四旋翼碟形飞行器控制系统设计及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四旋翼碟形飞行器(Quad-Rotor)是一种能够垂直起降的多旋翼式飞行器,特别适合在近地面环境中执行监视、侦察等任务,具有广阔的军事和民用前景。
     本文以国防科学技术大学研制的Quad-Rotor为研究对象,针对Quad-Rotor的姿态增稳控制问题,主要研究了下述内容:
     首先,基于模块化设计思想,设计和实现了Quad-Rotor的飞行控制系统,主要包括飞行控制计算机、旋翼转速伺服控制子系统、传感器子系统和无线通信子系统,并设计和搭建了Quad-Rotor的实验平台。
     其次,根据Quad-Rotor飞行原理,利用牛顿一欧拉方程建立其动力学模型,基于模糊滑模控制(FSMC)理论研究了Quad-Rotor的姿态控制算法,通过仿真验证了该算法的有效性,在实验平台上利用FSMC算法实现了Quad-Rotor的姿态增稳控制。
     最后,为克服基于FSMC姿态控制算法的不足之处,将直接自适应模糊PI滑模控制(PI-AFSMC)原理应用于Quad-Rotor姿态控制,提出了一种快速离散跟踪微分器(TD)与PI-AFSMC相结合的姿态控制算法(TD-PI-AFSMC)。仿真与实验结果表明,与FSMC算法相比,TD-PI-AFSMC算法具有更好的姿态控制效果。
Quad-Rotor is a kind of multi-rotor vehicle which can take off and land vertically. Especially, it is fit for the tasks of surveillance and reconnaissance in the near ground environment and it has widely application in military and civil.
     Aimed at the problems of attitude argument control of the Quad-Rotor made by National University of Defense Technology, the follow issues are researched:
     First, based on the thought of the modular design, the Quad-Rotor flight control system is designed and realized, and rotor servo control subsystem, sensor subsystem, wireless communication subsystem are included in it. Meanwhile a Quad-Rotor experiment platform is designed and built.
     Second, according to the flight principle of Quad-Rotor, dynamic model is built via Newton-Euler formulation, and Quad-Rotor attitude control algorithm is researched based on FSMC theory. The simulation result validates the efficiency of the algorithm, and on the platform, the Quad-Rotor attitude argument control is realized based on the algorithm.
     Last, to overcome the demerits of the FSMC algorithm, PI-AFSMC principle is applied to Quad-Rotor attitude control algorithm, and a new attitude algorithm is presented that combines TD with PI-AFSMC. The simulation and experiment results show that the new algorithm takes better effect than the FSMC algorithm does.
引文
[1]聂博文.微小型四旋翼无人直升机建模及控制方法研究[D].国防科学技术大学,2006.12
    [2]彭延辉,徐国华.无人驾驶直升机的技术发展及其关键技术[J],飞行力学,2004.3,第22卷第1期
    [3]彭军桥,吴安德,陈慧宝.碟形飞行器发展现状及其关键技术[J].中国航天,2003年第8期
    [4]Scott D.Hanford,Lyle N.Long,Joseph F.Horn.A Small Semi-Autonomous Rotary-Wing Unamanned Air Vehicle(UAV)[C],AIAA Aerospace Conference,Paper No.2005
    [5]Phillip M~CKerrow.Modelling the Draganflyer four-rotor helicopter[C],Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans,LA April 2004
    [6]胡宇群.微型飞行器中的若干动力学问题研究[D].南京航空航天大学,2002
    [7]Steven L.Waslander,Gabriel M.Hoffmann,Jung Soon Jang,Claire J.Tomlin.Multi-Agent Quadrotor Testbed Control Design:Integral Sliding Mode vs.Reinforcement Learning[C],2005 IEEE/RSJ International Conference on,2-6 Aug.2005
    [8]Hoffmann,G.,Rajnarayan,D.G.,Waslander,S.L.,Dostal,D.,Jang,J.S.,Tomlin,C.J..The Stanford Testbed of Autonomous Rotorcraft for Multi Agent Control(STARMAC)[C],Proceedings of the 23rd Digital Avionics Systems Conference,Salt Lake City,Utah,November,2004.
    [9]Pounds P.,Mahony R.,Corke P..Modelling and Control of a Quad-Rotor Robot[C],In Proceedings of the Australasian Conference on Robotics and Automation,2006.
    [10]Altug,E.,Ostrowski,J.P.,Taylor,C.J..Quadrotor control using dual camera visual feedback[C],Proceedings of IEEE International Conference on Robotics and Automation,Taipei,Taiwan,2003,pp.4294-4299.
    [11]Glenn P.Tournier,Mario Valenti,Jonathan P.How.Estimation and Control of a Quadrotor Vehicle Using Monocular Vision and Moire Patterns[C],AIAA Guidance,Navigation,and Control Conference and Exhibit 21-24 August 2006,Keystone,Colorado
    [12]Mario Valenti,Brett Bethke,Gaston Fiore,Jonathan P.How.Indoor Multi-Vehicle Flight Testbed for Fault Detection,Isolation,and Recovery[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,21 - 24 August 2006,Keystone,Colorado
    [13]Bouabdallah S.Design and Control of Quadrotors with Application to Autonomous Flying[D],Lausanne,EPFL 2006.12
    [14]Bouabdallah S,Noth A,Siegwart R.PID vs LQ Control techeniques Applied to an Indoor Micro Quadrotor[C].lEEE International Conference on Intelligent Robots and Systems,2004
    [15]Bouabdallah S,Murrieri P,Siegwart R.Design and Control of an Indoor Micro Quadrotor[C],Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orieans,LA-April 2004.
    [16]Bouabdallah S,Siegwart R.Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor[C].International Conference on Robotics and Automation,Barcelona Spain,April 2005
    [17]V.Mistier,A.Benallegue,N.K.M'Sirdi.Exact Linearization and Noninteracting Control of a 4 Rotors Helicopter via Dynamic Feedback[C].IEEE 10th IEEE International Workshop on Robot-Human Interactive Communication Bordeaux and Paris,2001.
    [18]J.Dunfied,M.Tarbouchi,G.Labonte.Neural Network Based control of a Four Rotor Helicopter[C].2004IEEE International Conference on Industrial Technology(ICIT)
    [19]Morel Y,Leonessa A.Direct Adaptive Tracking Control of Quadrotor Aerial Vehicles[C],2006 Florida Conference on Recent Advances in Robotics,May 25-26,2006
    [20]A.Benallegue,A.Mokhtari,and L.Fridman.Feedback Linearization and High Order Sliding Mode Observer For A Quadrotor UAV[C],Proceedings of the 2006 International Workshop on Variable Structure Systems Alghero,Italy,June 5-7,2006.
    [21]王树刚.四旋翼直升机控制问题研究[D].哈尔滨工业大学,2006.6
    [22]樊晓霞,陈佳品,李振波.基于DSP的微直升机控制电源解决方案[J],微处理机,2004,(4):1-2
    [23]N.Guenard,T.Hamel,V.Moreau.Dynamic modeling and intuitive control strategy for an "X4-flyer"[C],ICCA 05 Budapest hongrie June 26-29 2005
    [24]王晓明,王玲.电动机的DSP控制--TI公司DSP应用[M],北京航空航天大学出版社,2005.3
    [25]Analog Devices,Inc.Precision ±1.7g Single-/Dual-Axis iMEMS~(?) Accelerometer ADXL204,2006
    [26]罗均、谢少荣等.特种机器人[M].化学工业出版社,北京,2006.7
    [27]Chipcon CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver Datasheet(rev 1.2),2004,06
    [28]米阳.非线性系统模糊滑模控制的研究[D].东北大学,2004.12
    [29]米阳,潘伟,井元伟.一类不确定时滞系统的模糊滑模控制[J].控制与决策,2006.11
    [30]解旭辉,戴一帆,李圣怡.基于模糊滑模控制器的伺服跟踪控制研究[J].控制理论与应用,2003.12
    [31]粘丹妮,王丽荣,庞永杰.水下机器人的模糊滑模控制算法[J].应用科技,2006.8
    [32]赵士勉,岳继光,韩生廉.直流无刷电机的模糊滑模变结构控制[[J],机电工程技术,2004年第33卷第9期
    [33]邹伟全,姚锡凡,杨武.不确定加工过程的模糊变结构控制[J],机械制造44卷第500期
    [34]刘瑞叶,鲁金枝.静止无功发生器(SVG)的模糊变结构控制研究[J],黑龙江电力,第26卷第6期
    [35]李滋刚,万德钧.捷联式惯性导航技术[M].中国船舶信息中心,2001
    [36]赵文杰.不确定非线性系统的变结构控制研究[D].华北电力大学,2004
    [37]李士勇.模糊控制·神经控制和智能控制论[M],哈尔滨工业大学出版社,1998.9
    [38]Park K B,Lee J J.Variable structure controller for robot manipulators using time-varying sliding surface[C],Proceedings of the IEEE International Conference on Robotics and Automation.Atlanta,USA:1993,1.89-93.
    [39]黄进,訾斌,段宝岩.电驱动柔索并联机器人轨迹跟踪滑模控制[J],西安电子科技大学学报,2006.12
    [40]贾杰,荆泉.飞行器再入姿态双环滑模控制及其逻辑选择[J].航天控制,2006.7
    [41]陈创庭,周志成,陈俊武.滑模变结构控制在高压直流输电系统上的应用研究[J].广东电力,2006.11
    [42]张克勤.滑模变结构控制理论及其在倒立摆系统中的应用研究[D],浙江大学,2003.5
    [43]Korovin S K,Utkin V I.Using sliding modes in static optimization and nonlinear programming[J].Automatica,1974,10(5):525-532
    [44]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998
    [45]J.J.E.Slotine,W.Li.Applied Nonlinear Control[M],Englewood Cliffs,NJ:Prentice-Hall,1991
    [46]J.J.E.Slotine.Sliding Controller Design for Nonlinear Systems[C],Int.J.Control,Vol.40,1984:421-434
    [47]高为炳,程勉.变结构控制的品质控制[J],控制与决策,1989,4(4):1-5
    [48]Y.B.Shessel,J.M.Buffington.Continuous Sliding Mode Control[C],Proceeding of the American Control Conference,Philadelphia,June,1998:562-563
    [49]佟绍成.非线性系统的自适应模糊控制[M].科学出版社,北京,2006.1
    [50]Mohanad Alata.Control of Nonlinear Systems Using Sugeno Fuzzy Approximators[D].Concordia University Canada,2001.1
    [51]唐毅谦.基于自适应模糊控制的非线性系统研究[D].东北大学,2006.1
    [52]王立新,王迎军.模糊系统与模糊控制教程[M]。清华大学出版社,北京,2003
    [53]章卫国,杨向忠.模糊控制理论与应用[M].西北工业大学出版社,西安,2001.2
    [54]骆再飞.滑模变结构.理论及其在交流伺服系统中的应用研究[D].浙江大学,2003.7
    [55]王丰尧.滑模变结构控制[M],机械工业出版社,1995.7
    [56]M.R.Akbarzadeh T.,R.Shahnazi.Direct adaptive fuzzy PI sliding mode control for a class of uncertain nonlinear systems[C],in Proc.of the IEEE International Conference on Systems,Man and Cybernetics,Waikoloa,Hawaii,10-12 Oct.2005.
    [57]S.J.Huang,K.S.Huang.An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection[J],IEEE Trans.Industrial Electronics,vol.48,no.4,August 2001.
    [58]C.W.Tao,M.L.Chan,T.T.Lee.Adaptive Fuzzy Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties[J],IEEE Trans.Systems Man and Cybernetics,Part B:Cybernetics,vol.33,No.2,April 2003.
    [59]C.F.Hsu,C.M.Lin,T.T.Lee.Adaptive Fuzzy Sliding-mode Control for Linear Piezoelectric Ceramic Motor[C],IEEE Inernational Conference on Fuzzy Systems,2005.
    [60]Y.Byungkook,H.Woonchul.Adaptive Fuzzy Sliding Mode Control of Nonlinear System[J],IEEE Trans.Fuzzy systems,no.2,vol.6,May 1998.
    [61]M.S.Agamy,H.A.Yousef,O.A.Sebakhy.Adaptive fuzzy variable structure control of induction motors[C],IEEE Canadian Conference on Electrical and Computer Engineering,3-5 May 2004.
    [62]C.M.Lin,C.F.Hsu.Adaptive fuzzy sliding mode control for induction servo motor systems[C],IEEE Trans.Energy Conversion,no.2,vol.19,June 2004.
    [63]W.L.Xin.Stable adaptive fuzzy control of nonlinear systems[J],IEEE Transaction on Fuzzy systems,vol.1.,no.2,May 1993.
    [64]刘兴堂等.应用白适应控制[M].西安工业大学出版社,2003.5,第1版
    [65]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,5(9)
    [66]黄焕袍,万辉,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法[J].控制理论和应用,200l,18(增):89-94
    [67]韩京清,袁露林.跟踪.微分器的离散形式[J].系统科学与数学,1999,19(3):268-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700