group or from pancreatic and healthy group, there are 7 and 19 miRNAs dysregulating significantly respective (P<0.01)③We chose to analyze 5 candidates in a case-control cohort of plasma samples collected from 20 individuals with pancreatic cancer and 22healthy age-matched control individuals. Of all of the candidates, miR-942 showed the greatest differential expression in the pancreatic cancer compared with the healthy control (P=0.023)
     2.①The drug resistance index of SW1990/ADM, SW1990/5Fu, SW1990/ GEM ells relative to the SW1990 cells was 12.57、133.68 and 438.96, respectively.②The microarray indicated that 59,47,58 miRNAs were differentially expressed in ADM,5Fu, GEM resistant cells, respectively, with a>2-fold change. Seven miRNAs (hsa-miR-33a、33b、1285、486-5p、99b*、125a-3p、200c*) were always diversely expressed in all the resistant cell lines. Another seven miRNAs (miR-34a、424、449a、497、451、21、101), inducing drug resistance in other tumors, were diversely expressed in resistant cell lines with a>1-fold change.③To further validate our results, miR-486-5p、miR-99b*、miR-125a-3p, four of the most differentially expressed miRNAs, performed frequent deregulation as same as the microarray.
     3.①Dual luciferase reporter assay was carried out and showed that Hmlh1 is regulated by miR-155directly.②hMLH1 induced the development and associated with the prognosis in pancreatic cancer.
     Conclusion 1. We established a novel approach to test the miRNAs in plasma and established a list of likely blood-based miRNAs biomarker candidates for pancreatic cancer and pancreatitis patients. has-mir-942 identified as a candidate biomarker of pancreatic neoplasia. In summary, we show the feasibility of developing plasma miRNAs profiling as a sensitive and specific blood-based biomarker assay for pancreatic cancer that has the potential of translation to the clinic with additional improvements in the future.
     2. Drug resistance cell lines showed a different miRNAs expression profile from its parental SW1990 cells, suggesting the involvement of miRNAs in tumor cells drug resistance. Four miRNAs, miR-486-5p, miR-99b*, miR-125a-3p and miR-1285, identified as a potential biomarker of drug resistance in pancreatic cancer. This finding provides a experimental basis for further study of mechanism underlying the drug resistance of pancreatic cancer.
     3. hMLH1 was confirmed as the target of miR-155 in pancreatic cancer cell line. The result of modulation of hMLH1 by miR-155 induced mortality of pancreatic cancer. miR-155 is an potential treatment target to prolong the life of patients with pancreatic cancer.
引文
[1]Jemal A, Siegel R, Xu J, et al. Cancer Statistics,2010[J]. CA Cancer J Clin.2010 Sep-Oct;60(5):277-300.
    [2]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A.2008 Jul 29;105(30):10513-8.
    [3]Chen x, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res.2008 Oct;18(10):997-1006.
    [4]Resnick KE, Alder H, Hagan JP, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform[J]. Gynecol Oncol.2009 Jan;112(1):55-9.
    [5]Gilad S, Meiri E, Yogev Y, Benjamin S, et al. Serum microRNAs are promising novel biomarkers[J]. PLoS One.2008 Sep 5;3(9):e3148.
    [6]Mees ST, Mardin WA, Sielker S, et al. Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas[J]. Ann Surg Oncol.2009 Aug;16(8):2339-50.
    [7]Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma [J]. Oncogene.2007 Jun 28;26(30):4442-52.
    [8]Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther.2009 Feb;8(4):340-6.
    [9]Osaki M, Takeshita F, Ochiya T. MicroRNAs as biomarkers and therapeutic drugs in human cancer[J]. Biomarkers.2008 Nov;13(7):658-70.
    [10]Wong TS, Liu XB, Wong BY, Ng RW, et al. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue[J]. Clin Cancer Res. 2008 May 1;14(9):2588-92.
    [11]Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Res.2005 Nov 27;33(20):e179.
    [12]Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer[J]. Cancer Res. 2005 May 1;65(9):3509-12.
    [13]Mees ST, Schleicher C, Mardin WA, et al. Analyzing miRNAs in Ductal Adenocarcinomas of the Pancreas[J]. J Surg Res.2009 Oct 25.
    [14]Ura S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma[J]. Hepatology.2009 Apr;49(4):1098-112.
    [1]Jemal A, Siegel R, Xu J, et al. Cancer Statistics,2010[J]. CA Cancer J Clin.2010 Sep-Oct;60(5):277-300.
    [2]Liang XJ, Aszalos A. Multidrug transporters as drug targets[J]. Curr Drug Targets. 2006 Aug;7(8):911-21.
    [3]方福德.microRNA的研究方法与应用:中国协和医科大学出版社;2008
    [4]牛备战,陈革,李丽君,等吉西他滨诱导胰腺癌细胞株SW1990的耐药作用与硫氧还蛋白还原酶活性的改变[J]中国医学科学院学报,2005,27(5):606-610.
    [5]郭俊超,赵玉沛,廖泉,等胰腺癌耐药细胞株SW1990/5-Fu的建立、鉴定及生物学特性[J]中国医学科学院学报2005 27(5):592-596.
    [6]张立阳,赵玉沛,吴元德,等胰腺癌阿霉素耐药细胞株SW1990/ ADM的建立及其耐药机理研究[J]基础与实验研究2005 12(1):0046-50
    [7]Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 inresistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J]. Mol Cancer Ther. Mol Cancer Ther.2008 Jul;7(7):2152-9.
    [8]Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL-2 in human gastric cancer cells. Int J Cancer.2008 Jul 15;123(2):372-9.
    [9]Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth[J]. Oncogene.2007 Apr 26;26(19):2799-803.
    [10]Hwang JH, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer[J]. PLoS One.2010 May 14;5(5):e10630.
    [11]Li Y, VandenBoom TG 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by Natural Agents Leads to the Reversal of Epithelial-to-Mesenchymal Transition in Gemcitabine-Resistant Pancreatic[J]. Cancer Res.2009,69(16):6704-6712.
    [12]Garofalo M, Quintavalle C, Di Leva G, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer[J]. Oncogene.2008 Jun 19;27(27):3845-55.
    [13]Sorrention A, Liu CG, Addario A, et al. Role of microRNAs in drug-resistant ovarian cancer cells[J]. Gynecol Oncol.2008 Dec;111(3):478-86.
    [14]Miller TE, Ghoshal K, Ramaswamy B, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting P27 Kip1 [J]. J Biol Chem.2008 Oct 31;283(44):29897-903.
    [1]Ambros V. The functions of animal microRNAs. Nature.2004 Sep 16;431 (7006):350-5.
    [2]Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J]. JAMA.2007 May 2;297(17):1901-8.
    [3]Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene.2007 Jun 28;26(30):4442-52.
    [4]Jiang J, Lee EJ, Gusev Y, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines[J]. Nucleic Acids Res.2005 Sep 28;33(17):5394-403.
    [5]Jin Wang, Jinyun Chen, Ping Chang, et al. MicroRNAs in Plasma of Pancreatic Ductal Adenocarcinoma Patients as Novel Blood-Based Biomarkers of Disease[J]. Cancer Prev Res 2009;2:807-813
    [6]Nils H, Jan-Bart MK, Joshua TM, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther.2009 8(4):340-346.
    [7]Kondo E, Furukawa T, Yoshinaga K, Kijima H, Semba S, Yatsuoka T, Yokoyama T, Fukushige S, Horii A. Not hMSH2 but hMLH1 is frequently silenced by hypermethylation in endometrial cancer but rarely silenced in pancreatic cancer with microsatellite instability[J]. Int J Oncol 2000; 17:535-541
    [8]Yamamoto H, Itoh F, Nakamura H, Fukushima H, Sasaki S, Perucho M, Imai K. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability[J]. Cancer Res 2001; 61:3139-3144
    [9]John TM, Thomas CS, Lisa AB, et al. Defective DNA Mismatch Repair in Long-Term (>3 Years) Survivors with Pancreatic Cancer[J]. Pancreatology 2005 5:220-228
    [10]Valeri N, Gasparini P, Fabbri M, et al. Modulation of mismatch repair and genomic stability by miR-155[J]. Proc Natl Acad Sci U S A.2010 13;107(15):6982-7.
    [11]Matsukura S, Miyazaki K, Yakushiji H, et al. Combined loss of expression of O6-methylguanine-DNA methyltransferase and hMLHl accelerates progression of hepatocellular carcinoma[J].Journal of Surgical Oncology 2003;82:194-200.
    [12]Catto JW, Xinarianos G, Burton JL. et al. Differential expression of hMLH1 and hMSH2 is related to bladder cancer grade, stage and prognosis but not microsatellite instability[J]. Int J Cancer.2003 Jul 1;105(4):484-90.
    [13]Yamamoto H, Itoh F, Nakamura H, Fukushima H, Sasaki S, Perucho M, Imai K: Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability[J]. Cancer Res 2001; 61:3139-3144.
    [14]Goggins M, Offerhaus GJ, Hilgers W, Griffi n CA, Shekher M, Tang D, Sohn TA, Yeo CJ, Kern SE, Hruban RH:Pancreatic adenocarcinomas with DNA replication errors are associated with wild-type K-ras and characteristic histopathology[J]. Am J Pathol 1998; 152:1502-1507.
    [15]Ghimenti C, Tannergard P, Wahlberg S, Liu T, Giulianotti PG, Mosca F, Fornaciari G, Bevilacqua G, Lindblom A, Caligo MA:Microsatellite instability and mismatch repair gene inactivation in sporadic pancreatic and colon tumours[J]. Br J Cancer 1999; 80:11-16.
    [16]Nakata B, Wang YQ, Yashiro M, Nishioka N, Tanaka H, Ohira M, Ishiwaka T, Nishino H, Hirakawa K:Prognostic value of microsatellite instability in resectable pancreatic cancer[J]. Clin Cancer Res 2002; 8:2536-2540.
    [17]赵作伟,李曼,纪军,等胰腺癌微卫星不稳定性、hMLH1启动子甲基化及其蛋白表达研究[J]中华实验外科杂志2006 23(5):546-548
    [18]Carthew RW. Gene regulation by microRNAs[J]. Curr Opin Genet Dev.2006 Apr;16(2):203-8.
    1. Beger HG, Rau B, Gansauge F, et al.Treatment of pancreatic cancer:challenge of the facts[J]. World J Surg.2003;27(10):1075-84.
    2. Mirnezami AH, Pickard K, Zhang L,et al. MicroRNAs:key players in carcinogenesis and novel therapeutic targets[J]. Eur J Surg Oncol. 2009;35(4):339-47.
    3. Szafranska AE, Davison TS, John J,et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene 2007; 26:4442-52.
    4. Priyanka Pandey, Benedikt Brors, Prashant K Srivastava,et al. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease[J]. BMC Genomics 2008,9:624.
    5. Schmittgen TD, Jiang J, Liu Q,et al. A high-throughput method to monitor the expressionof microRNA precursors [J]. Nucleic Acids Res 2004; 32:e43.
    6. Dillhoff M,Liu J,Frankel W,et al.MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival [J]. Gastrointest Surg.2008;12:2171-6.
    7. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer.2007; 120:1046-54.
    8. Bloomston M,Frankel WL,Petrocca F,et al.MicroRNA expression patterns to differentiate pancreatic adenocarcinomafrom normal pancreas and chronic pancreatitis[J]. JAMA 2007; 297:1901-08.
    9. Mees ST,Mardin WA,Sielker S,et al.Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas[J].Ann Surg Oncol.2009;16:2339-50.
    10. Habbe N, Koorstra JB, Mendell J, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther.2009;8:340-6.
    11. Fan AC, Goldrick MM, Ho J, et al. A quantitative PCR method to detect blood microRNAs associated with tumorigenesis in transgenic mice[J]. Mol Cancer. 2008;7:74.
    12. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci USA. 2008;105:10513-8.
    [1]Jemal A, Siegel R, Xu J, et al. Cancer Statistics,2010[J]. CA Cancer J Clin.2010 Sep-Oct;60(5):277-300.
    [2]Liang XJ, ASZALO SA. Multidrug transporters as drug targ ets [J]. Curr Drug Targets,2006,7(8):911-921
    [3]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell [J].2004;116 (2):281-297.
    [4]Chen CZ. MicroRNAs as oncogenes and tumor suppressors [J]. N Engl J Med, 2005,27;353 (17):176821771.
    [5]Sarkar FH, Li Y, Wang Z, Kong D, Ali S. Implication of microRNAs in drug resistance for designing novel cancer therapy[J]. Drug Resist Updat 2010;13(3):57-66.
    [6]Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C.& Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov.2006 5, 219-234.
    [7]薛雪,游松,梁兴杰肿瘤化疗耐药与其基因治疗药物的研究进展中国药物化学杂志[J],201020(5):460-465.
    [8]HOLZER A K, HOW ELL S B. The internalization and degradation o f hum an copper transporter 1 for lowing cisplatin exposure[J]. Cancer Res,2006,66 (22): 10944-10952.
    [9]ANAMARIA B, MAJA O. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin resistance[J]. Cancer Lett,2007,251(1):1-16
    [10]Huber MA, Beug H, Wirth T. epithelial-mesenchymal transition:NF-KB takes center stage[J]. Cell Cycle,2004 3(12):1477-1480.
    [11]Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis [J]. Cancer Res 2006;66:8319-26.
    [12]Tsuji T, Ibaragi S, Hu GF. Epithelial-Mesenchymal Transition and Cell Cooperativity in Metastasis[J]. Cancer Res.2009.
    [13]DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer[J]. Cancer Res 2009;69:5364-73.
    [14]Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells[J]. Cancer Cell 2009; 15:195-206.
    [15]Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells[J]. Cancer Res 2008;68:2391-9.
    [16]Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel[J]. Cancer Res 2007;67:1979-87.
    [17]Li Y, VandenBoom TG 2nd, KongD, etal. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreaticcancer cells[J]. Cancer Res,2009,69(16):6704-6712.
    [18]Arumugam T, Ramachandran V, Fournier KF, et al. Epithelia to mesenchymal transition contributes to drug gresistance in pancreatic cnacer [J]. Cancer Res,2009 69(14):5820-5828.
    [19]Li C, Heidt DG, Mollenberg N, et al. Identification of pancreatic cancer stem cells [J] Cancer Res,2007,67 (3):1030-1037.
    [20]Clarke M F, Morrison S J,Wicha M S. Isolation and use of solid tumor stem cells [M]. United States Patent Application,2002,20020119565.
    [21]Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell,2007,1(3):313-23.
    [22]Trumpp A, Wiestler OD. Mechanisms of disease:cancer stem cells:targeting the evil twin [J]. Nat Clin Pract Oncol,2008,5 (6):337-347.
    [23]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? [J] Nat Rev Genet 2008;9(2):102-14.
    [24]Zeng Y, Cullen BR. Sequence requirements formicr oRNA processing and function in human cells [J]. RNA,2003,9(1):112-123.
    [25]Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA[J]. Proc Natl Acad Sci U S A.2006 103(11):4034-9.
    [26]Φrom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation[J]. Mol Cell.2008 May 23;30(4):460-71.
    [27]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase:tools for microRNA genomics[J]. NAR 2008;36(Database Issue):D154-58.
    [28]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature[J]. NAR 2006; 34(Database Issue):D140-44.
    [29]Griffiths-Jones S. The microRNA Registry. NAR 2004;32(Database Issue):D109-11.
    [30]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci USA 2004;101(9):2999-3004.
    [31]Calin GA, Croce CM. microRNA signatures in human cancers[J]. Nat Rev Cancer 2006;6(11):857-66.
    [32]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. microRNA expression profiles classify human cancers[J]. Nature 2005; 435(7043):834-8.
    [33]Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs[J]. Nature 2008; 455(7209):58-63.
    [34]Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, et al. Multiple microRNAs modulate p21Cipl/Wafl expression by directly targeting its 3'untranslated region[J]. Oncogene 2010;29(15):2302-8.
    [35]Garzon R., Marcucci, G.& Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges[J]. Nat. Rev. Drug Discov.9,775-789 (2010).
    [36]Gottesman, M. M. Mechanisms of cancer drug resistance[J]. Annu. Rev. Med. 200253,615-627.
    [37]Jiang, BH.& Liu, LZ. Role of mTOR in anticancer drug resistance:perspectives for improved drug treatment. Drug Resist[J]. Updat.2008 11,63-76.
    [38]Lopez-Chavez, A., Carter, C. A.& Giaccone, G. The role of KRAS mutations in resistance to EGFR inhibition in the treatment of cancer. Curr. Opin. Investig. Drugs 10,1305-1314(2009).
    [39]LoPiccolo, J., Blumenthal, G. M., Bernstein, W. B.& Dennis, P. A. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations. Drug Resist[J]. Updat.11,32-50 (2008).
    [40]Wang, Z. et al. Emerging roles of PDGF-D signaling pathway in tumor development and progression[J]. Biochim. Biophys. Acta 1806,122-130 (2010).
    [41]Wang, Z. et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy[J]. Biochim. Biophys. Acta doi:10.1016/j.bbcan.2010.06.001.
    [42]Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival[J]. Cancer Cell 2009; 15:489-500.
    [43]Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway [J]. Cancer Res 2009;69:2400-7.
    [44]Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression[J]. J Clin Invest 2004;114:569-81.
    [45]Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression[J]. Cancer Sci 2007;98:1512-20.
    [46]Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions[J]. Oncogene 2005;24:5764-74.
    [47]Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J]. Genes Dev 2004;18:99-115.
    [48]Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition[J]. EMBO J 2004;23:1155-65.
    [49]Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition[J]. Cell Cycle 2008;7:3112-8.
    [50]Peter ME. Let-7 and miR-200 microRNAs:guardians against pluripotency and cancer progression[J]. Cell Cycle 2009;8:843-52.
    [51]Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells[J]. Stem Cells 2009;27:1712-21.
    [52]Wang, F. et al. hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations[J]. Br. J. Cancer 2010 103: 567-574.
    [53]Ji, Q. et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. PLoS ONE 4, e6816 (2009).
    [54]杨尹默,田孝东胰腺癌干细胞的研究现状与展望[J]中华实验外科杂志201027(1):7-9.
    [55]Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells[J]. Biochem Biophys Res Commun 2008; 377:114-119.
    [56]Xia L, Zhang D, Du R, Pan Y, Zhao L et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer 2008; 123:372-379.
    [57]Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres[J]. BMC Cancer 2008; 8:266.
    [58]Zhu W, Zhu D, Lu S, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines[J]. Int J Cancer.2010 Dec 1;127(11):2520-9.
    [59]Kristi EA, Glen JW. Resistance May Not Be Futile:microRNA Biomarkers for Chemoresistance and Potential Therapeutics[J]. Mol Cancer Ther.2010;9:3126-3136.
    [60]Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF et al. Involvement of micro-RNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J]. Mol Cancer Ther 2008; 7:2152-2159.
    [61]Sumaiyah R, Wen-Chien H, Dihua U. MiR-21 upregulation in breast cancer cells leads to PTEN loss and Herceptin resistance[J]. AACR 2010;abstract 4033.
    [62]Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY. microRNA-101 promotes estrogen independent growth and confers tamoxifen resistance in ER positive breast cancer cells[J]. AACR 2010;abstract 2104.
    [63]Lau L, Chan K, Khoo U. Identification of microRNAs associated with tamoxifen resistance in breast cancer[J]. AACR 2010.
    [64]Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG et al. Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J]. Biochem Pharmacol 2008; 76:582-588.
    [65]Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, et al. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance[J]. Bioinformatics 2009;25(4):430-4.
    [66]Salter KH, Acharya CR,Walters KS, Redman R, Anguiano A, Garman KS et al. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer[J]. PLoS One 2008; 3:e1908.
    [67]Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells [J]. PLoSOne,2009,4(8):e6816.
    [68]Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM. microRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells[J]. FEBS J 2009;276(22):6689-700..
    [69]Hwang, J. H. et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer[J]. PLoS ONE 5, e10630 (2010).
    [70]Giovannetti, E. et al. MicroRNA-21 in pancreatic cancer:correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity[J]. Cancer Res.70,4528-4538 (2010).
    [71]Ali, S. et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF[J]. Cancer Res.70,3606-3617 (2010).
    [72]Moriyama, T. et al. Micro RNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance [J]. Mol. Cancer Ther.8,1067-1074 (2009)
    [73]Wang ZW, Li YW, Aamir Ahmad, et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy[J]. Biochimica et Biophysica Acta 1806 (2010)258-267.
    [74]Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin[J]. Med Oncol 2 May 2009.
    [75]Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3[J]. Apoptosis 2008; 13:1215-1222.
    [76]Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer[J]. Cancer Res 2008; 68:10307-10314.
    [77]Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells[J]. Gynecol Oncol 2008; 111: 478-486.
    [78]He FY, Chang JY, Kuo CC, Pan WY, Chen Lt WWH. microRNA expression patterns associated with resistance to platinum-based chemotherapy in human cancer cell lines[J]. AACR 101st meeting. No.2045,2010.
    [79]Sun M, EstrovZ, JiY, etal. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells[J]. Mol Cancer Ther,2008, 7(3):464-473
    [80]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres Cortes J, Minden M, Paterson B, Caligiuri M A, Dick J E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature,1994,367(6464):645-648.
    [81]Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K et al. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer[J]. Cancer Genomics Proteomics 2006; 3:317-324.
    [82]Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells[J]. Oncogene 2009;28(46):4065-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700