微F-P腔可调谐滤波器的结构设计和工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微F-P腔可调谐滤波器主要运用于超光谱成像、DWDM光通信系统和自适应光学等系统中。它有助于解决困扰传统滤波器体积大,功耗大,价格昂贵等缺点。微F-P腔可调谐滤波器除了体积小之外,还有光谱调节范围大,精度高,调制速度快,稳定性好等特点。特别在未来的空间目标探测系统中,微F-P腔可调谐滤波器可能是超光谱成像仪最佳选择的光滤波器件。随着微加工技术、微结构技术的采用,近几年发展起来的微光机电系统,为这项技术的突破带来了希望,采用微加工技术将硅薄片镀上金属,制成微F-P腔,结合微驱动装置,实现光束滤波性能。
     本文着重从基于硅基片上的10×5元单片集成微F-P腔可调谐滤波器阵列的设计和微制作两个方面开展理论和实验研究,主要内容包括:
     (1)系统地分析了微F-P腔可调谐滤波器的工作原理和结构特征,按照结构设计原则并结合本实验室实验条件给出了微滤波器的尺寸。并提出了一套完整的制作微滤波器的表面薄膜工艺,并用LEDIT软件设计了全套掩膜版。
     (2)利用ANSYS有限元分析软件模拟了微滤波器的电学和力学特性,得到了所设计的微滤波器单元的应力、临界电压、瞬态响应以及模态等参数,为微滤波器的设计优化提供了理论依据。
     (3)实验研究了微滤波器制作的各项工艺,重点研究了金属及介质微桥工艺和牺牲层工艺。在金属及介质微桥工艺中,通过对金属镀层的剥离(lift-off)、介质层的PECVD沉积以及RIE(反应离子刻蚀)工艺的大量繁复的实验研究,获得了微桥的优化工艺。在牺牲层工艺中,分析了作为牺牲层材料的光敏及非光敏聚酰亚胺的特性,通过优化后的光刻方法及湿法腐蚀法,分别在牺牲层上得到了理想的孔槽。同时通过调整聚酰亚胺膜退火条件使聚酰亚胺固化获得稳定的机械及化学性能,此外还研究了O2等离子去除牺牲层的工艺,获得了牺牲层的优化释放条件。
     (4)改善了离子束溅射镀Ni/Cr掩模刻蚀SiO2介质微桥以及电互连的工艺,获得更加均匀一致的金属镀层。
Micro F-P cavity tunable filter, one of the Micro-opto-electro-mechanical devices, has been widely applied in the area of hyperspectral imaging, DWDM optical communication and self-adaptive optics. The Micro F-P cavity tunable filter may be the selective optical filter device for the future Space Target Detection System, because of its superior speed, large spectral range, high definition and high contrast. With the development of the micro fabrication technology, the micro tunable filter array, the key element of hyperspectral imaging device, will be made and applied in the area of Space Target Detection System. Compared with traditional devices,such as electro-optical and acuosto-optical devices, micro tunable filter arrays help to realize the hyperspectral imaging with high frequency, small volume and simple structure.
     This paper presents the modeling, design and experimental research on 10×5 electrostatic-drived micro tunable filter arrays. The main contents are as follows:
     (1)The mechanism and structural characteristics of micro tunable filter are analyzed systematically. The dimensions are given by combining the structural design principles and process conditions. A micromaching process is put forward to fabricate the micro tunable filter and correspondent masks have been designed by LEDIT for the fabrication processes.
     (2)Finite element analysis software ANSYS is employed to simulate the electrical and mechanical characteristics of micro tunable filter, by which the static and dynamical characteriastics are analyzed, such as stress, modal, transient respondence, etc. The simulation results indicate the designing is reasonable.
     (3)The micro-fabrication processes are studied specifically, especially the cantilever and sacriface layer processes. Metal lift-off, PECVD SiO2 as dielectrics cantilever and reactive ion etching of SiO2 are presented for patterning cantilever. Furthermore, the characteristics of ZKPI are analyzed, and then, the desired pattern on sacrificial layer are achieved by UV photolithography technology which has been optimized. Eventually. The sacrificial layer with designed hight, flat surface, stable chemical and mechanical performance is acquired by adjusting multi-coating and post annealing. Additionally, the optimal conditions to release the sacrificial layer with O2 plasma is also presented in this article.
     (4)The Ni/Cr layer is achieved on the SiO2 etching resistance layer by Ion Beam Sputtering, to form electricity interconnection.
引文
[1]杨友文,王建华. MEMS技术现状及应用. MEMS器件与技术, 2003, 4(3): 1671~ 4776
    [2] MingC, Wu. Micromaching for Optical and Optoelectronic Systems. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 85(11): 1833~1856
    [3] Nima Ghalichechian. Optical MEMS. Optical Communication Systems, Term Paper ENEE 691, 2003, 10(8): 159~168
    [4]李文宇,马君显,杨淑雯.微光电机械系统在光通信中的应用.深圳大学学报, 2002, 19(3): 43~48
    [5]尤政,龚克,陆建华.微小卫星技术的发展思路.科技导报, 2001, 1(8) : 43-47
    [6] Nathan Doble, David R. Williams. The Application of MEMS Technology for adaptive optics in vision science. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10(3): 629~636
    [7]宋明,谢芳,冯其波.可调谐Fabry-Perot滤波器的研究与发展趋势.光子技术, 2003, 24(9): 911~915
    [8]左玉华,蔡晓,毛容伟等. 1.55μm非晶硅热光F-P腔可调谐滤波器.半导体学报, 2005, 10(4): 197~201
    [9] G.Lammel, S.Schweizer, Ph.Renaud. Microspectrometer based on a tunable optical filter of porous silicon. Sensors and Actuators A, 92(2001):52~59
    [10] M.C.Larbon, B.Pezeshki. Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror.IEEE PHOTONICS TECHNOLOGY, 1995, 7(4): 169~175
    [11]倪金生,李琦,曹学军等.遥感与地理信息系统基本理论和实践.北京:电子工业出版社, 2004. 2~90
    [12]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社, 2000.11~87
    [13]周立伟.目标探测与识别.北京:北京理工大学出版社, 2004. 5~38
    [14]刘峰编译.微电机械系统在光通信中的应用:现状和未来.光机电信息, 2003, 10(4): 1~8
    [15] Dana Cristea, M.Kusko, C.Tibeica et al. Design and experiments for tunable opticalsensor fabrication using (111)-oriented silicon micromachining. Sensors and Actuators A, 2004 , (113): 312~318
    [16] William J.Gunning, Jeff DeNatale, Phil stupar et al. Adaptive Focal Plane Array-An Example of MEMS, Photonics, and Electronics Integration. Infrared Technology and Applications, Proc.of SPIE, 2005, 9(4): 5783~5790
    [17] A. Tuantranout, V. M. Bright, L. A. Liew, et al. Smart Phase-only Micromirror Array Fabricated by Standard CMOS Process. In Proc. of IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, 7(4): 445~460
    [18] Jack William Judy. Batch-fabricated Ferromagnetic Microactuators with Silicon Flexures. PhD thesis, University of Califrnia, Berkeley, Dept. of Electrical Engineering and Computer Science, 1996
    [19]左玉华,黄昌俊,成步文等.具有90nm调谐范围的1.3μmSi基MOEMS可调谐光滤波器.半导体学报, 2003, 24(11):1140~1144
    [20]陈斌,周震,黄永清等. InP基微机械可调滤波器结构特性分析.半导体光电, 2004, 25(5):353~356, 365
    [21]程昌钧.弹性力学. (第1版).兰州:兰州大学出版社, 1995. 275~277
    [22]郦炬锋,袁一方,陶伟等.用于光纤通信系统的F-P可调谐滤波器.激光与光电子学进展, 2006, 43(2): 54~57
    [23] Frank Niklaus, Sjoerd Haasl, Goran Stemme. Arrays of Monocrystalline Silicon Micromirrors Fabricated Using CMOS Compatible Transfer Bonding. In Journal of Microelectromechanical Systems, 2003, 12(4): 465~469
    [24] Stephen A.Campbell.微电子制造科学原理与工程技术. (第二版).北京:电子工业出版社, 2003. 338~343
    [25]刘金声.离子束技术及应用.北京:国防工业出版社, 1995. 52~120
    [26] Chen Sihai, Yi Xinjian, Li Yi, He Miao. Hybrid Integration between Long Focus Microlens Array and IR Detector Array. International J. Infrared and Millimeter Waves, 2001, 22(3): 393~398
    [27]周明宝,崔铮, Prewett D.用CHF3/Ar为工作气体刻蚀融石英.光学和精密工程, 1999, 7(2): 67~72
    [28]史锡婷,陈四海,何少伟,黄磊,李毅,易新建.剥离技术制作MEMS金属互连柱及其应用.半导体技术, 2005, (10): 15~18
    [29]张新宇,易新建,赵新荣等.微透镜阵列的离子束溅射刻蚀研究.光学和精密工程, 1997, 5(5): 63~68
    [30] Rangelow Ivo W. Dry etching-based Silicon Micro-maching for MEMS. Vacuum, 2001, 62: 279~291
    [31]钱建国,章吉良,张明生.聚酰亚胺在氧基工作气体中的反应离子深度刻蚀研究.微细加工技术, 2000, (1): 29~33
    [32] W.T.Lin, J.C.Chiou, Bruce C.S Chou. A photonic device compatible process in fabricating tunable Fabry-Perot filter. Optics Communications, 2002, (210):149~154
    [33] Warren W. Flack, Davids S. Soongm etal. A Mathematical Model for Spin Coating of Polymer Resists. Appl. Phys., 1984, 56(4): 1199~1206
    [34] Gregory A. Luurtsema. Spin Coating for Rectangular Substrates: [Master thesis]. USA: University of California, Berkeley, 1997
    [35] David Craven. Imaging and Resist Technologies for the Micromaching Industry. SPIE Micromaching & Microfabrication Symposium, 1988, 2(4): 96~103
    [36] Carano. G, Ceriani. M, Soglio. F. Spin Coating with High Viscosity Photoresist on Squaer Substrates. Hybrid Circuits, 1993, 32(2): 12~18
    [37] Chen Sihai, Yi Xinjian, Li Yi, He Miao. Hybrid Integration between Long Focus Microlens Array and IR Detector Array. Infrared and Millimeter Waves, 2001, 22(3): 393~398
    [38]邓俊泳,冯勇建.聚酰亚胺在MEMS中的特性研究及应用.微纳电子技术, 2003, 8(4): 29~33
    [39]钱建国,章吉良,张明生.聚酰亚胺在氧基工作气体中的反应离子深度刻蚀研究.微细加工技术, 2000, (1): 29~33
    [40]高素欣.光敏聚酰亚胺光刻工艺研究.化工新型材料, 1998, (2): 34~37
    [41]朱国平,蒋正勇,曹靖.非光敏聚酰亚胺钝化工艺研究.微电子技术, 2001, 29(5): 49~51
    [42]胡梅丽,赖宗声,茅惠兵. RF/MW MEMS开关中聚酰亚胺的牺牲层技术研究.微电子学, 2005, 35(1): 5~7
    [43]赵小梅,陈四海,史锡婷等.化学镀镍在32×32非制冷红外焦平面互连中的应用. 红外技术, 2005, 27(4): 303~306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700