基于自抗扰控制器的异步电机矢量控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量控制技术已被广泛地应用于高性能异步机调速系统中。然而,由于在实时控制中存在严重的外部干扰、参数变化和非线性不确定因素。基于精确电机参数的准确解耦很难实现,并且磁通和转矩的动态性能也受到严重的影响。
     为了实现高性能异步电机调速系统,本文提出了把自抗扰控制融合到矢量控制中的策略,设计了基于自抗扰的闭环控制器、转子磁链观测器和转速辨识三部分组成。
     转速环和电流环控制器直接影响矢量控制系统的动态性能。在保持控制性能的前提下,本文应用自抗扰控制ADRC理论,处理转速与电流方程中的未知外扰和模型耦合项,并设计了相应的控制器。该控制器设计为一阶结构,简化了模型结构,降低了计算量,大大提高了ADRC的实用性。
     转子磁链观测是矢量控制的关键,为了消除转子电阻摄动对磁链观测的影响。本文提出了一种基于模型补偿扩张状态观测器(ESO)的转子磁链观测器,将转子电阻摄动视为系统的模型扰动,采用ESO加以观测和补偿,大大提高了观测器的观测精度。
     另外,本文提出了基于ESO的转速辨识算法,利用自抗扰控制系统的已有结构,从ESO的未知模型观测结果中提取转速信息,实现了无速度传感器矢量控制。
     仿真结果表明,相对于经典PID控制器,自抗扰控制器在较宽的调速范围内具有更好的动态性能以及对负载扰动、电机参数变化都具有更好的鲁棒性。
The field oriented control technique is widely used in high performance motion control of induction motors. However, in real-time implementation, precise decoupling which requires accurate motor parameter can't be fully realized due to significant plant uncertainties such as external disturbances, parameter variations and plant nonlinear dynamics. This may deteriorate the dynamic performances of flux and torque significantly.
     In order to obtain high performance induction motor drive systems, Active Disturbances Rejection Control (ADRC) for a field-oriented induction motor drive system is proposed in this dissertation, in which he close-loop controllers、the rotor flux observer and the speed identification t are three dominant parts.
     The dynamic performance of a FOC system depends on its speed and current loop controllers. While same dynamic performance is kept ,ADRC technology is introduced into the controller design to deal with the influences of the unknown external disturbances and the coupling items in speed and current models, the first-order ADRC model is simplified and its computation load is reduced, thus the practicability of ADRC is greatly enhanced .
     Rotor flux observation is a key step in implementation of a field-oriented control (FOC) system. In order to reject the influence of rotor resistance perturbation, a new rotor flux observer based on an Extended State Observer (ESO) with model compensation is proposed. The perturbation of rotor resistance is taken as a system model disturbance, which can be observed and compensated by ESO. As a result, the performance of rotor flux observer based on ESO compensation is improved to a great degree.
     For the implementation of sensorless FOC, a speed identification algorithm is introduced on the basis of ESO. By means of the existing structure of ADRC system, speed information is picked up from the observation results of the unknown model in ESO.
     The simulation and experiment results show that the controller ensures very good robustness and adaptability under modeling uncertainty and external disturbance, and it is concluded that the proposed controller produces better dynamic performance such as small overshoot and fast transient time than conventional PID controller in the overall operating conditions.
引文
[1]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [2]陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,1998.
    [3]许大中.交流电机调速理论[M].浙江:浙江大学出版社,1991.
    [4]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版,1993.
    [5]赵良炳.现代电力电子技术基础[M].北京:清华大学出版社,1995.
    [6]赵永健,李序葆.电力电子器件及其应用[M].北京:机械工业出版社,1996.
    [7]王志良.电力电子新器件及其应用技术[M].北京:兵器工业出版社,1995.
    [8]F.Lebeau,L.El Bahir,M.Kinnaert and R.Hanus.Improvement of spray deposit homogeneity using a PWM spray controller to compensate horizontal boom speed variations[J].Computers and Electronics in Agriculture,2004,43(2):149-161.
    [9]Bingsen Wang,Jimmie J.Cathey.DSP-controlled,space-vector PWM,current source converter for STATCOM application[J].Electric Power Systems Research,2003,67(2):123-131.
    [10]K.A.Nigim and G.T.Heydt.Power quality improvement using integral-PWM control in an AC/AC voltage converter[J].Electric Power Systems Research,2002.63(1):65-71.
    [11]TI 公司.TMS320LF/LC240xA DSP Controllers Reference Guide-System and Peripherals[M].2001
    [12]薛定宇.反馈控制系统设计与分析--MATLAB语言应用[M].北京:清华大学出版社,2000.
    [13]杨耕,陈伯时.交流感应电动机无速度传感器的高动态性能控制方法综述[J].电气传动,2001(3):3-8
    [14]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [15]李夙.异步电动机直接转矩控制[M].北京:机械工业出版社,1994.
    [16]M.Depenbrock.Direct self-control(DSC) of inverter-fed induction machine[J].IEEE Trans.on PE,1988,3(4):420-429.
    [17]夏超英.交直流传动系统的自适应控制[M].北京:机械工业出版社,1998.
    [18]冯纯伯,田玉平,忻欣.鲁棒控制系统设计[M].南京:东南大学出版社,1995.
    [19]王凡,席裕庚.一种非线性系统直接控制方法的分析与改进[J].控制理论与应用,1993,10(6):625-631.
    [20]Marc Bodson,John Chiasson and Rober Novotnak.High-Performancelnduction Motor Control via Input-Output Linearization[J].IEEE Trans.on Control Systems,1994:25-33.
    [21]Djermoune A.,Goureau P.Input-Output Decoupling of Nonlinear Control for an Induction Motor[J].IEE Proceedings:ISIE,1996,2.879-884.
    [22]K.Matsuse,S.Taniguchi,T.Yoshizumi,K.Namiki.A speed-sensorless vector control ofinduction motor operation at high efficiency taking core loss into account[J].IEEE Trans.IA,2001,37(2):548-557.
    [23]韩京清.从PID技术到自抗扰控制技术[J].控制工程,2002 9(3):13-18.
    [24]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [25]韩京清,袁露林.跟踪-微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [26]韩京清,黄远灿.二阶跟踪-微分器的频率特性[J].数学的实践与认识,2003,33(3):71-74.
    [27]韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490.
    [28]韩京清.一种新型控制器NLPID[J].控制与决策1994,9(6):401-407.
    [29]韩京清.利用非线性特性改进PID控制率[J].信息与控制,1995,24(6):356-363.
    [30]刘丁,刘晓丽,杨延西.基于遗传优化自抗扰控制器的机器人无标定手眼协调[J].机器人,2006,28(5):510-514.
    [31]熊治国,孙秀霞,胡孟权.自抗扰控制器在超机动飞行快回路控制中的应用[J].控制与决策,2006,21(4):477-480.
    [32]高龙,韩俊生.李崇坚等.非线性鲁棒自抗扰控制器在电力系统中的应用[J].清华大学学报,2000,40(3):27-29.
    [33]周惠兴.制造系统直线伺服单元的研究与应用[D].北京:清华大学精密仪器系,1998.
    [34]谢为民.液压机面同步系统和非线性状态误差反馈控制理论的研究[D].浙江:浙江大学机械系,1996.
    [35]王洋.自抗扰控制器在交流伺服系统中的应用[J].齐齐哈尔大学学报,2004,20(1):44-46.
    [36]夏长亮,李正军.基于自抗扰控制器的无刷直流电机控制系统[J].中国电机工程学报,2005,25(2):82-86.
    [37]马冰雪.具有不确定性参数的直流电机转速自抗扰控制器设计[J].电气传动,2006,36(2):30-33.
    [38]白晶,李华德.自抗扰控制器ADRC实现的感应电机变频调速系统[J].电工技术学报,2005,20(6):73-76
    [39]于希宁,朱丽玲.自抗扰控制器的动态参数整定及其应用[J].华北电力大学学报,2005,32(6):9-13.
    [40]刘鸣,邵诚.异步电动机的自抗扰控制器及其参数整定[J].控制与决策,2003,18(5):540-544.
    [41]李海生.自抗扰控制器参数整定与优化方法研究[J],控制工程,2004,14(5):419-423.
    [42]熊健,康勇,张凯.电压空间矢量调制与常规SPWM的比较研究[J].电力电子技术,1993.31(1):25-28
    [43]Chen S,Joos G.Symmetrical SVPWM pattern generator using field programmable gate array implementation[J].APEC 2002 Seventeenth Annual IEEE,2002,2(5):1004-1010.
    [44]吴守箴.电气传动的脉宽调制技术[M].北京:机械工业出版社,1990.
    [45]Miran Rodic,Karel Jezernik.Speed-sensorless sliding-mode torque control of aninduction motor[J].IEEE Trans.on IE,2002,49(1):87-95.
    [46]戴瑜兴,王耀南,陈际达.基于DSP的模型参考自适应无速度传感器矢量控制[J].信息与控制,2003,32(6):507-511.
    [47]洪乃刚.矢量控制交流调速系统的研究[J].安徽工业大学学报,2004,(2):124-127.
    [48]Zhang Yan,Jin Changxi,Vadim I.Utin.Sensorless Sliding-mode Control of Induction Motor[J].IEEE Tran on Industry electronics,2000,47(6):1286-1297.
    [49]Young-Real Kim.Speed sensorless vector control of induction motor using ExtendedKalman Filter[J].IEEE Trans.on IA,1994,30(5):1225-1233.
    [50]M.A.Bradys,G.J.Kulawski.Dynamic neural controllers for induction motor[J].IEEETrans.on Neural Networks,1999,10(2):340-355.
    [51]K.Ide,I.Murokita,M.Sawamura.Finite element analysis of sensorless induction machine by high frequency voltage injection[J].IPEC,2000,1842-1847.
    [52]M.W.Degner,R.D.Lorenz.Position estimation in induction machines utilizingrotor bar slot harmonics and carrier frequency signal injection[J].IEEE Trans.on IA,2000,36(3):736-742.
    [53]K.D.Hurst,T.G.Habetler,G.Griva,et al.A self-tuning closed-loop flux observerfor sensorless torque control of standard induction machines[J].IEEE Trans.on PE,1997,12(5):807-815.
    [54]李永东,李明才.感应电机高性能无速度传感器控制系统-回顾、现状与展望[J].电气传动,2004,(1):4-7.
    [55]廖勇,张凤蕊.无传感器矢量控制及其速度估算的研究[J].电工技术学报,2001,(2):36-38.
    [56]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999,19(4):465-471.
    [57]韩京清.线性状态误差反馈控制律-NLSEF[J].控制与决策,1995,10(3):221-225.
    [58]张文革.时间尺度与自抗扰控制器[D].北京:中国科学院系统科学研究所,1999.
    [59]冯光.基于自抗扰动控制器的异步电机高性能控制[D].北京:清华大学,2000.
    [60]万晖,黄一,张文革,韩京清.自抗扰控制器的绝对稳定性分析[J].控制与决策,2000,10(1):85-88.
    [61]王凡,席裕庚.一种非线性系统直接控制方法的分析与改进[J].控制理论与应用,1993,10(6):625-631.
    [62]王学军.经典PID的改造与非线性PID控制器[J].控制理论及应用年会论文集,1993,230-235.
    [63]郑大中.线性系统理论[M].北京:清华大学出版社,1990.
    [64]冯光,黄立培,朱东起.异步电机的新型非线性自抗扰控制器的研究[J].清华大学学报(自然科学版),1999,39(3):30-33.
    [65]彭启琮,管庆.DSP集成开发环境[M].北京:电子工业出版社,2004.
    [66]R.C.Dodson,P.D.Evans,H.T.Yazdi,et al.Compensating for dead time degradation of PWM inverter waveforms[J].Electric Power Applications,IEEE Proceedings B,1990,137(2):73-81.
    [67]T.Sukegawa,K.Kamiyama,K.Mizuno,et al.Fully digital,vector-controlled PWM VSI-fed AC drives with an inverter dead-time compensation strategy[J].IEEE Trans.on IA,1991,27(3):552-559.
    [68]王晓明,王玲.电动机的DSP控制[M].北京:北京航空航天大学出版社,2004.
    [69]H.Kubota,K.Matsuse.Speed sensorless field-oriented control of induction motor with rotorresistance adaptation[J],IEEE Trans.IA,1994,30(5):1219-1224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700