衍射光学元件的冷反射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的以光的折射和反射原理为基础的光学元件相比,衍射光学元件具有质轻体薄、设计灵活、并且对入射光波可以自由调制等优点。通过折衍混合的方式,可以在提高光学系统成像质量的同时,简化系统结构,减轻重量,缩小体积。对于致冷红外光学系统,衍射元件在简化系统的同时,从致冷红外探测器上发出的冷光线会被衍射表面反射而发生多级衍射。本文首次系统地研究了致冷红外光学系统中单层和多层衍射表面的冷反射特性,提出了红外系统中衍射光学元件冷反射分析的概念、理论和方法,给出了衍射冷反射的评价标准。本文的研究方法及结论对于衍射表面冷反射的分析具有重要的理论意义和实用价值。
     以光波的标量衍射理论为基础,本文系统地研究了单层衍射光学元件和多层衍射光学元件的衍射特性,分析了单层衍射光学元件的色散特性,部分色散特性与温度稳定特性,研究了单层衍射光学元件的消色差、复消色差和消热差理论。通过将单层衍射元件和多层衍射元件的衍射表面用二元光学元件的台阶表面进行模拟,计算出斜入射的光线在衍射表面产生的位相延迟,进而分析了单层和多层衍射元件的衍射效率与入射角度和入射波长变化的关系。多层衍射光学元件增加了衍射光学设计的自由变量,通过不同材料的配合,可以设计出不同衍射表面微结构的高度,以提高成像波段范围内入射光波的衍射效率,解决单层衍射元件衍射效率随着入射波长对中心波长的偏离而下降的问题。但是多层衍射光学元件的衍射效率仅在一定角度范围内对入射角的变化不敏感,当入射角度增加,衍射效率会迅速降低,增加了对入射角度的灵敏度。此外本文对多层衍射光学元件在不同温度变化下的成像特性进行研究,分析了衍射离焦量与衍射元件材料热膨胀系数的关系。
     对于致冷红外光学系统,可以把衍射光学元件的消色差和消热差特性等应用到光学系统优化设计中。但是致冷探测器会通过前方光学系统的光学表面反射而探测到自身的冷像。当单层衍射元件应用于致冷红外光学系统时,从致冷的红外探测器上发出的冷光线逆向追迹到单层衍射元件的衍射表面,被反射的光线会由于衍射表面引入的相位延迟而发生衍射。衍射的冷反射光线在整个设计波段内会发生多级衍射,从探测器发射出的冷光的能量也分配在不同的衍射级次中,且不同衍射级次的冷光线成像到致冷探测器上形成冷像的大小尺寸也各不相同。这样,在进行冷反射分析时,首先要进行衍射效率分析,然后针对各衍射级次进行光线追迹,进而分析衍射表面的冷反射特性。
     与单层衍射元件相比,多层衍射元件需要分析多个衍射表面的衍射冷反射。对双层衍射元件进行冷反射特性研究的结果表明,双层衍射表面的冷反射与单层衍射表面冷反射的最大不同在于,被双层衍射表面第一个谐衍射表面反射的冷光线实际上经历了三次相位延迟,一次反射,两次透射。此外,相对单层衍射元件,多层衍射元件表面的微结构高度更高,造成衍射的冷反射光线在整个设计波段内会发生多级衍射。
     本文对衍射光线采用近轴光线追迹的方法,首先分析了从致冷探测器发出的冷光被衍射表面反射后衍射级的衍射效率,在此基础上定量分析了单层衍射表面以及多层衍射表面的冷反射,给出了修正后的衍射表面的近轴冷反射评价标准,为致冷红外光学系统中衍射表面的冷反射提供了一种全新的分析与评价方法。
     文章最后给出了三个红外光学系统设计实例,分别为含有单层衍射表面的中波折衍射混合红外光学系统,含有单层衍射表面的长波折衍射混合红外光学系统和含有多层衍射表面的长波折衍射混合红外光学系统。通过实例分析了多个含有衍射表面的红外系统中的冷反射,并给出了衍射表面的冷反射分析结果。
Compared with the conventional optical element based on light refraction and reflection principle, the diffractive optical element has the characteristics of light, thin and flexible. And it can be used to modulat the incident light waves freely. With the combination of diffractive and refractive elements, the imaging quality of the optical system can be greatly improved. At the same time, the diffractive surfaces can be used to simplify the system structure, reduce weight and volume of the optical system. Except from simplification of the optical system, diffractive elements could reflect the cold rays emitted from the cooled infrared (IR) imaging sensor. There will be multi-order diffraction for the reflected light which is backward traced to the diffractive surface. In this dissertation, the narcissus phenomenon for single layer and multilayer diffractive elements in cooled IR imaging system were thorouly discussed. Based on the anaylisis, the concept, theory and discussion method of diffractive elements used in IR system are given, and the modified evaluation criteria for the narcissus effect of diffractive elements are presented. The analyze method and conclusion have both theoretical significance and practical utility.
     In this dissertation, based on light wave scalar diffraction theory, the diffraction characteristics for single-layer diffractive optical element and multilayer diffractive optical element have been systematically studied. The dispersion characteristics, partial dispersion characteristics and thermal characteristics of single-layer diffractive optical element have been analyzed. The achromatism, apochromatism and athermalization for single-layer optical elements have been discussed. Using multi-level binary optical surface model to simulate the diffractive surface of single-layer diffractive element and multilayer diffractive elements, the phase delay for oblique incident light were deduced. Besides, the relationship between diffraction efficiency and both the changes of incident angle and the incident wavelength were analyzed for single-layer and multilayer diffractive element. Compared with the single-layer diffractive optical element, the multilayer diffractive optical element has more variables for the optical design of diffractive element. Through the mating of different materials, and optimum design of the height of the diffractive structure for the diffractive optical element, the diffraction efficiency of the incident light in the imaging wavelength range can be improved. But analysis showed that the diffraction efficiency of the two-layer diffractive optical element is relatively high only in a certain incident angular range. When the incident angle continues to increase, the diffraction efficiency decreased rapidly with the increasing angle of incidence. In addition, through the research of the imaging properties of the multilayer diffractive optical element in different temperatures, it can be found that the changes of the height of the diffractive structure and the refractive index for the diffractive optical element are relatively small, which means that the thermal influence for diffraction efficiency of multilayer diffractive element is insensitive. Besides the relationship between the defocus amount of the diffraction element and the thermal expansion coefficients of the lens materials is analysed in this dissertation.
     As for the cooled IR imaging system, diffractive optical elements, with the characteristics of achromatism, apochromatism and athermalization, could be used in the optimization process of optical system. The narcissus phenomenon is a well-known problem for cooled IR imaging systems, which is generated by the cooled detector detecting its own image through the reflection of the optical system surfaces. When there are diffractive surfaces, the narcissus effect is different from the transmitted and reflected radiation. And due to the phase delay introduced by the diffractive surface, there will be diffraction for the reflected light which is backward traced to the optical surface. The energy of the cold rays through the design wave band would be distributed in different diffraction orders. And the cold image of different diffract order would be different too. Thereby the narcissus calculation must be considered with specific orders of diffraction based on their diffraction efficiencies.
     Compared with single-layer diffractive element, as for the multilayer diffractive element, it is necessary to analyze the cold reflection caused by all the diffraction surfaces. The narcissus influence analysis showed that the cold reflection of the multilayer diffractive element is more complicated. Taking the two layer diffractive element as an example, the cold rays reflected by the front diffractive surfaces actually experienced three times of phase delay, one reflection and two times of transmission. For the multilayer diffractive element, the height of the diffractive structure is relatively big, which means that there will be more diffractive orders throughout the design waveband for the cold rays that reflected by the diffractive surfaces.
     Paraxial ray tracing analysis of the diffracted light emitted from the cold detector is used in this dissertation. Considering the diffraction efficiency, the narcissus influence of single layer diffractive surface and multilayer diffractive surfaces are discussed. The modified evaluation criteria for the narcissus effect of diffractive surfaces are given, which provides a new evaluation method for narcissus in cooled IR optical system.
     At the last chapter of this paper, three practical cooled LWIR(Longwave Infrared) imaging optical system containing diffractive elements are given, one MWIR(Midwave Infrared) optical system containing single layer diffractive elements, one IR optical system containing single layer diffractive elements, and one IR optical system containing one two-layer diffractive element. These examples showed the analysis results of the narcissus phenomenon for diffractive elements in cooled IR optical system.
引文
[1]Thomas stone and Nicholas George. Hybrid diffractive-refractive lenses and achromats [J]. Applied Optics,1988.27 (14):2960-2791.
    [2]G. J. Swanson. W. B. Veldkamp. Diffractive optical elements for use in infrared systems.[J]. Opt. Eng,1989. 28:605-608.
    [3]G. J. Swanson, Binary optics technology:theoretical limits on the diffraction efficiency of multilevel diffractive optical elements. Tech. Rep.914, MIT Lincoln Laboratory,1991.
    [4]Lord Rayleigh, Laboratory notebook entry of April 11 1871. Quoted in R. W.ood. Physical Optics.3th. New York: Macmillan Co..1934:37-38].
    [5]J. L. Soret. Ueber die durch Kreisgitter Diffraction sphanomene[J]. Ann. Phys. Chem.1875,156:99-113.
    [6]K. Lizuka. Engineering Optics[M].2nd. Berlin:Springer_Berlag,1987:95-102.
    [7]J. W. Goodman. Introduction to Fourier Optics[M]. San Francisco:McGraw-Hill Book Co.,1996, Chapter 3.
    [8]Lord Rayleigh. Wave theory of light in Encyclopedia Brittanica.9th.Vol.ⅩⅩⅣ. Charles Scribner's Sons. New York. 1888:431-443.
    [9]D. Gabor. A new microscopic principle[J]. London:Nature.1948.161:777-779.
    [10]D. Gabor. Microscopy by reconstructed wavefronts[J]. Proc. R. Soc. London. Ser. 1949, A 197:454-487.
    [11]D. Gabor. Microscopy by reconstructed wavefronts:Ⅱ[J]. Proc. R. Soc. London, Sect.1951. B64:449-469.
    [12]L. Lesem. P. Hirsch. J. Jordan. Generation of discrete-point holograms [J]. Opt. Soc. Am.,1968,58:729-736.
    [13]L. Lesem. P. Hirsch. J. Jordan. The kinoform:.A new wavefront reconstruction device. IBM J. Res. Dev.1969.13: 150-155.
    [14]J. Jordan. Jr. P. Hirsch. Kinoform lenses[J]. Appl. Opt.1970.9:1883-1887.
    [15]L.d'Auria, J. Huignard, A. Roy. E. Spitz. Photolithographic fabrication of thin film lenses[J]. Opt. Comm,1972, 5:232-235.
    [16]G J. Swanson. W. B. Veldkamp. Binary lenses for use at 10.6 micrometers[J]. Opt. Eng.1985,24:791-795.
    [17]G. J. Swanson Binary optics technology:The theory and design of multi-level diffractive optical elements. MIT Lincoln Laboratory technical report,1989.
    [18]W. B. Veldkamp. Binary optics[M]. In McGraw-Hill year book of science and technology,1990.
    [19]G. J. Swanson. W. B. Veldkamp. Diffractive optical elements for use in infrared systems[J]. Opt. Eng.1989, 28:605-608.
    [20]T. J. Mchueh. D. A. Zweig. Recent advances in binary optics[J]. SPIE.1989.1052:85-90.
    [21]L. N. Hazra. Diffractive optical elements-past, present and future[J]. SPIE,1999,3729:198-211.
    [22]Special issue for diffractive optics:design fabrication and pplication[J].Appl.Opt.1993.32(14).
    [23]R.H.Czichy. D.B.Doyle and J.M.Mayor.Hybrid optics for applications-design, manufacture and test[J]. SPIE.1992. 1780:333-344.
    [24]Thomas Stone and Nicholas George. Hybrid diffractive-refractive lenses and achromats[J]. Appl. Opt.1988,27 (14):2960-2971.
    [25]Dale A. Buralli and G Michael Morris.Design of a wide field ditfractive landscape lens[J].Appl. Opt.1989, 28:390-3959.
    [26]Thomas Stone and Nicholas George. Hybrid diffractive-refractive lenses and achromats. [J] Appl. Opt.1988.27 (14):2960-2971.
    [27]D.Faklis.GM.Morris. Broadband imaging with holographic lenses[J]. Opt.Eng.1989,28:592-598.
    [28]Dale A. Buralli, G. Michael Morris. Effects of diffraction efficiency on the modulantion transfer function of diffractive lenses[J]. Applied Optics,1992,31 (22):4389-4396.
    [29]Michael W. Farn. Joseph W. Goodman. Diffractive doublets corrected at two wavelengths[J]. Opt. Soc. Am. A.1991, 8(6):860-867.
    [30]G. P. Behrmann, J. P.Bowen. Influence of temperature on diffractive lens performance[J]. Appl. Opt,1993, 32:2483-2489.
    [31]D. W. Sweeney, G E. Sommargren. Harnonic diffractive lenses[J]. Appl. Opt,1995,34(14):24692-475.
    [32]D. Fakilis, G. M. Morris. Spectral properties of multiorder diffractive lenses[J]. Appl. Opt,1995,34(14):2462-2469.
    [33]Tasso R.M.Sales and G.Michael Morris. Diffractive-refractive behavior of kinoform lenses[J]. Appl.Opt,1997. 36(1):253-257.
    [34]Yoel Aredli, Shmuel Ozeri, Naf tali Eisenberg. Design of a diffractive optical element for wide spectral bandwidth[J]. Opt. Lett,1998,23(11):823-824.
    [35]K.J.Weible, A.Schilling H.P.Herzig. Achromatization of the diffraction efficiency of diffractive optical elements[J].SPIE,1999,3749:378-379.
    [36]Andrew wood, Mane-Si Laure Lee and Simone Cassette. Infrared hybrid optics with high broadband efficiency[J]. SPIE,2005,5478:0G1-0G12.
    [37]G I. Gre sukh, E. G Ezhov, and S. A. Stepanov.Choosing materials for achromatization of relief-phase diffraction structures[J]. Komp. Optika,2008,32:1-43.
    [38]G. I. Gre sukh. E. G Ezhov, and S. A. Stepanov. Suppressing the wavelength dependence of the diffraction efficiency of two-order relief-phase diffraction structures[J].Opt.Technol.2009,76 (2):55-57.
    [39]G I. Gre sukh, E. G. Ezhov, and S. A. Stepanov. Suppressing the wavelength dependence of the diffraction efficiency of reflective double-layer relief-phase diffraction structures[C].in Collection of Papers of the Fifth International Conference HOLOEXPO(2008).
    [40]Mikael Karlsson and F. Nikolajeff. Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers[J]. Optics Express,2003.11:191-198.
    [41]C.Gary Blough etal.Single-point diamond turning and replication of visible and near-infrared diffractive optical elements[J].Appl.Opt,1997,36(30):4648-4654.
    [42]Martina Chmelir etal. Diamond Turned Optic[J]s. SPIE,1999,2206:65-73.
    [43]M. A. Davies. Application of precision diamond machining to the manufacture of micro-photonics components[J]. SPIE,2003,5186:95-109.
    [44]A.P.Wood, Using hybrid refractive-diffractive elements in infrared Petzval Objectives[J]. SPIE,1990.1354:316-322.
    [45]Thomas W.Stone. Hybrid diffractive-refractive telescope[J]. SPIE,1990,1212:257-266.
    [46]P. Twardowski. Partrick Meyrueis. Design of some achmoatic imaging hybrid diffractive-refractive lenses[J]. SPIE,1991.1507:55-65.
    [47]Philip J Rogers. Use of Hybrid Optics in the 3~5μinfrared band[J]. SPIE,1995.2540:13-20.
    [48]Donald Sweeney, Kenneth Dehng.Diffractive optics for compact flat panel display. Lawrence Livermore National laboratory technical report,1997.
    [49]Takehiko Nakai, Hideki Ogawa. Research on multi-layer diffractive optical elements and their application to camera lenses[J]. Optical Society of America,2002.
    [50]G.Michael Morris,Lee T.Nordan.Phakic intraocular lenses.Optics and Photonics News.2004:27-31.
    [51]M. D. Missig, G. M. Morris. Diffractive optics applied to eye-piece design[J]. Appl. Opt,1995,34:2452-2461.
    [52]M. D. Missing, G. M. Morris. Diffractive optics applied to eye-piece design[J], Appl. Opt,1995,34:2452-2461.
    [53]曾吉勇,金国藩,王民强,严瑛白.折衍混合复消色差望远物镜设计的PWC方法.光子学报[J],2006,35(10):1569-1572
    [54]赵丽萍,邬敏贤,金国藩,严瑛白.折衍混合单透镜的色球差校正研究.光学学报[J],1998.18(5):621-626
    [55]庞霖,严瑛白,金国藩,韦辉,郭履容.基于微结构制作的溶胶凝胶浸渍成膜特性[J].中国激光,2001,28(2):151-154
    [56]曾吉勇,金国藩,王民强,严瑛白.含衍射光学元件的薄透镜系统初级像差的PWC表示[J].光学学报,2006.26(1):96-100
    [57]LI Yong, JIN Hongzhen, WANG Hui, YING Chaofu, JFN Guofan. Research for Horizontal Parallax Only Kinoform in 3D Display[J]. Chinese Journal of Lasers,2002,11(6):465-468
    [58]金国藩.二元光学与特殊波面变换的实现.激光与光电子学进展[J],1995,32(4):2
    [59]包红春,邬敏贤,金国藩,严瑛白.二元光学波面变形器件的研究[J].光学学报,1994,14(9):988-991
    [60]谭峭峰,魏晓峰,向勇,严瑛白,金国藩.YG算法设计分数傅里叶变换衍射光学光束整形器件[J].光子学报,2005,34(11):1724-1727
    [61]曾红军,杜春雷,王永茹,白临波,邓启凌,陈波,郭履容,袁景和.连续微光学元件在光刻胶上的面形控制[J].光学学报,2000,20(5):691-696
    [62]徐平,张晓春,郭履容,郭永康,周祥,杜春雷,周明宝.二元光学元件制作误差分析与模拟[J].光学学报,1996,16(6): 833-838
    [63]张晓春,郭永康.郭履容.等离子体蚀刻衍射光学元件[J].中国激光,1993,20(9):663-666
    [64]徐平,唐继跃.郭履容,郭永康,杨家发.杜春雷,李展,周明宝.深刻蚀连续浮雕微光学元件的衍射分析[J].中国激光.1996,23(9):819-823
    [65]陈波,王菡子.韦辉,郭永康,郭履容,张新宇,裴先登,汤庆乐,张智,易新建.用于惯性约束聚变束匀滑的完全连续相位板设计方法凹折射微透镜阵列的离子束刻蚀制作[J].光学学报,2001.21(4):480-484485
    [66]唐继跃.陈波.徐平,郭履容.制作连续沟形微光学元件的新方法.[J]光学学报.1997.17(2):237-242
    [67]周崇喜.林大键,杜春雷,郭晴.二元光学反/衍混合Schmidt望远系统光学设计[J].光学学报.1998.18(5):627-630
    [68]徐平,张晓春,郭履容,郭永康,周祥,杜春雷,周明宝.二元光学元件制作误差分析与模拟[J].光学学报,1996,16(6):833-838
    [69]杜春雷,林大键,冯伯儒,孙国良.徐平,郭履容.激光直接光刻制作微透镜列阵的方法研究[J].光学学报.1996,16(8):1194-1196
    [70]刘莉萍.王涌天.李荣刚,焦明印.制作在非球面基底上的红外衍射光学元件[J].红外与毫米波学报,2004,23(4):308-312
    [71]Wang Zhaoqi, Zhang Huijuan. Fu Rulian,etal. Hybrid diffractive-refractive ultra-wide angle eye pieces[J]. Optik,2002, 113(4):159-162
    [72]张云翠,孙强,卢振武.凝视型长波红外折衍混合光学成像系统设计[J].光子学报,2007,36(7):1257-1259
    [73]张楠,卢振武,李凤有.衍射望远镜光学系统设计[J].红外与激光工程,2007,36(1):106-108
    [74]张慧娟.王肇圻,卢振武.折/衍混合微光夜视头盔显示器光学系统设计[J].光学学报.2004.24(10):1393-1396
    [75]张慧娟,王肇圻,傅汝廉,母国光,卢振武.折-衍混合超广角视场目镜系统的设计[J].光学学报.2003,23(1):85-88
    [76]张慧,丁雪梅,谭久彬.折-衍混合长焦深光学元件的焦深特性[J].光学精密工程.2008,16(1):64-70
    [77]孙强.刘宏波,王肇圻,张惠娟,王吉增,卢振武.红外折射/衍射超常温光学系统[J].光子学报,2003,32(4):466-469
    [78]周常河.微纳光学结构及应用.激光与光电子学进展[J],2009,46(10):22-27
    [79]周常河,冯吉军,郑将军,贾伟,曹红超,吕鹏.深刻蚀光栅及其应用.激光与光电子学进展[J].2009.46(2):29
    [80]颜树华,彭金璋,徐琰,张军.高衍射效率亚波长结构Dammann光栅的设计[J].光子学报,2007,36(1):84-88
    [81]Jiubin Tan and Zhengang Lu.Contiguous metallic rings:an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light[J]. Opt. Express,2007,15:790-796
    [82]Jiubin Tan. Fei Wang, and Jiwen Cui.Fiber deflection probing method based on micro focal-length collimation[J]. Opt. Express,2010,18:2925-2933
    [83]范长江,王肇圻,孙强.双层衍射元件在投影式头盔光学系统设计中的应用[J].光学精密工程,2007,15(11):1639-1643
    [84]马韬.多层衍射光学元件设计理论及其在混合光学系统中的应用[D].浙江大学,2006
    [85]孙婷,焦明印,张玉虹.单层与双层谐衍射元件的衍射效率对比分析[J].红外与激光工程,2009,(04):622-624
    [86]冷家开.崔庆丰,裴雪丹,董辉.折衍射混合复消色差望远物镜中的色球差[J].光学学报,2008,28(5):981-987
    [87]裴雪丹,崔庆丰,冷家开,董辉.多层衍射光学元件设计原理与衍射效率的研究[J].光子学报,2009,38(5):1126-1131
    [88]董辉,崔庆丰,裴雪丹,冷家开.多层衍射光学元件成像特性的研究[J].光子学报.2009.38(3):694-698
    [89]周立伟.微光成像技术的发展与展望[M].天津:天津科学技术出版社,2003
    [90]周立伟.夜视技术的进展与展望.激光与光电子学进展[J].1995(4):37-43
    [91]蔡毅.对红外热成像技术发展的几点看法[J].红外技术.2000(2):2-6
    [92]邢素霞.非制冷红外热成像系统研究[D].南京理工大学,2005
    [93]陈胜哲,陈彪.红外技术在军事上的应用[J].光学技术.2006,Supp1.32:581-583
    [94]何丽.走向新世纪的红外热成像技术[J].激光与光电子学进展,2002(12):48-51.
    [95]金国藩,严瑛白,邬敏贤.二元光学[M].北京:国防工业出版社.1998.
    [96]崔庆丰.折衍射混合成像光学系统设计[J].红外与激光工程,2006,35(1):12-15,38.
    [97]VOELKEL R. EISNER M, WEIBLE K. J.Micro optics:manufacturing and characterization[C]//Proceedings of SPIE, Optical Fabrication, Testing, and Metrology Ⅱ,2005.5965:1-9.
    [98]NEVO Y, NIR D, WACHTEL S.Use of diffractive elements to improve IR optical systems [C]//Proceedings of SPIE. Infrared Technology and Applications ⅩⅩⅧ,2003,4820:744-750.
    [99]Robert E.Fischer.BiljamaTadic-Galeb.OpticalSystemDesign[M].New York:McGraw-HillInc.2000.263-287
    [100]G. J. Swanson. W. B. Veldkamp. Diffractive optical elements for use in infrared system[J]:Opt. Eng.1989. 28:605-608.
    [101]L.D.Foo. S.P.Clarlk, R. T. Mercado. Design examples of hybrid refractive-diffractive lenses. Current Developments in Optical Engineering and Commercial Optics[J], Proc, SPIE,1989,1168:117-125.
    [102]A. P. Wood. Using refractive-diffractive elements in infrared Petzval objectives[J]. Proc. SPIE.1990 1354:316-322.
    [103]T. A. Fritz. J. A. Cox. Diffractive optics for broadband infrared imagers:design examples. Holographic Optics: Optically and Computer Generated[J]. Proc. SPIE.1989.1052:25-31.
    [104]A.P.wood, P.J.Rogers.Hybrid optics in dual waveband infrared systems[J]. SPIE,1998,3482:602-613.
    [105]Lawrence M, Scherr. Harold J, Orlando. James T. Hall et al. Narcissus Considerations in Optical Designs for Infrared Staring Arrays[J]. SPIE 2846:442-452.
    [106]同参考文献[13].
    [107]Muhammad Nadeem Akram.Design of a Dual Field-of-View Optical System for Infra-Red Focal-Plane Arrays [J].SPIE,2002,4767:13-23.
    [108]Cox J A. Overview of diffraction opticsat Honeywell[J], SPIE.1988,884:127-132.
    [109]Veldkamp W B, Mc Hugh T J. Binary optics[J]. Scientific American,1992,266(5):92-97.
    [110]Robert E. Fischer. Optical design for the infrared[J].SPIE,1985,531:82-120.
    [111]Thomas Stone, Nicholas George. Hybrid diffractive-refractive lenses and achromats[J]. Appl. Opt,1988,27(14): 2960-2971.
    [112]范长江,王肇圻,吴环宝.张梅.红外双波段双层谐衍射光学系统设计[J].光学学报,2007,27(7):1266-1270
    [113]娄迪.谐衍射光学设计理论和应用研究[D].浙江大学,2008
    [114]米凤文,杨国光,沈亦兵.红外混合光学系统衍射效率的测量方法及其实现[J].光学技术.2006,32(3):353-35
    [115]同参考文献[85]
    [116]Zhang Liang. A New Method of Dual FOV Optical System Design [C]. Proc. Of SPIE,International Symposium on Photoelectronic Detection and Imaging[J], Advances in Infrared Imaging and Applications,2009.7383:1-7
    [117]唐大为,孙强,王健.刘英,郭帮辉.折/衍混合的红外双视场光学系统设计[J].光子学报.2010(11)
    [118]学专,王欣,兰卫华等.二次成像中波红外折射衍射光学系统设计[J].红外技术.2009,31(8):449-452.
    [119]孟剑奇.双视场6倍变焦红外热成像光学系统[J].红外与激光工程2,,008,37(1):89-92
    [120]李清安,万中南,鄂盛国,等.基于二元光学的双视场红外光学系统设计[J].红外技术,2008,30(6):339-34
    [121]James W. Howard and Irving R. Abel, Narcissus:reflections on retroreflections in thermal imaging systems[J]. Appl. Opt.21.3393-3397(1982).
    [122]A. S. Lau, The narcissus effect in infrared optical scanning systems[J]. Proc. SPIE 107, pp 57-62, (1977).
    [123]1. R. Abel, Radiometric accuracy in a Forward Looking Infrared system[J]. Optical Engineering Vol.16,#3, pp 241-248,(1977).
    [124]J. W. Howard and I. R. Abel, Narcissus:reflections on retroreflections in thermal imaging systems[J]. Applied Optics Vol.21,#18, pp 3393-3397, (1982) SPIE Vol.2864/445.
    [125]E. Ford and D. Hasenauer. NarCiSSUS in current generation FUR systems[J], SPIE Critical Review Vol.38, PP. 95-119(1991).
    [126]D. E. L. Freeman, Guidelines for narcissus reduction and modeling[J], Proc. SPIE892, pp.27-37, (1988).
    [127]J. M. Lloyd, Thermal Imaging Systems[M], pp.275-282, Plenum Press, New York. (1975).
    [128]J. L. Rayces and L. Lebich.Exact raytracing computation of narcissus equivalent temperature difference in scanning thermal imagers[J],Proc. SPIE 1752,325-332(1992).
    [129]K. Lu and S. J. Dobson,Accurate calculation of Narcissus signatures by using finite ray tracing[J],Appl. Opt.36,6393-6398(1997).
    [130]王涌天,崔桂华.红外扫描成像系统中冷像的分析和控制[J].光学学报,1994,14(6):650-655.杨正.屈恩世.曹剑中,等.对凝视红外热成像冷反射现象的研究[J].激光与红外,2008(01):35-38
    [131]刘洋,安晓强,王茜,刘鹏鹏.基于光学离焦量的致冷型长波变焦红外成像系统冷反射效应的分析与控制[J].光学学报,2012,32(4):227-234.
    [132]王涌天,崔桂华.红外扫描成像系统中冷像的分析和控制[J].光学学报,1994.14(6):650-655.
    [133]焦明印.红外扫描成像系统中Narcissus等效温差的修正计算[J].光学学报,1997,17(1):126-127.
    [134]金宁.对红外热成像系统中冷反射现象的分析[J].红外技术,1998,,20(3):10-14.
    [135]栾亚东.红外扫描成像系统中冷反射的光学抑制.红外与激光工程[J],2006,35(Z2):26-30.
    [146]杨正.屈恩世,曹剑中,周泗忠,闫阿奇,刘宇波.对凝视红外热成像冷反射现象的研究.激光与红外[J].2008,(01):35-38.
    [137]顿雄,陶玉,孟军合.双视场红外扫描成像系统冷反射抑制红外与激光工[J].2010.04:732-735
    [138]金宁.对红外热成像系统中冷反射现象的分析[J].红外技术,1998.20(3):10-14.
    [139]杨正,屈恩世.曹剑中,等.对凝视红外热成像冷反射现象的研究[J].激光与红外,2008(01):35-38
    [140]J. L. Rayces, L. Lebich. Exact ray-tracing computation of narcissus equivalent temperature difference in scanning thermal imagers[J]. SPIE,1992,1752:325-332.
    [141]Jonathan, B Cohen.Narcissus of Diffractive Optical Surfaces[J].SPIE,1995,2426:380-385.
    [142]P. P. Clark and C.Londono. Production of kinoforms by single point diamond machining[J].Opt.News.1989, 15:39-40
    [143]L.d'Auria. J. P. Huignard, A. M. Roy, and E.Spitz. Photolithographic fabrication of thin film lenses[J].Opt.Commum. 1972,5:232-235
    [144]V. P. Koronkevich. Computer synthesis of diffraction optical elements[J]. Optical Processing and Computing. 1989:277-313
    [145]L.B.Lesem, P.M.Hirsch, and J.A.Jordan, Jr.The kinoform:a new wavefront reconstruction device.IBM J.Res.,1969, Dev.13:150-155
    [146]J. A. Jordan, Jr., P.M.Hirsch. L.B.Lesem. and D.L.Van Rooy. Kinoform lenses[J]. Appl.Opt.1970.9:1883-1887
    [147]W.B.Veldkamp, G. J. Swanson, and D.C.Shaver. High efficiency binary lenses[J]. Opt.Commun.1985,53:353-358
    [148]G. J. Swanson, W. B. Veldkamp. Binary lenses for use at 10.6 micrometers[J]. Opt. Eng,1985,24:791-795
    [149]G. J. Swanson, W. B. Veldkamp. Diffractive optical elements for use in infrared systems[J]. Opt. Eng,1989, 28:605-608
    [150]K. Miyamoto. The phase Fresnel lens[J].J.Opt.Soc.Am.1961.51,17-20
    [151]钟锡华,《现代光学基础》[M],北京大学出版社,2003,P.36.
    [152]D. A. Pommet, M. G. Moharam, E. B.Grann,Limits of scalar diffraction theory for diffractive phase elements [J],JOSA,Vol(11),1994,1827-1834
    [153]J. Thrunen, M. Kuittinen, F. Wyrowski. Diffractive optics:electromagnetic approach[J], Progress in Optics. Vol(11). 2000
    [154]V. Kettunen, M. Kuittinen. J. Turunen. Effects of abrupt surface-Profile transitions in nonparaxial diffractive optics[J],JOSA, Vol(18).2001.1257-1260
    [155]T. Vallius, V. Kettunen. M. Kuittinen, J. Turunen. Step-discontinuity approach for non-paraxial diffractive optics[J]. JMO, Vol(48),2001,1195-1210
    [156]J. W. Goodman, Fourier Optics[M].McGraw-Hill,1996,Chapter3
    [157]M. G. Moharam And T. K Gaylord, Diffraction analysis of surface relief grating[J],J. O. S. A.72,1385-1392(1982).
    [158]R. Magnusson and T. K. Gaylord, Diffraction efficiencies of thin phase gratings with arbitrary gration shape[J] J. O. S. A.68.806-809(1978).
    [159]E. G. Hohnoson and A. D. Kathman, Rigorous electromagnetic modeling of diffractive optical elements[J], Proc. SPIE 1545,209-216(1991).
    [160]W. C. Sweatt. Describing holographic optical elements as lenses[J]. J.Opt. Soc.Am..1977,67:803-808
    [161]W. C. Sweatt. Mathematical equivalence between a holographic optical element and an ultra—high index lens[J]. J.Opt,Soc.Am,1979.69:486-487
    [162]J. M. Sasian and R. A. ChiPman, Stairease lens:a binary and diffractive field curvature corrector[J]. Appl. Opt..1993,32(14),60-66.
    [163]D. R. shafe, Unusual binary-optics telescope design[C], Annual Meeting of OSA, Toronto,1993(11).
    [164]Morris G. M. Diffraction theory for anachromatic fourier transform[J], Appl. Opt.1981.20 (9):2017-2023.
    [165]Stone T, Gerorg eN. Hybrid diffractive-refractive lenses and achromats[J]. Appl. Opt.1988,27 (14):2962-2969.
    [166]同参考文献[4].
    [167]陈杰,白剑,杨国光,等.基于谐衍射特性的双波段红外系统消热差设计[J].光学仪器,2006,28(3):61-65.
    [168]D. Gabor. Microscopy by reconstructed wavefronts:Ⅱ. Proc.R.Soc.London. Sect.1951. B64; 449-469
    [169]E. N. Leith and J. Upatnieks. Reconstructed wavefronts and communication theory[J]. J.Opt.Soc.Am.1962.52: 1123-1130
    [170]Dale A. Buralli, G. Michael Morris. Effects of diffraction efficiency on the modulation transfer function of diffractive lenses[J]. Applied Optics.1992.31(22):4389-4396
    [171]D. W. Sweeney, G. E. Sommargren. Harnonic diffractive lenses[J]. Appl. Opt.1995,34(14):2469-2475
    [172]D. Fakilis, G. M. Morris. Spectral properties of multiorder diffractive lenses[J]. Appl. Opt,1995.34(14):2462-2469
    [173]Takehiko Nakai. Diffractive optical element, and optical system and optical apparatus provide with the same. U.S. patent 6,930,833(16 Aug 2005)
    [174]Takehiko Nakai. Diffractive optical element. U.S. patent 6,330,110(11 Dec 2001)
    [175]Takehiko Nakai. Diffractive optical element and optical system having the same. U.S. patent 6,560,019(6 May 2003)
    [176]Takehiko Nakai. Diffractive optical element and optical system having the same. U.S. patent 6.873.463(29 May 2005)
    [177]Yoel Aredli, Shmuel Ozeri, Naf tali Eisenberg. Design of a diffractive optical element for wide spect ral bandwidth[J]. Opt. Let t,1998,23(11):823-824
    [178]同参考文献[97].
    [179]K.J.Weible, A.Schilling H.P.Herzig. Achromatization of the diffraction efficiency of diffractive optical elements[J].SPIE,1999,3749:378-379
    [180]白剑,马韬,沈亦兵、侯西云.多层衍射光学元件的特性分析[J].红外与激光工程,2006,35:44-47.
    [181]马韬,沈亦兵,杨国光.利用多层表面微结构提高DOE宽波段衍射效率.2006年全国光电技术学术交流会会议论文集(C).2006:233-239.
    [182]裴雪丹,崔庆丰.冷家开.入射角对双层衍射光学元件衍射效率的影响[J].光学学报,2009,29(1):120-125
    [183]裴雪丹,崔庆丰,冷家开.董辉.多层衍射光学元件设计原理与衍射效率的研究[J].光子学报.2009,38(05).1126-1131.
    [184]Changxi Xue and Qingfeng Cui. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Opt. Lett.35,986-988 (2010).
    [185]薛常喜,崔庆丰,潘春艳,佟静波.基于带宽积分平均衍射效率的多层衍射光学元件设计[J].光学学报,2010.30(10),3016-3020.
    [186]薛常喜,崔庆丰,杨亮亮,刘涛.基于柯西色散公式的多层衍射光学元件的设计和分析[J].光学学报.2011,31(06),253-257.
    [187]Liangliang Yang, Qingfeng Cui, Tao Liu. and Changxi Xue. Effects of manufacturing errors on diffraction efficiency for multilayer diffractive optical elements[J], Appl. Opt.50,6128-6133 (2011).
    [188]杨亮亮,崔庆丰,刘涛,薛常喜.衍射光学元件衍射效率的测量[J].光学学报.(EI收录,待发表)
    [189]彭焕良.红外焦平面热成像技术的发展[J].激光与红外.2006,9(36):776-780
    [190]T. Liu, Q. Cui, C. Xue, and L. Yang, Calculation and evaluation of narcissus for diffractive surfaces in infrared systemsfJ], Appl. Opt.50,2484-2492 (2011).
    [191]刘涛,崔庆丰,杨亮亮,薛常喜.红外光学系统中衍射面冷反射的分析与评价[J].科学通报.
    [193]T. Liu, Q. Cui, L. Yang, C. Xue, and J. Sun, Evaluation of narcissus for multilayer diffractive optical elements in infrared systems[J]. Appl. Opt.50.6146-6152 (2011)
    [194]C. Xue, Q. Cui. T. Liu. L.Yang, and B.Fei.Optimal design of a multilayer diffractive opticalel ement for dual wavebands[J],Opt. Lett.35,4157-4159(2010). 2012.57,(01),36-41.
    [195]同参考文献[182]
    [196]Optical Research Associates (ORA) Inc. CODE V Transition Guide for current Users Version 9.5 [M]. California: Optical Research Associates 2004.
    [197]ZEMAXUserManual, ZEMAX Development Corporation,3001 112th Avenue NE, Suite 202, Bellevue, Wash. 98004-8017. USA,2008.
    [198]Y.Arieli, S. Noach, S. Ozeri, and N. Eisenberg, Design of Diffractive Optical Elements for Multiple Wavelengths[J],Appl.Opt.37,6174-6177(1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700