三代微光像增强器信噪比测试与噪声特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三代微光像增强器是构成先进微光夜视技术的核心器件,信噪比是微光像增强器的重要综合指标之一,本文围绕三代微光像增强器的信噪比测试技术、类针孔光源弱光照度测量和噪声特性分析中存在的问题,开展了一系列的研究工作。
     本文首先研究了微光像增强器信噪比的测试原理和方法,以国军标为信噪比测试依据,对三代微光像增强器信噪比校准装置的硬件和软件分别进行设计和研制,包括总体结构、光源装置、光电检测组件、信号处理器、数据采集系统、分析软件模块和数据库存储模块等,建立了国内首台三代微光像增强器的信噪比校准装置,解决了国内微光像增强器信噪比测量量值统一和准确可靠问题。
     研究了类针孔弱光光斑的光子统计特性及光子通量测量原理,基于光子计数测量方法研制类针孔微弱光照度计,首次实现了直径为0.2mm,照度为1.08×10-41x微光像增强器信噪比测试光源的照度直接测量,解决了由于微光像增强器信噪比测试光源照度的间接传递测量导致微光像增强器信噪比的测试无法闭环问题。
     提出了MCP输出信噪比的概念和具体的测试方法,利用MCP噪声特性测试系统进行了MCP输出信噪比测试实验,为MCP噪声评价提供了新的技术途径;对微光像增强器中光阴极、MCP和荧光屏等各部件对整管信噪比产生影响进行理论分析,开展了微光像增强器信噪比链的验证试验,为进一步降低微光像增强器的噪声提供了理论依据和实验支撑。
     在微光像增强器信噪比校准装置的基础上,利用低噪声高分辨率CCD,自行研制了halo效应测试仪,对超二代微光像增强器和三代微光像增强器的halo效应进行了测试分析。在低照度光源照射下,分别采集了一定直径的小孔像以及该小孔在不同微光像增强器荧光屏上的像,分析了小孔在微光像增强器荧光屏上形成halo图像的组成成分以及影响因素,并与美国三代微光像增强器halo效应值进行了比对,验证了我们测量的准确性。通过开展微光像增强器halo效应的测量研究,进一步推动了微光像增强器制管工艺的改进,并为微光像增强器性能评价提供了新的测试手段。
The third generation low-light-level (LLL) image intensifier is the core device of the advanced night vision technology. The signal to noise ratio (SNR) is one of important composite indicators of the image intensifier. To solve the problems of SNR measurement technology, pinhole-like low light illuminancy measurement and noise characteristics analysis, this paper has developed a series of researches.
     Firstly, we studied the principles and methods of image intensifier SNR testing in this article. With the SNR testing national army standards as technical standards, we designed and developed the hardware and software for the SNR correction device of the third generation low-light-level image intensifier, which consisted of the overall structure, light source device, photoelectric detection components, signal processor, data acquisition system, analyzing software module, database storage module, etc. We established the first internal SNR correction device of the third generation low-light-level image intensifier and resolved the problems of value uniformity and accuracy in SNR measurement of internal low-light-level image intensifier.
     Secondly, we also studied the photon statistical characteristics of pinhole-like low light spot and measurement principle of photon flux. Based on photon counting measurement method, we developed pinhole-like low light luminometer and implemented the direct measurement of illuminancy of the low-light-level image intensifier SNR testing with a0.2mm diameter and a1.08x10-4lx illuminancy for the first time. And we solved the problem that the SNR testing can't be closed-loop, which is caused by the illuminancy indirect transfer of the SNR testing lamp-house for the LLL image intensifier.
     Moreover, we presented the concepts and the specific testing methods of the microchannel plate (MCP) output SNR, and did the MCP output SNR testing experiments by using MCP noise characteristic measurement system, which provided the new technical approach for MCP noise characteristic evaluation. We also analyzed the effect to the LLL image intensifier SNR, which is caused by the photocathode, MCP and phosphor screen. Furthermore, we did the verification experiments for the SNR chain of the LLL image intensifier, which provided the theoretical basis and experimental support for further decreasing the noise of the LLL image intensifier.
     Based on the SNR correction device of LLL image intensifier, we developed the halo effect tester by using the high-resolution CCD, and performed the test analysis on halo effect of the super second and the third generation LLL image intensifiers. Under irradiation with low illuminancy lamp-house, we respectively collected the pinhole image with a certain diameter and the image of the pinhole on the different image intensifier phosphor screen, and analyzed the compositions and impact factors of the halo image of the phosphor screen. And we testify the accuracy of the measurements by comparing with the halo value of the American third generation LLL image intensifier. The study of the halo effect measurement would further motivate the improvement of tube-making process, and provide the new testing methods for the performance evaluation of the LLL image intensifier.
引文
[1]Siggins T, Sinclair C, Bohn C, et al. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL. Nuclear Instruments and Methods in Physics Research A,2001,475: 549-553
    [2]郭里辉.一种提高透射式GaAs光电阴极响应速度的方案.高速摄影与光子学,1990,19(1):16-22
    [3]李晋闽.场助半导体光电阴极理论与实验.北京:科学出版社,1993
    [4]Castracane J, Clow L and Boskma L. High-resolution image intensifier development: preliminary results. Proc. SPIE,1995,2416:192-199
    [5]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999
    [6]白廷柱,金伟其.光电成像原理与技术.北京:国防工业出版社,2006
    [7]金伟其,刘广荣,王霞,等.微光像增强器的进展及分代方法,光学技术,2004,30(4):460-466
    [8]常本康.多碱光电阴极.北京.兵器工业出版社,2011
    [9]华东工学院403教研室.军用夜视仪器(第一版).南京:华东工学院,1974
    [10]北京工业学院四系.夜视技术.北京:北京工业学院,1980
    [11]Csorba I P. Image tubes. New York:MacMillan Pub.,1985
    [12]方如章,刘玉凤.光电器件(第一版).北京:国防工业出版社,1988
    [13]张鸣平.夜视仪器.北京:北京理工大学出版社,1993
    [14]王庆有,孙学珠.CCD应用技术.北京:科技出版社,1989
    [15]史斯,伍锁译.电光学手册.北京:科技出版社,1981
    [16]Spicer W E. Photoemissive, photoconductive, and absorption studies of alkali antimony compounds. Physical review,1958,112(1):114-122
    [17]Spicer W E and Herrera-Gomez A. Modern theory and application of photocathodes. Proc. SPIE,1993,2022:18-33
    [18]Scheer J J and Vanlar J. GaAs-Cs:new type of photoemitter. Solid State Communications, 1965,3:189-193
    [19]Turnbull A A, Evans G B. Photoemissions from GaAs-Cs-O. Journal of Phisics D: Applied Phisics,1968,1:155-160
    [20]Sommer A H. Brief history of photoemissive materials. Proc. SPIE,1993,2022:2-7
    [21]Spicer W E. Negative affinity 3-5 photocathodes:their physics and technollogy. Applied Physics,1977,12:115-130
    [22]Baum A W, Spicer W E, Pease R F W, et al. Negative electron affinity photocathodes as high-performance electron sources—Partl:achievement of ultra-high brightness from an NEA photocathode, Proc. SPIE,1995,2522:208-219
    [23]Alley R, Aoyagi H, J.Clendenin, et al. The Stanford linear accelerator polarized electron source. Nuclear Instruments and Methods in Physics Research A,1995,365:1-27
    [24]Aulenbacher K, Schuler J, Harrach D V, et al. Pulse response of thin III/V semiconductor photocathodes. Journal of Applied Physics,2002,92(12):7536-7543
    [25]Maruyama T, Brachmanna A, Clendenin J E, et al. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nuclear Instruments and Methods in Physics Research A,2002,492:199-211
    [26]米侃.透射式NEA GaAs光电阴极和第三代像增强器研究:[博士学位论文].西安:西安光机所,1998
    [27]李晓峰.第三代像增强器研究:[博士学位论文].西安:西安光机所,2001
    [28]Pierre Dolizy. Optical methods for investigating alkali antimonide photocathodes. Vacuun.1980,30(11/12):489-495
    [29]Jacques Dupuy, Joost Schrijvers, Gerard Wolzak. XX1610 the "Super second generation" image intensifier. Proc. SPIE Image Intensification.1989,1072:13-18
    [30]Pierre dolizy, Olympio De Luca, Marie-Anne Deloron.锑、钠、钾、铯型多碱锑化物的光电发射.高鲁山等译.红外技术,19857(1):50~53;(2):42-48;(3):61~64;(4):58-63;(5)49~58
    [31]Estrera J P, Ostromek T, Bacarella A, et al. Advanced image intensifier night vision system technologies:status and summary 2002. Proc. SPIE,2003,4796:49-59
    [32]Estrera J P, Bender E J, Giordana A, et al. Long lifetime generation IV image intensifiers with unfilmed microchannel plate. Proc. SPIE,2000,4128:46-53
    [33]Floryan R, Devoe N, Peck T. New image intensifier family for military and homeland defense. Proc. SPIE,2003,5071:397-501
    [34]http://www.itt.com
    [35]田金生,骆冠平(译).像增强器技术的最新进展.云光技术,2000,32(1):32-36
    [36]宗志园.NEA光电阴极的性能评估和激活工艺研究:[博士学位论文].南京:南京理工大学,2000
    [37]杜晓晴.高性能GaAs光电阴极:[博士学位论文].南京:南京理工大学,2005
    [38]邹继军.GaAs光电阴极理论及其表征技术研究:[博士学位论文].南京:南京理工大学,2007
    [39]Martinelli R U, Fisher D G. The application of semiconductors with negative electron affinity surfaces to electron emission devices. Proceedings of the IEEE,1974,62(10): 1339-1360
    [40]Fisher D G, Enstrom R E, Escher J S, et al. Photoemission characteristics of transmission-mode negative electron affinity GaAs and (In,Ga)As vapor-grown structures. IEEE Transactions on Electron Devices,1974, ED-21(10):641-649
    [41]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    [42]Thomas P J, Allison R S, et al. Physical modeling and characterization of the halo phenomenon in night vison goggles. Proc. SPIE,2005,5800:21-31
    [43]Eberhart E H. An operational model for Microchannel Plate Devices. IEEE Transactions on Nuclear Science,1980,28:712-717
    [44]Pearson J F, Lees J E, Fraser G W. Operating characteristics of Sandwich Microchannel Plates. IEEE Transactions on Nuclear Science,1988,35
    [45]Avdeev S D. Gritskevich E.V. Procedure for calculating signal-to-noise ratio in a image intensifiers tube. Izvestiya Vysshikh Uchebnykh Zavedenii.1988,31(11):73-77
    [46]Eberhart E H. Image transfer properties of proximity focused image tubes. Appl. Opt, 1977,16(8):2127-2133
    [47]Kume H, Koyama K, et al. Ultrafast microchannel plate photomultipliers. Appl. Opt, 1988,27(6):1170-1178
    [48]曹远生.宽量程弱光照度计的研制.实用测试技术,1996,1:19-21
    [49]王忠和.光子学物理基础.北京:国防工业出版社,1998
    [50]Wang Zh H. Photons physical property.Beijing:National defence industry Press,1998
    [51]潘君骅.计量测试技术手册第10卷光学.北京:中国计量出版社,1997
    [52]Schagen P.夜视电子器件与电子成像.北京:北京理工大学出版社,1979
    [53]P.S.Night vision intensifier and electron imaging. Beijing:Beijing Institute of technology Press,1979
    [54]Li JuYin. Design and experiments of photon counting imaging test platform. IEEE,2009, 978-1:3817-3821
    [55]孙立群.微光图像光子计数器像管光子增益测试研究.光子学报,1997,26(6):498-503
    [56]SUN L Q. Measurement study on the photon gain of LLL image photon counting intensifier. ACTA photonica sinica,1997,26(6):498-503
    [57]安毓英.光电探测原理.西安:西安电子科技大学出版社,2004
    [58]孙立群.光子计数技术及其在弱光计量中的应用.应用光学,1993,14(6):46-49
    [59]http://www.photonis.com/nightvision/technology/what_is_meant_by_halo_size
    [60]Zacher J E., Brandwood T, et.al. Effects of image intensifier halo on perceived layout, Proc. of SPIE,2007,6557:65570U
    [61]向世明.微光像增强器信噪比理论极限问题研究.应用光学,2008,29(5):724-726
    [62]邹异松.电真空成像器件及理论分析.北京:国防工业出版社,1989
    [63]左日方.EBCCD微光成像系统综合性能评价.北京:北京理工大学出版社,2003
    [64]格鲁姆F,贝彻雷R J.辐射度学.北京:机械工业出版社,1987
    [65]邱亚峰,钱芸生,常本康.像增强器亮度增益和等效背景照度测试仪的研制.红外技术.2003,Vol.25(5):76-79
    [66]拜晓锋,苏俊宏,石峰,胡正良.像增强器综合测试用光源照度调变技术研究.应用光学,2009,30(5):806-809
    [67]陆同兴,路铁群.激光光谱技术原理及应用.合肥:中国科技大学出版社,1999
    [68]金国藩,李景镇.激光测量学.北京:科学出版社,1998
    [69]陈成杰,徐正卜.光电倍增管.北京:原子能出版社,1998
    [70]钱芸生,常本康,童默颖,刘磊.微光像增强器噪声频谱测试技术研究.光学学报.2003,Vol.23(1):67-70
    [71]崔东旭.光子计数法测量类针孔成像光斑照度,光学精密工程,2012,Vo1.20(4):733--738
    [72]石峰,程宏昌,贺英萍,梁宏军.MCP输入电子能量与微光像增强器信噪比的关系.应用光学.2008,29(4):562-564
    [73]Hertel R J. Signal and nosie properties of proximity focused image tubes. Proc. SPIE,1990,1155:332-343
    [74]吴奎,王国政,李野,高延军,姜德龙,端木庆铎.微通道板离子壁垒膜及其电子透过特性的研究.长春理工大学学报.2004,(4):82-84
    [75]Wiza J L. Microchannle Plate Detectors.Nuclear Instruments and Methods.1979,162: 587-601
    [76]田景全,姜德龙.通道板非晶态A1203电子透射膜.电子学报,1996,24(8):1-5
    [77]Sinor T W, Estrate J P. An analysis of electron scattering in thin dielectric used as ion barriers in Generation III image tubes. SPIE,2003,4096:23-32
    [78]白雪松.微光像增强器高速脉冲门控电源技术的研究:[硕士论文].长春:长春理工大学,2009
    [79]徐江涛.二代近贴微通道板(MCP)电子清刷技术.应用光学,2001,22(4):23-25
    [80]潘京生.微通道板及其主要特征性能.应用光学,2004,25(5):25-29
    [81]Laprade B N, et al. A low noise figure microchannel plate optimized for Gen III image intensification systems. SPIE,1990,1243:162-172
    [82]金戈.微通道板双面抛光工艺研究:[硕士论文].南京:南京理工大学,2008
    [83]潘京生.低噪声高分辨力微通道板研制:[硕士论文].南京:南京理工大学,2007
    [84]张正君.微通道板化学处理工艺研究:[硕士论文].南京:南京理工大学,2008
    [85]吴奎.微通道板特性参数测试系统研究:[硕士论文].长春:长春理工大学,2007
    [86]孙建宁.小孔径微通道板电极性能研究:[硕士论文].南京:南京理工大学.2008
    [87]傅文红,常本康.一种新型低噪声MCP的研究.南京理工大学报,2002,26(1):24-26
    [88]傅文红,常本康.低噪声MCP的结构研究.真空科学与技术学报,2004,24(1) :19-21
    [89]傅文红.MCP扩口工艺的理论、实验与测试技术研究:[博士论文].南京:南京理工大学.2006
    [90]李晓峰;张景文,高鸿楷,侯询,三代管MCP离子阻挡膜研究.光子学报,2001,30(12):1496-1499
    [91]Pollen H K. Performance and reliability of third-generation imaging intensifiers. AEEP, 1985,64A (1):61-69
    [92]崔东旭,郑少成,邱亚峰,钱芸生,常本康.微通道板的输出信噪比特性研究.真空科学与技术学报,2012,32(6):468-471
    [93]崔东旭,郑少成,邱亚峰,钱芸生,常本康.电子清刷对微通道板增益及输出信噪比的影响.光子学报,2012,41(8):962~966
    [94]李辉,钱芸生,常本康,刘磊,夏杨,李师亿.微光像增强器信噪比测试中的K因子研究.红外技术,2007,29(8):488-490
    [95]张伟,汪岳峰,董伟.微光像增强器噪声功率谱测试研究.光谱学与光谱分析,2003,23(3):621-622
    [96]Bosch L. A image intensifiers tube performance is what matters. Proc. SPIE,2000,4128: 65-78
    [97]张旭东,陆明泉.离散随机信号处理.北京:清华大学出版社,2005
    [98]http://www.photonis.com/nightvision/technology/whatismeantbyhalosize
    [99]任玲,石峰,郭晖,崔东旭,史继芳,钱芸生,王洪刚,常本康.前近贴脉冲电压对三代微光像增强器halo效应的影响.物理学报,2013,62(1):014206
    [100]Papp G. IRE. Trans. Nucl. Sci.,1962,9 (4):55-57
    [101]Dongxu Cui, Ling Ren, Feng Shi, Jifang Shi, Yunsheng Qian, Honggang Wang, Benkang Chang. Test and analysis of the halo in low-light-level image intensifiers. Chinese Optics Letter,2012,10(6):060401-1
    [102]王勇.微光像增强器的分辨率研究:[硕士论文].南京:南京理工大学,2011
    [103]武梅娟.MCP端面电子反射对像增强器分辨力的影响:[硕士论文].南京:南京理工大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700