基于扰动观察法的高效率MPPT控制芯片设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,能源短缺和环境污染已经在全球范围内成为制约人类社会可持续发展的两个关键因素,寻找新能源已成为当前人类面临的迫切问题之一。太阳能作为一种全新的电能生产方式,其具有的清洁无污染、来源永不衰竭且维护措施简单等特点,受到越来越广泛的关注。论文针对太阳能应用的一个重要研究领域——光伏发电系统的发展要求,尤其是小功率光伏发电系统的特点,提出了一种基于扰动观察法的高效率最大功率点跟踪控制芯片设计。
     论文首先研究了光伏系统的国内外发展现状及其发展趋势,给出研究内容和设计目标。根据小功率系统中光伏电池输出功率小、对转换效率要求较高,且系统整体成本较低的特点,选择采用全模拟电路构建控制芯片,以实现扰动观察法最大功率点跟踪控制的目标。采用模拟电路搭建的控制芯片具有结构简洁,面积利用率高,且应用方便的优点。
     在芯片的架构设计中,论文根据系统本身拓扑所具有的特点,优化了扰动观察法最大功率点跟踪控制策略,最终在此基础上提出了系统的综合设计方案。
     其次,论文按照系统的设计方案,设计了包括模拟乘法器、开关电容微分器、基准电压源、电流采样器、以及振荡器等多个电路模块。特别是对信号处理核心模块乘法器和微分器设计,根据系统要求着重优化了乘法器的线性度、输入范围,和微分器的环路稳定性、建立时间。论文中,对上述这些重要电路模块在进行了原理分析的基础上,用Cadence工具进行性能仿真验证。
     最后,结合系统结构和电路模块,对系统仿真所需的光伏电池、功率开关管和负载铅酸蓄电池进行建模,构建了整个实际的控制器系统。在此基础上,对控制器的主要性能参数进行了仿真和结果分析。系统仿真结果表明系统工作正常,预期设计目标均已实现。
In recent years, energy shortages and environment pollution have constrained sustainable development of human society. Search for new energy has been one of human facing pressing issues. Solar energy, as a new energy production, has been concerned more and more for its pollution-free, unlimited, and maintenance of simple measures. According to the requirements of developing photovoltaic power generation system, which is one of solar energy's important research areas, a efficient photovoltaic system with P&O-based Maximum Power Point Tracking (MPPT) was proposed in this thesis.
     At first, with overview of the development of modern photovoltaic power generation system, the research target and design objectives of the controller were presented. According to the features of small power PV system, such as small output power of solar cells, low system cost, and high requirement of conversion efficiency, analog circuit design is used to implement the controller. Analog IC controller features simple structure, small size of silicon, and simple application.
     Based on the design target of chip system, the system architecture of the controller was proposed.
     Then, after completing the system architecture, some key modules like analog multiplier, analog differentiator, reference voltage, current sense module, and oscillator were designed and simulated in 1.5um BCD technology. In particular, the linearity and input range of multiplier, and the stability and settling time of differentiator are all optimized for system requirement.
     The controller chip was completed based on the system architecture and circuit modules. Some typical characteristics of system were simulated and analyzed. The system simulation results showed all specifications of the controller were successfully achieved.
引文
[1]Phillip E.Allen,Douglas R.Holberg著.CMOS模拟集成电路设计[M].北京:点子工业出版社,2005.
    [2]Paul R.Gray等著.模拟集成电路的分析与设计[M]。北京:高等教育出版社,2006.
    [3]R.Jacob Baker等著.CMOS电路设计、布局与仿真[M].北京:机械工业出版社,2006.
    [4]Behzad Razavi著.模拟CMOS集成电路设计[M].西安:西安交通大学出版社,2005.
    [5]David A.Johns著.模拟集成电路设计[M].北京:机械工业出版社,2005.
    [6]Abraham I.Pressman,Switching Power Supply Design.北京:电子工业出版社.2005
    [7]Johan Huijsing,Operational Amplifiers:Theory and Design.Noewell:Kluwer Academic Publishers,2001.
    [8]张占松,蔡宣三编著.开关电源的原理与设计[M].北京:电子工业出版社,2005.
    [9]王建华,吴季平,徐伟.太阳能应用研究进展.水电能源科学,2007,25(4):155-158.
    [10]马胜红,陆虎俞.光伏发电与光伏发电系统.大众用电,2006,1:38-40.
    [11]吕建,殷洪亮.太阳电池及其发展方向.中国建设动态:阳光能源[J],2005,(10M):78-80.
    [12]褚文博,隆涛.美国光伏产业路线图.新材料产业[J],2006,(1):48-51.
    [13]李文婷,刘宏,陈惠玲.国内外太阳能光伏发电发展综述.青海电力[J],2004,23(4):3-6.
    [14]赵玉文,刘泉.我国光伏产业现状与面临的挑战.太阳能[J],2004,(3):4-6.
    [15]杨军.太阳能光伏发电前景展望.沿海企业与科技[J],2005,(8):100-112.
    [16]李仲明.极富发展前景的多晶硅薄膜太阳电池.新材料产业[J],2003,(7): 14-16.
    [17]S.Armstrong and W.G.Hurley.Self-regulating maximum power point tracking for solar energy systems.IEEE Universities Power Engineering Conference.UPEC 2004,39th International.2004,2:604 - 609.
    [18]参考文献:闵江威,段善旭,徐鹏威,刘飞.基于推挽电路的光伏电池最大功率点追踪系统.通信电源技术,2006,23(2):7-9.
    [19]参考文献:苏建徽,余世杰,赵为,吴敏达,沈玉梁,何慧若.硅太阳能电池工程用数学模型.太阳能学报.2001,22(4):409-412.
    [20]Abu Tariq and M.S.Jamil Asghar.Development of an analog maximum power point tracker for photovoltaic pane.IEEE Power Electronics and Drives Systems 2005 International Conference.PEDS 2005.2006,1:251 -255.
    [21]Hohm D.p.,Ropp M.E.Comparative study of maximum power point tracking algorithms using an experimental,programmable,maximum power point tracking test bed[C].Photovoltaic Specialists Conference,2000.Conference Record of the Twenty-Eighth IEEE,2000:1699-1702.
    [22]Rodriguez C.,Amaratunga G.A.Dynamic maximum power injection control of AC photovoltaic modules using current-mode control.Electric Power Applications,IEE Proceedings-[J],2006,153(1):83-87.
    [23]Femia N.,Petrone G.,Spagnuolo G.et al.Optimizing sampling rate of P&O MPPT technique[C].Power Electronics Specialists Conference,2004.PESC 04.2004 IEEE 35th Annual,2004:1945-1949.
    [24]Weidong xiao,Dunford W.G.A modified adaptive hill climbing MPPT method for photovoltaic power systems[C].Power Electronics Specialists Conference,2004.PESC 04.2004 IEEE 35th Annual,2004:1957-1963.
    [25]Youngseok Jung,Junghun So,Gwonjonh Yuet al.Improved perturbation and observation method(P&O) of MPPT control for photovoltaic power systems[C].Photovoltaic Specialists Conference,2005.Conference Record of the Thirty-first IEEE,2005:1788-1791.
    [26]Trishan Esram and Patrick L.Chapman.Comparison of photovoltaic array maximum power point tracking techniques.IEEE Energy Conversion.2007,22 (2):439-449.
    [27]Willy M.C.Sansen.模拟集成电路设计精粹.陈莹梅.北京:清华大学出版社,2008.(316-324).
    [28]参考文献:王治国,高玉峰,杨万利.铅酸蓄电池等效电路模型研究.装甲兵工程学院学报.2003,17(1):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700