血府逐瘀汤对外伤性视神经病变神经节细胞作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     建立外伤性视神经病变(traumatic optic neuropathies,TON)大鼠模型,从视网膜神经节细胞(retinal ganglion cells,RGCs)存活状态、组织形态学、轴突修复影响因素三个方面观察血府逐瘀汤及其拆方对TON大鼠RGCs的影响,探讨其部分作用机制,为临床用药提供客观依据和指导。
     方法
     1.以钳夹伤大鼠视神经为TON动物模型,观察血府逐瘀汤及其拆方对大鼠RGCs存活状态的影响,计算存活率,筛选血府逐瘀汤最佳组方。
     2.采用组织病理学技术观察血府逐瘀汤最佳组方干预后3天、1周、2周、4周,钳夹伤大鼠视网膜厚度和视神经超微结构变化。
     3.采用免疫组织化学方法观察药物干预后3天、1周、2周、4周,生长相关蛋白GAP-43(growth associated protein 43,GAP-43)、Rho激酶(rho-associated coiled-coilforming protein kinase,ROCKⅡ)在钳夹伤大鼠视网膜、视神经组织中的表达情况。视网膜表达强度以平均光密度(average optical density,AOD)表示,视神经表达强度以积分光密度(integrated optical density,IOD)表示。
     结果
     1.血府逐瘀汤对TON大鼠RGCs存活率的影响
     各组RGCs平均存活率分别为:蒸馏水组62.84%±10.96%;灯盏细辛组75.76%±8.87%;血府逐瘀汤全方组89.18%±10.59%;血府逐瘀汤活血组69.68%±5.26%;血府逐瘀汤理气组66.95%±9.12%。血府逐瘀汤全方组RGCs存活率明显高于其它各组(P<0.01),血府逐瘀汤全方为最佳方药。
     2.血府逐瘀汤对TON大鼠视网膜视神经组织形态学的影响
     (1)视网膜厚度
     ①3天
     视网膜内层(retinal length,RL)、神经纤维层(nerve fiber layer,NFL)、节细胞层(ganglion cell layer,GCL)、内丛状层(inner plexiform layer,IPL)和内核层(inner nuclearlayer,INL):各组均增加,组间同层比较没有显著性差异(P>0.05)。
     ②1周
     RL和IPL:各组继续增加,组问同层比较没有显著性差异(P>0.05);NFL:各组轻度降低,组间同层比较没有显著性差异(P>0.05);GCL:治疗组和阳性对照组降低,模型组增加,治疗组明显低于模型组(P<0.05);INL:各组轻度增加,治疗组明显低于模型组(P<0.05)。
     ③2周
     RL、IPL和INL:各组继续增加,组间同层比较没有显著性差异(P>0.05);NFL:各组均降低,组间没有显著性差异(P>0.05);GCL:各组均增加,阳性对照组低于模型组(P<0.05),治疗组和模型组没有显著性差异(P>0.05)。
     ④4周
     RL、NFL和INL:各组明显降低,组间同层比较没有显著性差异(P>0.05);GCL:各组厚度降低,治疗组和阳性对照组均高于模型组(P<0.05);IPL:各组明显降低,治疗组高于模型组、阳性对照组(P<0.05)。
     (2)视神经超微结构
     ①3天:模型组、治疗组均可见髓鞘板层分离、崩解,轴膜回缩,或外凸卷曲;轴突数目减少,部分轴突崩解呈空泡状,或退变形似蜂窝状;微丝微管数目明显减少,线粒体肿胀,嵴间隙增宽,嵴模糊不清,或完全崩解、消失。
     ②1周:模型组、治疗组均可见髓鞘板层分离范围进一步扩大,结构疏松,部分向内、外突起,泡状解离,出现大量崩解产物;部分神经纤维塌陷形成“洋葱样”小体;微丝微管数目进一步减少,排列紊乱,线粒体肿胀,数目减少。
     ③2周:模型组、治疗组上述改变继续加重,髓鞘呈薄膜样结构,泡状解离,巨噬细胞内见含有大量髓鞘碎片的吞噬泡;部分轴突空虚透明;微丝微管数目继续减少,线粒体溶解消失。胶质细胞增生明显,核质浓缩成块,胞质更为疏松,大部分线粒体溶解消失,存在大量吞噬了髓鞘碎屑的溶酶体。
     ④4周:模型组髓鞘板层结构有所修复,比正常明显变薄,结构疏松;部分轴突恢复,少量变性消失;微管、微丝及线粒体数目有所增多,但较正常减少,线粒体结构模糊。胶质细胞形态不规则,胞核呈不规则形,染色质固缩成块,胞质内线粒体增多,可见大量胶质纤维。治疗组髓鞘板层结构明显修复,较模型组增厚、致密;大量轴突逐渐恢复,电子密度增高;微管、微丝数目明显较模型组增多,分布均匀,线粒体结构清晰。胶质细胞形态基本正常,胞核呈圆形、椭圆形,染色质分布较模型组均匀,胞质内见大量胶质纤维。
     3.血府逐瘀汤对RGCs修复环境的影响
     (1) GAP-43在钳夹伤大鼠视网膜、视神经中的表达
     ①正常大鼠:视网膜:表达微弱,主要集中于GCL。视神经:表达微弱。
     ②3天:视网膜:各组表达均增强,组间没有显著性差异(P>0.05)。视神经:各组表达均明显增强,组间没有显著性差异(P>0.05)。
     ③1周:视网膜:各组表达持续增强,治疗组AOD值明显高于模型组、阳性对照组(P<0.05)。视神经:模型组减弱,治疗组和阳性对照组增强,二者没有显著性差异(P>0.05),均高于模型组(P<0.05)。
     ④2周:视网膜:各组表达均减弱,治疗组AOD值低于阳性对照组(P<0.05),和模型组没有显著性差异(P>0.05)。视神经:模型组减弱,治疗组和阳性对照组增强,二者没有显著性差异(P>0.05),均高于模型组(P<0.05)。
     ⑤4周:视网膜:各组表达均减弱,治疗组高于模型组(P<0.05),和阳性对照组没有显著性差异(P>0.05)。视神经:各组表达均减弱,组间比较没有显著性差异(P>0.05)。
     (2) ROCKⅡ在钳夹伤大鼠视网膜、视神经中的表达
     ①正常大鼠:视网膜:表达微弱,主要集中在GCL和IPL。视神经:表达微弱。
     ②3天:视网膜:模型组和阳性对照组明显增强,治疗组减弱,AOD值明显低于模型组(P<0.05)、阳性对照组(P<0.05)。视神经:各组表达明显增强,治疗组IOD值低于模型组(P<0.05),和阳性对照组没有显著性差异(P>0.05)。
     ③1周:各组表达均减弱,组间比较没有显著性差异(P>0.05)。视神经:各组表达明显减弱,治疗组IOD值明显低于模型组(P<0.05)、阳性对照组(P<0.05)。
     ④2周:视网膜:各组表达较7天时增强,治疗组最弱,三组没有显著性差异(P>0.05)。视神经:模型组、阳性对照组轻度减弱,治疗组明显减弱,IOD值明显低于模型组(P<0.05)、阳性对照组(P<0.05)。
     ⑤4周:视网膜:各组表达继续增强,治疗组最弱,AOD值明显低于模型组(P<0.05),和阳性对照组没有显著性差异(P>0.05)。视神经:各组表达均增强,治疗组IOD值明显低于模型组(P<0.05)、阳性对照组(P<0.05)。
     结论
     1.血府逐瘀汤全方能够明显提高TON大鼠RGCs存活率,优于单纯的活血药、理气药。
     2.血府逐瘀汤能够在一定时间一定程度上缓解TON大鼠视网膜组织水肿,延缓视网膜萎缩变薄,保护视神经超微结构,为轴浆运输功能的恢复提供物质基础和载体。
     3.血府逐瘀汤能在一定程度上增强组织中GAP-43的表达,同时,强烈抑制ROCKⅡ的表达,阻断Rho/ROCK信号转导通路,促进轴突修复。
     4.血府逐瘀汤对RGCs的保护体现在多个环节:提高RGCs存活率;维护、构建正常的组织结构;改善微环境,促进轴突修复。
     5.用玄府理论解释外伤性视神经病变的病因病机,据此建立活血开玄法和理气开玄法并用的治则,得到了良好印证,为该病的临床治疗提供了一个新的思路。
Objective
     To evaluate the effects of Xuefu Zhuyu Decoction on traumatic optic neuropathies(TON) after optic nerve injury in rats through the survival ratio of RGCs,the tectology of the retina and optic nerve,the microenvironments of optic nerve restoration,and to investigate the possible mechanisms,which may be valuable as therapeutic agents for TON,and also to provide the new thoughts and methods for the study of Traditional Chinese Medicines's effect on TON.
     Methods
     1.To observe the impacts of distilled water,Erigeron,Xuefu Zhuyu Decoction on RGCs after optic nerve injury in rats and selecte the best prescription.
     2.To observe the retinal thickness and the optic nerve ultrastructure at different times.
     3.To evaluate the effects of Xuefu Zhuyu Decoction on the microenvironments of the injured optic nerve restoration.The expressions of growth associated protein 43(GAP-43) and rho-associated coiled-coil forming protein kinase(ROCKⅡ) were detected on the 3~(rd) day and the 1~(st),the 2~(nd),the 4~(th) week.
     Results
     1.The effect of Xuefu Zhuyu Decoction on RGCs
     The average survival ratio of RGCs:The RGCs' survival ratios of Group K(Distilled Water),Group D(Erigeron),Group Z(Xuefu Zhuyu Decoction),Group H(Huoxue Decoction) and Group L(Liqi Decoction) were respectively 62.84%±10.96%,75.76%±8.87%,89.18%±10.59%,69.68%±5.26%and 66.95%±9.12%.The RGCs' survival ratio of Group Z was significantly higher than other groups(P<0.01).
     2.The effect of Xuefu Zhuyu Decoction on the tectology of the retina and optic nerve
     (1)Retinal thickness
     ①The 3~(rd) day
     Inner retina(retinal length,RL),nerve fiber layer(nerve fiber layer,NFL),ganglion cell layer(ganglion cell layer,GCL),inner plexiform layer(inner plexiform layer,IPL) and INL (inner nuclear layer,INL):Each group increased,and there was no significant difference in the same layers(P>0.05).
     ②The 1~(st) week
     RL and the IPL:All groups continued to increase,and there was no significant difference in the same layers(P>0.05).NFL:Slightly lower in each group,there was no significant difference in the same layers(P>0.05).GCL:Treatment group and positive control group reduced,and treatment group was significantly lower than model group(P<0.05).INL:Slight increase in each group,treatment group was significantly lower than model group(P<0.05).
     ③The 2~(nd) week
     RL,IPL and INL:All groups continued to increase with no significant difference in the same layers(P>0.05).NFL:All groups decreased with no significant difference whin all groups(P>0.05).GCL:All groups decreased with no difference between treatment group and model group(P>0.05),and positive control group was lower than model group(P<0.05).
     ④The 4~(th) week
     RL,NFL and INL:All groups reduced significantly with no statistic difference whin all groups(P>0.05).GCL:All groups reduced,and treatment group and positive control group were higher than model group(P<0.05).IPL:All groups reduced significantly,and treatment group was higher than model group,positive control group(P<0.05).
     (2)Ultrastructure of optic nerve
     ①The 3~(rd)day
     Model group and Treatment group:Lamellar separation of myelin can be seen.Membrane collapsed,axis retracted,or capreomycin convexed.The number of axons reduced,and parts of them collapse.The numbers of microfilaments and microtubules were both reduced significantly.The mitochondrions were swelled,crest gap widened,or totally collapsed and disappeared.
     ②The 1~(st) week
     Model group and Treatment group:Lamellar separation of myelin can be seen further expansion than before.Parts of nerve fibers collapsed and formed "onion-like body".The numbers of microtubules and microfilaments further reduced,with disorder,mitochondrial swelling,a decrease in the number.
     ③The 2~(nd) week
     Model group and Treatment group:All continued to add to the above changes.The myelins bacame thiner and dissociated bubbly.There were many macrophages containing myelin debris.Some axons were transparent.The numbers of microtubules and microfilament continued to decline and the mitochondria dissolved and disapped.Glial cell proliferated,and the nuclear concentrated into a block.The majority of Mitochondrias disappeared and the lysosomes swallowed up a large number of myelin debris can be seen.
     ④The 4~(th) week
     Model group:The lamellar structure of myelin repaird and was thiner than normal.Parts of the axon restorated and small of them disappeared.The microtubules,microfilaments and mitochondrias increased.The modality of glial cells was irregular and a large number of glial fibrillary can be seen.Treatment group:The lamellar structure of myelin repaired obviously than model group.A large number of axons gradually restored,the electron density increased.Treat group was significantly more than treat group in the numbers of microtubule, microfilament.The mitochondria structure were clear.The glial cells were almost normal and a large number of glial fibrillary in the cytoplasm can be seen.
     3.The effects of Xuefu Zhuyu Decoction on the microenvironment of optic nerve restoration
     (1) The expression of GAP-43 in the retina and optic nerve
     ①Normal retina:The expression was weak,and mainly concentrated in the GCL. Normal optic nerve:the expression is weak.
     ②The 3~(rd) day:Retina and Optic Nerve:The expression of all groups increased obviously and there was no significant difference whin groups(P>0.05).
     ③The 1~(st) week:Retina:All groups increased obviously.The AOD of treat group was higher than model group,positive control group obviously(P<0.05).Optic Nerve:Model group decreased,treatment group and positive control group increased.Their IOD were obviously higher than model group(P<0.05),and there was no significant difference between them(P>0.05).
     ④The 2~(nd) week:Retina:The expression of every group decreased.The AOD of treatment group was lower than positive contol group(P<0.05),and there was no significant difference between treat group and model group(P>0.05).Optic nerve:Model group decreased, treatment group and positive contol group increased with no significant difference between them(P>0.05).But their were both higher than model group(P<0.05).
     ⑤The 4~(th) week:Retina:The expression in all groups decreased.Treatment group was higher than model group(P<0.05).Optic nerve:The expression in all groups decreased,and there was no statistic difference whin all groups(P>0.05).
     (2)The expression of ROCKⅡin the retina and optic nerve
     ①Normal retina:The expression was weak,and mainly concentrated in the GCLand ipl. Normal optic nerve:The expression was weak.
     ②The 3~(rd) day:Retina:The expression of model group and positive control group increased.Treat group decreased.Optic Nerve:All groups increased obviously,The IOD of treat group was lower than model group(P0.05).
     ③The 1~(st),2~(nd) week:The expression of all groups decreased and there was no diference whin groups(P>0.05).Optic nerve:Treat group was obviously lower than model and positive control group(P<0.05).
     ④The 4~(th) week:Retina:All groups increased.Treat group was lower than model group.Optic nerve:All groups increased.Treat group was lower than model group and positive group(P<0.05).
     Conclusion
     1.Xuefuzhuyu Decoction can increase the survival ratio of RGCs significantly.It can be used to treat traumatic optic neuropathies.
     2.Xuefuzhuyu Decoction can prevent retinal tissue edema and atrophy,and protect the microstructures of optic nerve,which is valuable for restorating the transportation of axonal plasm.
     3.The retina and optic nerve can self-repair by regulating the expression level of GAP-43 and ROCKⅡ.Xuefuzhuyu Decoction can increase the expression of GAP-43 and decrease the expression of ROCKⅡ.
     4.Xuefuzhuyu Decoction can treat TON efficiently by improving the survival ratio of RGCs,maintaining or building the structures,accelerating transportation of axonal plasm,and improving the microenvironment for optic nerve fiber to survive or regenerate.
引文
1 杨景存,曹木荣,彭广华.视神经病学.河南:河南科学技术出版社.1996:1.
    2 Isenmann S,Kretz A.Cellerino A et al.Molecular determinents of retinal ganglion cell development,survival,and regeneration.Progress Retin Eye Res,2003,22(4):483-543.
    3 Cho KS,Yang L,Lu B et al.Re-establishing the regenerative potential of central nervous systerm axons in postnatal mice.J Cell Sci,2005,118:863-872.
    4 Bien A,Seidenbecher CI,Bockers TM,et al.Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury[J].J Neurotrauma,1999,16(2):153-163.
    5 Sabel BA,Aschof A.Functional recovery and morphological changes after injury to the Optic nerve[J].Neuropsychobiology.1993,8(1-2):62-65.
    6 胡爱莲,孙葆忱,董东生,等.大鼠视神经钳夹伤视网膜视神经病理学动态观察及功能检测[J].眼科,2003,12(6):357-360.
    7 吴红色,柯技,陈晓瑞.大鼠视神经损伤后Bad蛋白表达与视网膜神经细胞观察.法医学杂志.2006,22(4):258-260.
    8 Li Y,chlamp CL,Ncikells RW.Experimental induction of retinal ganglion cell death in adult mice[J].Invest Ophthalmol Vis Sci.l999,40:1004-1008.
    9 Lynch DR,Dawson TM.Secondary mechanisms in neuronal trauma[J].Curr Opin Neurol,1994,7(6):510-516.
    10 Povlishock JT.The pathobiology of traumatically induced axonal injury in animals and humans:A review of current thoughts[J].J Neurotrauma,1995,12(4):555-564.
    11 Berkelaar M,Clarke DB,Wang YC.Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats[J].J Neurosci,1994,14(7):4368-4374.
    12 Klocker N,Cellrino A,Bathr M.Free radical scavenging and inhibition of nitrin oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor an axotomize retinal ganglion cells in vivo.J Neurosci[J],1998,18(3):1038-1046.
    13 Klocker N,Zerfowski M,Gellrich NC,et al.Retinal ganglion cell and functional analysis of an incomplete CNS fiber tract lesion:Graded crush of the rat optic neve[J],J Neruosci Methods.2001,110(1-2):147-153.
    14 温龙平,陈亚兵,蔡毓,等.Bcl-2基因加强对SK细胞编程死亡的效应[J].细胞生物学杂志,1996,18(2):74-76.
    15 Boise LH,Gonzalea-Carcia M,Postema CE,et al.Bcl-x,a bcl-2 reled gene that functions as a dominant regulator of apoptotic cell deth[J].Cell,1993,74(4):597-608.
    16.Oltvai ZN,Milliman CL,Korsmeyer SL.Bcl-2 heterodimerizes in vivo with a conserved homolog,bas,that accelerates programmed cell death[J].Cell,1993,74(4):609-619.
    17 Bonfanti L,Strettoi E,Chierzi S,et al.Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2[J].J Neurosci,1996,16(13):4186-4194.
    18 Inoue T,Hosokawa M,Morigiwa K,et al.Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice[J].J Neurosei,2002,22(11):4468-4477.
    19 Goldberg JL,Espinosa JS,Xu Y.Retinal ganglion cells do not extend axons by default:promotion by neurotrophic signaling and electrical activity [J].Neuron,2002,33(5):689-702.
    20 蔺海燕,许家军,刘芳,等.视神经再生微环境的调控[J].神经解剖学杂志.2006,22(4):463-468.
    21 Yoles E.Schwartz M.Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve[J].Arch Ophthalmol,1998,116(7):906-910.
    22 翁晓燕.外伤性视神经病变与细胞凋亡[J].医学综述.2004,10(9):538-540.
    23 曹业宏.青光眼与谷氨酸、细胞凋亡的研究[J].中年现代眼科学杂志.2005,2(10):901-903.
    24 修阳晖,林发森,朱益华.视神经损伤后影响轴突再生的因素[J].福建医药杂志,2006,28(3):113-115.
    25 Ou B,Ohno S,Tsukahara S..Ultrastructural changes and immunocytochemical localization of microtubule-associated protein 1 in guinea pig optic nerves after acute increase in intraocular pressure[J].Invest Ophthalmol Vis Sci,1998,39(6):963-971.
    26 Dieterich DC,Trivedi N,Engelmann R,et al.Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression,phosphorylation and distribution of cytoskeletal proteins[J].Eur J Neurosci,2002,15(9):1433-1443.
    27 Vecino E,Avila J.Distribution of the phosphorylated form of microtubule associated protein 1B in the fish visual system during optic nerve regeneration.Brain Res Bull,2001,56(2):131-137.
    28 Julien JP,Mushynski WE.Neurofilaments in health and disease[J].Prog Nucleic Acid Res Mol Biol,1998,61:1-23.
    29 Gervasi C,Thyagarajan A,Szaro BG.Increased expression of multiple neurofilament mRNAs duringre generation of vertebrate central nervousn system axons[J].J Comp Neurol,2003,461:262-275.
    30 Chidlow G,Osbome NN.Rat retinal ganglion cell loss caused by kainate NMD A and ischemia correlates with are duction in mRNA and protein of Thy-1 and neuro filament light[J].BrainRes,2003,963(1-2):298-306.
    31 Nakatani M,Taki C,Matsudaira K,et al.Quantitative assessment of neurodegeneration in opticc nerve injury by measurement of heavy neurofilament protein.Invest Ophthalmol Vis Sci,2004 ARVOA5:E,Abstract 2151.
    32 杨辉.GAP-43表达与神经生长、可塑性的关系[J].国外医学·生理、病理科学与临床分册,1995,15(2):117.
    33 Tolner EA,Vliet EA,Holtmaat AJ,et al.GAP-43 mRNA and protein expression in the hippocampal and parahippocampal region during the course of epileptogenesis in rats[J].Neurosci.2003,17(11)2369-2380.
    34 李漫丽.热休克蛋白与视网膜视神经疾病的研究进展.眼科新进展.2008,28(2):149-152.
    35 Sakai M,Sakai H,Nakam ura Y.et al.Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma[J].Jpn J Ophthalmol,2003.47(1):42-52.
    36 Bernstein SL,Russell P,Wong P,et al.Heat shock protein 90 in retinal ganglion cells:association with axonally transported proteins[J].Vis Neurosei,2001,18(3):429-436.
    37 吕立权,卢亦成.髓鞘相关抑制分子和视神经再生[J].中华眼科杂志.2006,42(9):854-858.
    38 马宁芳,李海标.H89和wortmannin对霍乱毒素促进远端视神经损伤后视网膜节细胞再生的影响[J].解剖学杂志,2003,4(26):319-321.
    39 Cui Q,Yip HK,Zhao RC,et al.Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion eel axons[J].Mol Cell Neurosci.2003,22(1):49-61.
    40 Monsul NT,Geisendorfer AR.Han PJ.et al.Intraocular injection of dibutyryl cyclic AMP promotes axon regeneration in rat optic nerve.Exp Neurol.2004,186(2):124-133.
    41 GuanKIJ,RaoY.Signalling mechanisms mediating neuronal responses to guidance cues[J].Nat Rev Neurosei,2003,4(12):941.
    42 HuberAB,KolodkinAIJ,GintyDD,etal.Signaling at the growth cone::Ligand-receptor ceomplexes and the control of axon growth and guidance[J].Annu Rev Neurosei,2003,3(26):509.
    43 Feldheim DA,Vanderhaeghen P.Hansen MJ,et a 1.Topographic guidance labels in a sensory projection to the forebrain[J].Neuron,1998,21(6):1303-1313.
    44 Chen MS,Huber AB,van der Haar ME,et al.Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J].Nature.2000,403(6768):434-439.
    45 McKerracher L,David S,Jackson DL,et al.Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth[J].Neuron,1994,3(4):805-811.
    46 Wang KC,Koprivica V,Kim JA,et al.Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth[J].Narure,2002,417(6892):941-944.
    47 Selles,Navarro I,Ellezam B,Fajardo R,et al.Retinal ganglion eel and noneuronal cell responses to a microcrush lesion of adult rat optic nerve[J].Exp Neurol,2001,167(2):282-289.
    48 袁敏而,刘瑛,叶秀兰,等.视神经疾病的基因治疗新进展.中华眼底病杂志.2006,22(6):425-428.
    49 Cui Q,Cho KS,So KF et al.Synergistic effect of Nogo-neutralizing antibody IN-1 and ciliary neurotrophic factor on axonal regeneration in adult rodnt visualsystems.J Neurotrauma,2004;21(5):617-625.
    50 Li SX,Strittmatter SM.Delayed system ic Nogo 66 receptor antagonist promotes recovery from spinal cord injury.J Neurosci,2003,23(10):4219-4227.
    51 陈春林,叶剑.NgR1复合物的分子基础与干扰策略[J].中华创伤杂志.2006,22(10):74-76.
    52 Koprivica V,Cho KS,Park JB,et al.EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans[J].Science,2005,310()5745:106-110.
    53 李晓双,鞠学红.视神经损伤药物治疗的新进展.中华眼底病杂志.2006,22(6):431-433.
    54 Cho KS,Yang L,Lu B,et al.Re-establishing the regenerative potential of central nervous system axons in postnatal mice[J].Cell Sci,2005,118(5):863-872.
    1 Walsh FB,Hoyt WF.Clinical Neuro-Ophthalmology[M].3rd ed.Baltimore:Williams and Wilkins,1969.2380.
    2 Seiff SR.High dose corticosteroids for treatment of vision loss due to indirect injury to the optic nerve.Ophthalmic Surg,1990,21:389-395.
    3 韦以存.外伤性视神经损伤的外科治疗现状.右江民族医学院学报.2006,5:848-849.
    4 Kountakis SE,Maillard AA,E1-Harazi SM,et al.Endoscopic optic nerve decompression for traumatic blindness[J].Otolaryngol Head Neck Surg,2000,123(l):34-37.
    5 VAGEFI MR,SEIFF SR.Traumatic optic neuropathy[J].Contemporary Ophthalmology,2005,4(14):1-7.
    6 Goldenberg-Cohen N,Miller NR,Repka MX.Traumatic optic neuropathy in children and adolescents[J].J AAPOS,2004,8(l):20-27.
    7 李晓双,鞠学红.视神经损伤药物治疗的新进展[J].中华眼底病杂志,2006,22(6):431-433.
    8 赵长龙.视神经损伤药物治疗的新进展[J].临床眼科杂志,2000,8(5):387-389.
    9 苏培增.活血化瘀法治疗外伤所致球后视神经炎25例[J].河南中医,2003,23(12):39-40.
    10 张凤梅.血府逐瘀汤治疗视神经萎缩2例[J].河南中医1998,18(3):163.
    11 张凤梅,元旭红.血府逐瘀汤治疗视神经萎缩初探.中医函授通讯,1997,16(6):33-34.
    12 姜健丽,曾红艳,葛根素注射液、血府逐瘀汤加减、针灸穴注并用治疗视神经萎缩50例临床观察[J].中国中医药科技,2005,12(1):51.
    13 张萍.活血化瘀法治疗视神经萎缩50例临床观察[J].中国民康医学,2007,19(9):767.
    14 Linden R,Perry VH.Massive retinotectal projection in rats.Brain Res,1983,272(l):145-149.
    15 Vidal-Sanz M,Villegas-Perez MP,Bray GM,Aguayo AJ.Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye diI.Exp Neurol,1988,102(l):92-101.
    16 Farid Ahmed AK,Dong K,Hanna-Georges FB,et al.Retrograde double-labeling study of retinal ganglion cells from the ipsilateral VLGN and SC in the albino rat.Neurosci Lett,1998,244(1):47-51.
    17 Levkovitch-Verbin H,Harris-Cerruti C,Groner Y,et al.RGC death in mice after optic nerne crush injury:oxidative stress and neuroprotection.Invest Ophthalmol Vis Sci,2000,41(13):4169-4174.
    18 Sparks DL,Lue LF,Martin,TA,et al.Neural tract tracing Dil:a review and a new method to make fast Dil faster in human brain[J].J Neurosci Methods,2000,103(l):3-10.
    19 Schmued LC,Fallon JH.Fluoro-gold:a new fluorescent retrograde axonal tracer with numerous unique properties[J].Brain Res,1986,377(1):147-154.
    20 Garcia-Valenzuela E,Shareef S,Walsh J,et al.Programmed cell death of retinal ganglion cells during experimental glaucoma.Exp Eye Res,1995,6l(l):33-44.
    21 任蕾,牛建军,王一,等.利用荧光金逆行示踪技术评价视神经不完全损伤后视网膜神经节细胞的存活率.眼科新进展,2005,25(1):21-23.
    22 Voles E,Muller S,Schwartz M.NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush.J Neurotrauma,1997,14(9):665-675.
    23 朱益华,蒋幼芹,刘忠浩,等.灯盏细辛注射液对鼠实验性眼压视神经轴浆运输的影响.中华眼科杂志,2000,36(4):289-291.
    24 马科,徐亮.视网膜定向铺片方法.眼科,2002,11(4):238-239.
    25 黄蔚,惠延年.视神经损伤及其再生[J].中华眼底病杂志,2000,16(2):133-135.
    26 Levkovitch-VerbinH,QuigleyHA,Martin KR,et al.A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transaction[J].InvestOphthalmolVis Sci,2003,44(8):3388-3393.
    27 Yoles E,Wheeler LA,Schwartz M.Alpha2-adrenoreceptor agonists are europrotective in a ratmodel ofoptic nerve degeneration[J].InvestOphthalmolVis Sci,1999,40(1):65-73.
    28 崔志利,惠延年,康军,等.睫状神经营养因子对大鼠视神经损伤后视觉电生理的影响[J].第四军医大学学报,2002,23(7):626-628.
    29 苏颖,王继群,王峰,等.定量大鼠视神经损伤模型的建立[J].中国病理生理杂志,2005,21(6):1242-1245.
    30 王一,周继红,许立军,等.间接视神经损伤动物模型的研制[J].中华创伤杂志,1999,15(4):287-289.
    31 Akabane A,Saito K,Suzuki Y,et al.Monitoring visual evoked potentials during retraction of the canine optic nerve:protective effect of unroofing the optic canal.J Neurosurg,1995,82(2):284-287.
    32 徐丽,夏德昭,李富君.复明中药对牵拉性视神经损伤后视神经及血中SOD、MDA水平的影响[J].中国实用眼科杂志,1998,16(12):721-723.
    33 王传富,潘晓晶,金梅玲,等.脑神经生长素治疗兔急性高眼压视神经损伤[J].中华眼底病杂志,2000,16(2):88-90.
    34 施新.医学动物的实验方法[M].北京:人民卫生出版社,1986.P108-109.
    35 Gellrich NC,Schimming R,Zerfowski M,et al.Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats.Br J Ophthalmol,2002,86(2):233-237.
    36 Kl(o|¨)cker N,Cellerino A,B(a|¨)hr M.Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells In vivo.J Neurosci,1998,18(3):1038-1046.
    37 Freeman EE,Grosskreutz CL.The effects of FK506 on retinal ganglion cells after optic nerve crush.Invest Ophthalmol Vis Sci,2000,41(5):1111-1115.
    38 Sugiyama K,Gu ZB,Kawase C,Yamamoto T,Kitazawa Y.Optic nerve and peripapillary choroidalmicrovasculature of the rat eye.Invest Ophthalmol Vis Sci,1999,40(13):3084-3090.
    39 Levin LA,Schlamp CL,Spieldoch RL,Geszvain KM,Nickells RW.Identification of the bcl-2 family of genes in the rat retina.Invest Ophthalmol Vis Sci,1997,38(12):2545-2553.
    40 史剑波,徐锦堂,夏潮涌.视神经损伤对视网膜结构的形态学研究.眼外伤职业眼病杂志.1998,20(4):287-289.
    41 Cook RD,Wisniewski HM.The spatio-temporal pattern of Wallerian degeneration in the rhesus monkey optic nerve.Acta Neuropathol,1987,72(3):261-267.
    42 Hughes WF.Quantitation of ischemic damage in the rat retina.Exp Eye Res,1991,53(5):573-582.
    43 Li Y,Schlamp CL,Nickells RW.Experimental induction of retinal ganglion cell death in adult mice.Invest Ophthalmol Vis Sci,1999,40(5):1004-1008.
    44 江冰,蒋幼芹.大鼠视神经压榨伤模型的建立.眼科学报,2001,17(2):99-102.
    45 邓晓辉.玄府学说及其在眼科的应用近况.北京中医药大学学报(中医临床版),2003,10(4):55-57.
    46 雷春燕,王燕,沈兰芳,等.论玄府学说的起源 现代研究与临床应用.辽宁中医杂??志,2005,32(2):115-116. 47 王阶,荆鲁,衷敬柏,王永炎,马丽红,刘剑刚.血府逐瘀汤拆方临床研究.中国中药杂志,2004,29(8):803-806. 48 王阶,荆鲁.基于病证结合的中药复方临床拆方研究.世界科学技术一中医药现代化
    思路与方法,2007,9(1):16-20. 49 包太成,梁清华,彭梅,王安宇,谭勇,陈疆.血府逐瘀汤对脑出血大鼠神经元线粒体内细胞色素C释放的影响.中医康复研究,2005,9(9):118-120. 50 李英子,申春香,金顺福.中西医结合治疗外伤性视神经萎缩疗效观察(附208例报告).眼外伤职业眼病杂志,2004,26(6):409-410. 51 韦企平,韦玉英,赵峪.中西医结合治疗儿童外伤性视神经萎缩93例报告.中国中医眼科杂志,1993,3(3):145.54 Takahashi K,Lam TT,Edward DP,et al.Protective effects of flunarizine on ischemic injury in the rat retina[J].Arch Ophthalmol,1992,110(6):862-870. 52 谢远明.中药方剂近代研究及临床应用[M].西安:陕西科技出版社,1989.P269. 53 季宇彬.中药复方化学与药理[M].人民卫生出版社,2003(第一版).P547-552. 54 Takahashi K,Larn TT,Edward DP,et al.Protective effects of flunarizine on ischemic injury in the rat retina[J].Arch Ophthalmol,1992,110(6):862-870. 55 史剑波,徐锦堂,夏潮涌,等.豚鼠视网膜正常结构的定量研究[J].眼科研究,1999,17(2):98-100. 56 Dahlin LB,Rydevik B,McLean WG,et al.Changes in fast axonal transport during experimental nerve compression at low pressures[J].Exp Neurol,1984,84(1):29-36. 57 伊朝晖.外伤性视神经病变临床分析[J].中年现代眼科学杂志,2005,2(3):246-247. 58 于东珍,刘真.甲基强的松龙冲击法治疗外伤性视神经病变[J].眼外伤职业眼病杂志(眼科手术),2007,29(4):311-312. 59 杨涛.弥漫性轴索损伤[J].吉林医学,2005,26(5):545-548. 60 邓秋琼,刘金华.神经微丝与视神经病变[J].中国实用眼科杂志,2006,24(7):670-672. 61 李树宁,仇宜解,刘国军,等.氩激光视网膜光凝术对兔视神经轴浆运输和超微结构影响的实验研究[J].中国激光医学杂志,2001,10(3):137-140. 62 刘婉莹,张卯年,鞠躬,等.大鼠视神经切开减压术后超微结构的变化[J].解放军医学杂志.2006,31,(7):668-669. 63 孙瑞霞,张东杲,马志中.兔视神经间接损伤后视觉电生理及视神经超微结构观察[J].中 国实用眼科杂志,2002(11):861-864.
    64 李风鸣.眼科全书[M].北京:人民卫生出版社出版,1995.P30786.
    65 张永祥.中药药理学新论.北京:人民卫生出版社.2004.P321.
    66 Raivich G,Makwana M.The making of successful axonal regeneration:genes,molecules and signal transduction pathways[J].Brain Res Rev,2007,53(2):287-311.
    67 Gajda M,Adriaensen D,Cichocki T.Development of the innervation of long bones:expression of the growth-associated protein 43[J].Folia Histochem Cytobiol,2000,38(3):103-110.
    68 He Q,Dent EW,Meiri KF.Modulation of actin filament behavior by GAP-43(neuromodulin)is dependent on the phosphorylation status of serine 41,the protein kinase C site[J].J Neurosci,1997,17(10):3515-3524.
    69 Schwab ME.Structural plasticity of the adult CNS.Negative control by neurite growth inhibitory signals[J].Int J Dev Neurosci,1996,14(4):379-385.
    70 Gamby C.WangeMc.Allen RG,et al.Growth-associated Protein-43(GAP-43) facilitates peptide hormone secretion in mouse anterior pituitary AtT-20 cells[J].J Bio Chem,1996,271(17):10023-10028.
    71 Aigner L,Arber S,Kapfhammer JP,et al.Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice [J].Cell,1995,83(2):269-278.
    72 Storer PD,Houle JD.betaII-tubulin and GAP 43 mRNA expression in chronically injured neurons of the red nucleus after a second spinal cord injury[J].Exp Neurol,2003,183(2):537-547.
    73 Moretto G,Xu RY,Monaco S,et al.Expression and distribution of GAP-43 in human astrocytes in culture[J].Neuropathol Appl Neurobiol,1995,21(4):362-367.
    74 G.A.Metz and M.E.Schwab.Behavioral characterization in a comprehensive mouse best battery reveals motor and sensory in pairments in growth-associated protein-43 null mutant mice[J].Neuroscience,2004,129(3):563-574.
    75 秦登友,王国英,刘大庸等.GAP-43免疫组化和AChE染色在大鼠坐骨神经损伤和再生实验中的应用[J].蚌埠医学院报,1996,21(2):73.
    76 杨辉综述.GAP-43表达与神经元生长、可塑性的关系[J].国外医学生理、病理科学与 临床分册,1995,15(2):117.
    77 Zhu Q,Julien JP.A key role for GAP-43 in the retinotectal topographic organization[J].Exp Neurol,1999,155(2):228-42.
    78 Holtmaat AJ,Hermens WT,Sonnemans MA,et al.Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo[J].J Neurosci,1997,17(17):6575-6586.
    79 Shen Y,Mani S,Meiri KF.Failure to express GAP-43 leads to disruption of a multipotent precursor and inhibits astrocyte differentiation[J].Mol Cell Neurosci,2004,26(3):390-405.
    80 Tat FN,So KF.Influnce of peripheral nerve grafts on the expression of GAP-43 in regeneration ganglion cell inadult hamsters[J].Neurocyto,1995,24:487-496.
    81 刘功禄,郭宗成.Rho/Rho激酶与缺血性脑卒中[J].中华老年心脑血管病杂志.2008,10(6):477-478.
    82 Gallo G,Letourneau PC.Regulation of growth cone actin filaments by guidance cues[J].J Neurobiol,2004,58(1):92-102.
    83 Qin Q,Baudry M,Liao G,et al.A novel function for p53:regulation of growth cone motility through interaction with Rho kinase[J].JNeurosci,2009,29(16):5183-5192.
    84 时国兵.Rho/Rho激酶信号通路与轴突导向和再生的研究进展[J].重庆医学.2006,35(24):2285-2287.
    85 Wibberley A,Chen Z,Hu E,et al.Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle[J].Br J Pharmacol,2003,138(5):757-766.
    86 段为钢,袁胜涛,廖红,等.Rho激酶及其抑制剂的研究进展[J].药学学报.2007,42(10):1013-1022.
    87 宫丽丽,方莲花,杜冠华.心血管疾病治疗的新靶点-Rho激酶[J].中国药学杂志,2008,43(1):1-4.
    88 Brown JH,Del Re DP,Sussman MA.The Rac and Rho hall of fame:a decade of hypertrophic signaling hits[J].Circ Res,2006,98(6):730-742.
    89 Fournier AE,Takizawa BT,Strittmatter SM.Rho kinase inhibition enhances axonal regeneration in the injured CNS[J].J Neurosci,2003,23(4):1416-1423.
    90 Su Y,Wang F,Zhao SG,et al.Axonal regeneration after optic nerve crush in Nogo-A/B/C knockout mice[J].Mol Vis,2008,14:268-273.
    91 Quarles RH.A hypothesis about the relationship of myelin-associated glycoprotein's function in myelinated axons to its capacity to inhibit neurite outgrowth[J].Neurochem Res,2009,34(1):79-86
    92 Koyama Y,Fujiwara T,Kubo T,et al.Reduction of oligodendrocyte myelin glycoprotein expression following facial nerve transection[J].J Chem Neuroanat,2008,36(3-4):209-215.
    93 Zhang S,Zhang Q,Zhang JH,et al.NgR acts as an inhibitor to axonal regeneration in adults [J].FrontBiosci,2008,13:2030-40.
    94 Llorens F,Gil V,Iraola S,Carim-Todd L,Martí E,Estivill X,Soriano E,del Rio JA,Sumoy L.Developmental analysis of Lingo-1/Lern1 protein expression in the mouse brain:interaction of its intracellular domain with Myt11[J].Dev Neurobiol.2008Mar,68(4):521-41.
    95 Kobayashi K,Takahashi M,Matsushita N,et al.Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho-kinas[J].J Neurosci,2004,24(14):3480-3488.
    96 陈胜利,李长清.RhoA与神经轴突的生长.实用神经疾病杂志,2005,8(3):36-37.
    97 Santos Da Silva J,Schubert V,Dotti CG.RhoA,Rac1,and cdc42 intracellular distribution shift during hippocampal neuron development[J].Mol Cell Neurosci,2004,27(1):1-7.
    98 Guan KL,Rao Y.Signalling mechanisms mediating neuronal responses to guidance cues [J].Nat Rev Neurosci,2003,4(12):941-956.
    99 Wettschureck N,Offermanns S.Rho/Rho-kinase mediated signaling in physiology and pathophysiology[J].J Mol Med,2002,80(10):629-638.
    100 Tanaka H,Yamashita T,Yachi K,Fujiwara T,Yoshikawa H,Tohyama M.Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats[J].Neuroscience,2004,127(1):155-164.
    101 Rao VP,Epstein DL.Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma.Bio Drugs,2007,21(3):167-177.
    102 Ramer LM,Borisoff JF,Ramer MS.Rho-kinase inhibition enhances axonal plasticity and attenuates cold hyperalgesia after dorsal rhizotomy[J].J Neurosci,2004,24(48):10796-10805.
    103 Lu Q,Longo FM,Zhou H,et al.Signaling Through Rho GTPase Pathway as Viable Drug Target[J].Curr Med Chem,2009,16(11):1355-1365.
    104 Ishida T,Takanashi Y,Doi H,et al.Encapsulation of an antivasospastic drug,fasudil,into liposomes,and in vitro stability of the fasudil-loaded liposomes[J].Int J Pharm,2002,232(1-2):59-67.
    105 Kitaoka Y,Kitaoka Y,Kumai T,et al.Involvement of RhoA and possible neuroprotective effect of fasudil,a Rho kinase inhibitor,in NMDA-induced neurotoxicity in the rat retina[J].BrainRes,2004,1018(1):111-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700