基于哈密顿辛对偶体系的若干梁/板结构问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程领域中大量问题可归结为梁/板结构模型,人们对该课题的研究一直没有间断过。因此进一步对其进行研究有着重要科学意义和工程应用价值。以往研究主要是在Lagrange体系下欧几里德空间中一类变量范围内进行,这样不可避免地带来高阶偏微分方程并导致求解受偏微分算子和边界条件限制等问题。而辛对偶理论基于Hamilton体系辛空间,使得有效的数学物理方法如分离变量法、共轭辛正交和辛本征函数向量展开等得以实施,避免了传统方法存在的不足,提供了一种新的求解方法。
     本文将辛对偶理论扩展应用到梁/板结构问题中,从基本方程出发,基于能量变分原理,由勒让德变换引入混合型对偶变量并建立正则(对偶)方程组。在辛空间中,问题的求解归结为哈密顿算子矩阵的本征值与本征解问题,从而建立了一套梁/板结构辛体系求解方法。基于此方法重点研究了复合材料叠层结构、地基梁板、薄壁结构剪力滞问题和功能梯度压电材料力电耦合问题及二维弹性平面奇异性等问题,并分析预应力梁在纵横耦合力作用下的动力问题。主要研究工作和结论如下:
     (1)从各向异性弹性力学基本方程出发,研究复合材料叠层梁在各种不同铺层形式下弯曲问题,首次得到了适用于任意跨厚比和边界条件的解析解,有效避免了简化理论对剪切变形以及横向正应力等对结构特性的影响估计不确切的缺点,为今后各种简化理论和数值分析方法提供了较好的检验标准。分析了正交铺设和斜角铺设及双参数地基上各向异性梁的弯曲性能,讨论了跨厚比、铺层数和各向异性程度及端部支承条件等参数对力学性能的影响,得出一些有益的结论。
     (2)系统地给出多种不同边界条件组合和几何形状情形时对称铺设叠层板的解,突破了传统方法无法得到任意边界条件和各类几何形状的板解析解的瓶颈,结果显示取前几项本征值就可达到较高的精度,并进一步推广应用于分析建筑筏板基础和弹性地基上钢筋混凝土板等实际工程问题。讨论了碳纤维环氧复合材料正交铺设和斜交铺设的弯曲特性及铺设层数、铺设角、材料各向异性程度等对板的力学特性的影响。
     (3)建立薄壁结构剪力滞效应的弹性力学辛求解方法,推导出简支箱梁和悬臂箱梁在满跨均布荷载作用下翼板部分的圣维南解,给出了剪力滞系数和有效宽度系数的闭合多项式形式,将结果与有机玻璃模型试验梁实测值、国际规范及数值解进行比较。结果表明,辛求解方法是分析箱形截面剪力滞效应是一种有效而实用的方法,得到的公式表达简单,可快速计算简支和悬臂箱梁桥的有效宽度。
     (4)将辛方法推广应用于功能梯度压电材料力电耦合问题中,首次引入材料非均匀性沿纵向分布的假设,突破以往研究仅限于沿厚度方向变化的局限性,构造和材料系数梯度相关的应力分量,提出偏移哈密顿算子矩阵的概念,分析并重新建立了本征解之间的辛正交共轭关系,得到了耦合场问题的解析解,讨论了材料梯度指数对结构宏观性能的影响。为解决非均匀材料多场耦合问题提出一个新思路,也推进了辛体系在智能材料中的应用。
     (5)利用辛空间级数自动收敛的特性,研究二维弹性平面奇异性问题,并将问题归结为求解算子矩阵的零本征值本征解和非零本征值本征解。尤其是引入具有局部效应衰减特性的非零本征值本征解,充分体现了对偶体系的特点和优势,给出悬臂梁完整的应力分布情况,固定端附近的位移和应力分布也可得到更精确的分析结果,揭示了边界效应产生的局部现象,为局部效应和边界现象的研究提供一种有效途径。
     (6)提出Newmark-β精细耦合Pade级数法。这种改进的时域求解方法避免传统时域逐步积分法存在的不足,克服了精细积分法降阶时遇到的困难并保持较高的精度,并结合采用位移解析解作为试函数建立的剪切梁单元研究双参数地基上预应力混凝土梁在耦合力作用下的动力响应。讨论预应力对固有模态的影响,分析偏心距、荷载速度、激励频率及地基刚度等参数对梁动态响应的影响,得出了一些规律,对路面高架桥、铁路和桥梁等预应力结构特性的理解和设计奠定了基础。
     以上研究结果表明,辛体系在对偶的二类变量(位移、应力)范围内研究问题,有收敛快精度高、操作简单、通用性好等优点,具有Lagrange体系无法比拟的优越性,是一种简单、直接、高效的求解方法,突破了传统方法的局限性,具有一般性及较高的理论推广价值,在工程结构分析方面有广阔的应用前景。
There are many problems that can be reduced to beam and plate structural system.The research on this subject has been ongoing for many years. The traditional method solves this problem in Euclidean space under Lagrange system, which involves solving higher orders of partial differential equations and faces the difficulty of handing the boundary conditions.So it is necessary to investigate a new and efficient solving method. Symplectic dual system is introduced to theory of elasticity mechanics by Professor Zhong Wanxie.And then symplectic system of elasticity is established and developed so that many effective mathematics and physics methods such as separation of variables, conjugated symplectic orthogonal and sumplectic eigenfunction expansion method etc. are made to be implemented. So the symplectic solution system of elastic mechanics is introduced to the beam and plate structures in the paper.The main study works and conclusions are as follows:
     (1) The symplectic method was applied to analyze the bending of composite laminated beam. Based on the equations of elasticity, the analytic solutions were obtained for all kinds of span to depth ratio and boundary conditions, which avoid the lacking of imprecision effect on the structures coming from shearing deformation and transverse normal stress based on simplified theory. The parameters’influence on mechanical property are discussed, such as span to depth ratio, ply angle, Arrangement of plies and anisotropic degree. Some laws are derived.
     (2) For symmetric angle-ply laminated plates, the solutions are not limited to simple support boundary condition and geometrical shape, which are further applied to analyze the raft foundation.The results of cross-ply and angle-ply laminated graphite–epoxy composite plate are also shown. The parameters’influence on mechanical property are discussed, such as ply angle, Arrangement of plies and anisotropic degree.
     (3) The closed polynomial expressions for shear lag coefficient and effective width are given at the condition of Saint-Venant analytical solutions to full-span uniform load on flange slab of box girder. Availability of formula in this paper is demonstrated by comparing results with international norm and measured values.
     (4) The paper proposes the application of the symplectic elasticity solution system in solving of electromechanical problem exists in functionally graded piezoelectric material for the first time.After introducing the material nonhomogeneous along axial direction and constructing the new stress, the electromechanical problem are formulated in the form of symplectic system. The shift Hamiltonian matrix is raised and the conjugated symplectic orthogonal between the eigenvectors are re-established, which provide a new method for solving piezoelectric problems and promote the use of symplectic elasticity solution in solving intellectual material problems at the same time.
     (5) Based on the convergence being guaranteed by the completeness of symplectic expansion, the stress singularities problem of anisotropic beam basing on two-dimensional elasticity is investigated, which is reduced to solve the eigenvalue problem of the operator matrix. Especially, the nonzero eigen-solutions that have fading characteristic usually ignored by Saint Venant’s principle can explain the local phenomenon. It is especially good in describing the localized effects and their reduction, which are seldom mentioned in former researches.
     (6) A new method of structural dynamic equation is put forward by introducing Pade series expansion.The algorithm is based on the coupled precise time integration and Newmark method,which avoid the deficiency of traditional method and overcome the difficulties for time integration reducing orders and maintain the fine precision.The dynamic response of prestressed Timoshenko beams fully and partially resting on a two-parameter elastic foundation under moving harmonic load is investaged.A beam element with shear deformation is formulated.The effectd of prestress,foundation support ,moving velocity and excitation frequency on dynamic characteristics of the beams are studied and described in detail.
     The research results show that the symplectic method fits the beam/plate problems well and have complete space of eigensolutions, which is simple, straight, effective and have more advantages than the traditional method, which make a breakthrough of higher orders of partial differential equations and the difficulty of handing the boundary conditions.Based on the results of herein, one may conclude that the symplectic method for beam/plate structure is usefule in engineering application and has good development and applied prospects for structural engineering.
引文
[1]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社, 1995.
    [2]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社, 2002.
    [3] Eisenberger M, Abramovich H, Shulepov O. Dynamic stiffness analysis of laminated beams using a first order shears deformation [J]. Composite Structure, 1995, 31(4):265-271.
    [4] Cowper GR. On the accuracy of Timoshenko’s beam theory [J]. Journal of Engineering Mechanics Division, 1968, 94:1447-1453.
    [5] Teoh LS, Huang CC. The vibration of beams of fibre reinforced material [J]. Journal of Sound and Vibration, 1977, 51(4): 467-473.
    [6] Chandrashekhara K, Bangers KM. Vibration of symmetrically laminated clamped-free beam with a mass at the free end [J]. Journal of Sound and vibration, 1993,160 (1): 93-101.
    [7] Banerjee JR. Frequency equation and mode shape formulae for composite Timoshenko beams [J]. Composite Structures, 2001, 51(4):381-388.
    [8] Krisna Murty A.V. Toward a consistent beam theory [J]. AIAA Journal, 1984, 22:811-816.
    [9] Tseng YP, Huang CS, Kao MS. In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis [J]. Composite Structures, 2001, 50 (2):103-114.
    [10]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社, 1981.
    [11] Khdeir AA, Reddy JN. An exact solution for the bending of thin and thick cross-ply laminated beams [J].Composite Structures, 1997, 37 (2):195-203.
    [12] Heyliger PR, Reddy JN. Higher order beam finite element for bending and vibration problems [J].Journal of Sound and Vibration, 1988, 126 (2):309-326.
    [13] Reddy JN. A simple higher-order theory for laminated composite plates [J]. ASME, Journal of Applied Mechanics, 1984, 51(4):745-752.
    [14] Marur SR, Kant T. Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling [J]. Journal of Sound and Vibration, 1996, 194(3):337-351.
    [15] Rao MK, Desai YM., Chitnis, M. R. Vibration of laminated beams using mixed theory [J].Composite Structures 1988, 52 (2):149-160.
    [16] Levinson M. A new rectangular beam theory [J].Journal of Sound and Vibration, 1981, 74:81-87.
    [17] Silverman LK. Flexure of laminated beams [J].Journal of Structures Division ST3, ASCE, 1980, 106:11-25.
    [18]高荣誉,范家让.叠层深梁的精确解[J].合肥工业大学学报, 2009, 32(5):738-742.
    [19] Fan Jiarang, Ye Jianqiao. Exact solutions of buckling for simply supported thick laminates [J]. Composite Structures, 1993, 24:23-28.
    [20]吕超锋.基于状态空间构架的微分求积法及其应用[D].浙江:浙江大学建筑工程学院, 2006.
    [21]纪多辙,王有凯.用状态空间法求解简支叠层梁在任意横向载荷作用下的精确解[J].力学与实践,1998,20:3-8.
    [22] Amir Shahdin. Fabrication and mechanical testing of glass fiber sandwich beams:A comparison with honeycomb and foam sandwich beams[J]. Composite Structures, 2009, 90:404-412.
    [23]于英华,高华.泡沫铝/铸铁层合梁弯曲性能有限元分析[J].现代制造工程, 2000, 7:38-42.
    [24] Kamel Amichi, Noureddine Atalla. A New 3D Finite Element for Sandwich Beams With a Viscoelastic Core [J]. Journal of Vibration and Acoustics, 2009, 131(20):459-475.
    [25] Qatu MS. In-plane vibration of slightly curved laminated composite beams [J].Journal of Sound and Vibration, 1992, 59:327-338.
    [26] Reissner E, Stavsky Y. Bending and stretching of certain types of heterogeneous aelotropic elastic plates [J]. ASME, Journal of Applied Mechanics, 1961, 28 (3):402-408.
    [27] PAGANO NJ. Exact Solutions for Composite Laminates in Cylindrical Bending [J]. Journal of Composite Materials, 1969, 3 (7): 398-411.
    [28] Whitney JM. Composite Materials Shear deformation in heterogeneous anisotropic plates [J]. Journal of Composite Materials, 1969, 26:537-547.
    [29] Sun CT. Microstructure theory for a composite material beam [J]. Journal of Applied Mechanics, 1971, 38(3):947-954.
    [30] Liew KM. Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method [J]. Journal of Sound and Vibration, 1996, 198 (3):342-360.
    [31] Bert C.W, Malik M. Differential quadrature powerful new technique for analysis of composite structures [J]. Composite Structures, 1997, 39 (3-4):179-189.
    [32] Zenkour A.M. Natural vibration analysis of symmetrical cross-ply laminated plates using a mixed variation formulation [J]. Journal of Mechanics, 2000, 19 (3):469- 485.
    [33] Kant T, Swaminathan K.Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments [J]. Composite Structures 2000, 49:65-75.
    [34] Soldatos KP, Timarci T. A unified formulation of laminated composite five-degree-of-freedom cylindrical shell theories [J]. Composite Structures, 1993, 25 (1-4):165-171.
    [35] Bhimaraddi A,Stevens LK. A higher-order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates [J]. Journal of Applied Mechanics, 1984, 51 (1):195-198.
    [36] Matsunaga H. Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory [J]. Composite Structures, 2000, 48 (4):231-244.
    [37] Srinivas S, Rao AK. Bending, vibration and buckling of simply supported thick orthotropicrectangular plates and laminates [J]. International Journal of Solids and Structures, 1970, 6 (11):1463-1481.
    [38] Srinivas S, Rao AK. Flexure of thick rectangular plates [J]. Journal of Applied Mechanics, 1973, 39 (1):298-299.
    [39] Noor AK, Burton WS. Assessment of computational models for multilayered anisotropic plates [J]. Composite Structures, 1990a, 14 (3):233-265.
    [40] Noor AK, Burton WS. Three-dimensional solutions for laminated anisotropic plates [J]. Journal of Applied Mechanics, 1990b, 57 (1):182-188.
    [41] Fan JR, Ye JQ. An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers [J]. International Journal of Solids and Structures, 1990a, 26 (5-6):655-662.
    [42] Fan JR, Ye JQ. A series solution of the exact equation for thick orthotropic plates [J].International Journal of Solids and Structures, 1990b, 26 (7):773-778.
    [43] Ding HJ, Chen WQ. New state space formulations for transversely isotropic piezoelasticity with applications [J]. Mechanic Research Communications, 2000, 27 (3):319-326.
    [44] Ding HJ, Chen W Q. On the bending, vibration and stability of laminated rectangular plates with transversely isotropic layers [J]. Applied Mathematics and Mechanics, 2001, 22 (1):17-24.
    [45]范家让.强厚度叠层板壳的精确理论[M].北京:科学出版社, 1996.
    [46] Ye JQ. A three-dimensional free vibration analysis of cross-ply laminated rectangular plates with clamped edges [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 140 (3-4):383-392.
    [47] Sheng HY, Ye JQ. A semi-analytical finite element for laminated composite plates[J]. Composite Structures, 2002a, 57 (1-4):117-123.
    [48] Sheng HY, Ye JQ. A state space finite element for laminated composite plates[J].Computer Methods in Applied Mechanics and Engineering,2002b, 191(37-38):4259-4276
    [49] Ye JQ, Sheng HY. A state space finite element for laminated composites with free edges and subjected to transverse and in-plane loads [J].Computer and Structures,2004, 82, 15: 1131-1141.
    [50] Chao CC,Chen YC. Comparison of natural frequencies of laminates by 3-Dtheory, part I: Rectangular plates [J]. Journal of Sound and Vibration, 2000,230 (5):985-1007.
    [51]江冰,李兴丹,吴代华. smart结构及其应用[J].力学进展,1994,24(3):353-361.
    [52]邓友生,孙宝俊.智能材料系统及其在土木工程中的应用研究[J].建筑技术,2005, 36(2): 92-95.
    [53]刘勇,魏泳涛.智能材料在土木工程中的应用[J].西南交通大学学报,2002, 37(B11): 105 -109.
    [54] Rogers C A. Intelligent material system, the down of a new material age [J]. Journal of Intelligent Material Systems, 1992, 4(1): 4-12.
    [55] Wu CC M, Kahn M, Moy W. Piezoelectric ceramics with functional gradients: a new application in material design [J]. Journal of the American Ceramic Society, 1996, 79: 809-812.
    [56] Hauke T, houvatov A, Steinhausen R. Bending behavior of functionally gradient materials [J]. Ferroelectrics, 2000, 238(1-4): 195-202.
    [57] Reddy JN, Chen ZQ. hree-dimensional thermomechanical deformations of functionally graded rectangular plates [J]. European Journal of Mechanics - A/Solids,2001,20:841–855
    [58] Chen WQ, Ding HJ.Bending of functionally graded piezoelectric rectangular plates [J]. Acta Mechanics Solids Sinica, 2000, 13(4):312-319.
    [59] Chen WQ, Ding HJ. On free vibration of a functionally graded piezoelectric rectangular plate [J] .Acta Mechanics, 2002, 15(3):207-216.
    [60]吴瑞安,仲政,金波.功能梯度压电材料矩形板的三维分析[J].固体力学学报,2002,23 (1):43-49.
    [61]吴瑞安.功能梯度压电材料矩形板白由振动方程的精确解[J].物理研究院科技年报,2003,1(2):414-415.
    [62]仲政,尚尔涛.功能梯度热释电材料矩形板的二维精确分析[J].力学学报,2003 ,35(5):542-552.
    [63] Li C, Weng GJ .Yoffe-type moving crack in material[C].Proceedings of the Royal Society of London, a functionally graded piezoelectric,2001,A458:381-399.
    [64]胡克强,仲政,李国强.功能梯度压电板条中的电渗透型运动裂纹[[J].同济大学学报:自然科学版,2004,32(12): 1631-1636.
    [65]胡克强,李国强,朱保兵.功能梯度压电夹层板条中的反平面裂纹问题[J].强度与环境,2005,32(3): 24-32.
    [66] Liu GR, Dai KY, Han X, ohyoshi t. Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates [J].Journal of Sound and vibration 2004, 268:131-147.
    [67] Lim He,XQ Kitipornchai S. Finite element method for the feedback control of FGM shells in frequency domain via piezoelectric sensors and actuators[J]. Computer Methods in Applied Mechanics&Engeering, 2004,193:257-273.
    [68] Pin Lu,HP Lee,C Lu. Exact solutions for simply supported functionally graded piezoelectric laminates by Stroch-like formalism [J]. Composite Structures, 2006, 72:352-363.
    [69]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M].北京:人民交通出版社,1998.
    [70] KARMAR TV. Die mittragende breite, beitrage zur technischen mechanik and technischen phvsik[M].Berlin:August Foppl Festschrift, Julius Springer,1922,112-127.
    [71] LEE JAN. Effective width of Tee-beams[J].The Structural Engineer, 1962, 20 (1):21-27.
    [72] Rerssner E.On the problem of stress distribution in wide flanged box beam[J].Journal Aero Sci.1938,(5):295-299.
    [73] Goldbery JE,Leve HL.Theory of prismatic folded plate structures[J].International Assoc for Bridge and Structural Engineering Publications,1957,(17):59-86.
    [74] Defries SA,Scrodelis AC. Direct stiffens solution for folded plates[J].Journal of Structure Division,ASCE,1964,90(ST4):15-47.
    [75]蔡松柏,李存权.箱形梁桥剪力滞效应的精确分析[J].中南公路工程,1989,(3):33-41.
    [76]蔡松柏,程翔云,邵旭东.∏型梁剪力滞效应的解析解.工程力学,2003,20(5):82-86.
    [77]文国华.横向预应力对悬臂翼板有效分布宽度的影响.中南公路工程,1998,23(4):29-32.
    [78] Taherian AR,Evans HR. The bar simulation method for the calculation of shear lag in multi-cell and continuous box girders[C].Proc.Instn.Ci.Engrs,Part2,1977,(63):881-897.
    [79]唐怀平,唐达培.大跨径连续刚构箱梁剪力滞效应分析.西南交通大学学报,2001, 36(6):617-619.
    [80] Kuzmanovic BO,Graham HJ.Shear lag in box girders[J].Journal of Structure Division,1981, 107(9):1 701-1 712.
    [81]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J].土木工程学报,1983,16(1):1-13.
    [82]倪元增.槽型宽梁的剪力滞问题[J].土木工程学报,1986,19(4):32-40.
    [83] Lertsima C,Chaisomphob T.Stress concentration duo to shear lag in simply supported box girders[J].Journal of Engineering and Structure.,2004,(26):1093-1101.
    [84]王小岗.箱梁剪力滞计算的三维退化梁板单元法.应用力学学报,2001,18(4):120-123.
    [85]卢耀梓,卡申斯.桥梁工程中的有限条法[M].陈锡华,黄澄宇等译.第一版.北京:人民交通出版社,1985.
    [86]刘山洪,何广汉,杨永贤.部分预应力混凝土箱梁节段模型剪滞效应的试验研究.桥梁建设,2000,(3):5-7.
    [87]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究.桥梁建设,2000,(4):l-3.
    [88] Chang ST,Yun D.Shear lag effect in box girder with varying depth[J].Journal of Structure and Engineering ,ASCE,1988,114(10):2280-2292.
    [89] FRANKLIN J N, SCOTT R F. Beam equation with variable foundation coefficient [J] .Journal of the Engineering Mechanics Division,1979,105:811-827.
    [90] M Eisenberger, J Clastornik. Vibrations and buckling of a beam on a variable Winkler elastic foundation [J]. Journal of Sound and Vibration, 1987, 115:233–241.
    [91] NAIDU NR, RAO G V. Vibration of initially stressed uniform beams on a two parameter elastic foundation [J]. Computers and Structures, 1995, 57(5):941-943.
    [92] Chen WQ, Lu CF, Bian ZG. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation [J]. Applied Mathematical Modeling 2004, 28 (10):877-890.
    [93] CM Wang, KY Lam, XQ. The exact solutions for Timoshenko beams on elastic foundations using Green’s functions [J]. Mechanics of Structures and Machine, 1998, 26:101–113.
    [94] Timoshenko SP. On the correction for shear of the differential equation for transverse vibrations of prismatic bars [J]. Philosophical Magazine, 1921, 41 (6): 744-746.
    [95] Mindlin RD. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates [J]. Journal of Applied Mechanics ASME, 1951, 18 (1): 1031-1036.
    [96] Xiang Y, Wang CM, Kitipornchai S. Exact vibration solution for initially stressed Mindlin plates on Pasternak foundation [J]. International Journal of Mechanical Sciences 1994, 36 (4): 311-316.
    [97] Reddy JN. A simple higher-order theory for laminated composite plates [J]. Journal of Applied Mechanics, ASME 1984, 51 (4): 745-752.
    [98] Matsunaga H.Vibration and stability of thick plates on elastic foundations [J]. Journal of Engineering Mechanics, ASCE, 2000,126 (1): 27-34.
    [99] Lim CW. Three-dimensional vibration analysis of a cantilevered parallelepiped: exact and approximate solutions [J]. Journal of the Acoustical Society of America,1999, 106(6): 3375-3381.
    [100] Whitney JM. Elasticity analysis of orthotropic beams under concentrated loads [J]. Composites Science and Technology, 1985, 22 (3):167-184.
    [101] Sullivan JL, Vanoene H. An elasticity analysis for the generally and specially orthotropic beams subjected to concentrated loads [J]. Composites Science and Technology, 1986, 27(2): 133-155.
    [102] Sankar BV. An elasticity solution for functionally graded beams [J]. Composites Science and Technology, 2001, 61(5):689-696.
    [103] Chen WQ, Lv CF, Bian ZG. Elasticity solution for free vibration of laminated beams [J].Composite Structures, 2003, 62(1):75-82.
    [104] Chen WQ, Lv CF, Bian ZG. Free vibration analysis of generally laminated beams via state-space-based differential quadrature [J]. Composite Structures, 2004, 63(3-4): 417-425.
    [105] Chen WQ, Lu CF, Bian ZG. A semi-analytical method for free vibration of straight orthotropic beams with rectangular cross-sections [J]. Mechanics Research Communications, 2004, 31 (6):725-734.
    [106] Chen WQ, Lu CF, Bian ZG. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation [J]. Applied Mathematical Modeling, 2004, 28 (10):877-890.
    [107] Lekhnitskii SG. Anisotropic plates [M]. New York: Gordon and Breach Science, 1968.
    [108] Ahmed SR, Idris ABM, U ddinMW. Numerical solution of both ends fixed deep beams [J]. Computers and Structures, 1996, 61(1):21.
    [109] Ding HJ, Huang DJ,Wang HM. Analytical solution for fixed-fixed anisotropic beam subjected to uniform load [J]. Applied Mathematics and Mechanics, 2006, 27 (10): 1305-1310.
    [110] Hertz H. On the equilibrium of floating elastic plates [J]. Annals of Physics and Chemistry, 1884, 22: 449-455.
    [111] Hetenyi M. Beams on Elastic Foundations [M].Michigan: Michigan University of Michigan Press, 1946.
    [112] Timoshenko SP.Theory of Plates and Shells [M]. New York: McGraw-Hill, 1959.
    [113] Keer A D. Elastic plates on a liquid foundation [J]. Journal of Engineering Mechanics, ASCE, 1963, 89: 59-71.
    [114] Panc V. Theories of Elastic Plates [M]. Leyden: Noordhoff, 1975.
    [115] Kneifati M C. Analysis of plates on a Kerr foundation model [J]. Journal of Engineering Mechanics, 1985, 111(1):1325-1342.
    [116] Vlazov V Z, Leontiev U N. Beams, Plates and Shells on Elastic Foundations [M]. Jerusalem: Israel Program for Scientific, 1966
    [117] Selvadurai APS. Elastic Analysis of Soil-Foundation Interaction [M]. Amsterdam: Elsevier, 1979.范文田等译.土与基础相互作用的弹性分析[M].北京:中国铁道出版社,1984.
    [118] Reissman H. Bending of circular and ring-shaped plates on an elastic foundation [J]. Journal of Applied Mechanics, ASME, 1954, 21:45-51.
    [119] Conway H D. Analysis of some circular plates on elastic foundations and the flexural vibration of some circular plates [J]. Journal of Applied Mechanics, ASME, 1955, 22:257-276.
    [120] Celep Z, Guler K. Static and dynamic response of a rigid circular plate on a tensionless Winkler foundation [J]. Journal of Sound and Vibration, 2004, 276(1-2):449-458.
    [121] C. V. Girija Vallabhan. Modified Vlasov Model for Beams on Elastic Foundations [J]. Journal of Geotechnical Engineering, 1998, 117(6):956-966.
    [122] Korenev BG. Structures resting on an elastic Foundation [M].Oxford: Pergamon Press, 1960.
    [123] Yu YY, Syracuse NY. An symmetrical bending of circular plates under simultaneous action of lateral load, force in the middle plane and elastic foundation [J]. Journal of Applied Mechanics, ASME, 1957, 24(1):141-143.
    [124] Saygun A, Celik M. Analysis of circular plates on two-parameter elastic foundation [J]. Structural Engineering and Mechanics, 2003, 15(2):249-267.
    [125] Guler K. Circular elastic plate resting on tensionless Pasternak foundation [J]. Journal of Engineering Mechanics, 2004, 130(10):1251-1254.
    [126]张福范,黄晓梅.弹性地基上的自由矩形板[J].应用数学和力学.1984, 5(3):345—354.
    [127]王克林,黄义.弹性地基上四边自由矩形板[J].计算结构力学及其应用,1985,7(2):12-16.
    [128]生跃,黄义.双参数弹性地基上自由矩形板[J].应用数学和力学.1987, 8(4):317-329.
    [129] Fwa TF, Tan CY, Chan WT. Back calculation analysis of pavement-layer module using genetic algorithms [M]. TRB: National Research Council, 1991.
    [130]陈静云,钟阳,殷建华.求解弹性地基上四边自由板的功的互等定理法[J].岩土工程学报.2001, 23(6): 766-769.
    [131] Pickett G, McCormick FJ. Circular and rectangular plates under lateral load and supported by an elastic solid foundation [C]. Proceeding of the 1st US Natural Congress of Applied Mechanics, 1951:331-338.
    [132] Janes RL. Digital computer solution for pavement deflections [J]. Journal of Portland cement Association, 1962, 4(3):30-36.
    [133] Bosakov S V. Calculation of a plate of finite stiffness in an elastic half space [J]. Soil Mechanics and Foundation Engineering, 1992, 28(5):229-232.
    [134] Vallabhan C, AG., W Thomas straugham, YC Das. Refined Model for analysis of plates on elastic foundations [J]. Journal of Engineering Mechanics, 1990, 117(12):2830-2844.
    [135]张建辉,邓安福等.无单元法在弹性地基板计算中的应用[J].重庆建筑大学学报,1999,21(2)84-89.
    [136]张星伟,庞辉.无单元法计算钢筋混凝土筏板[J].计算力学学报,2000,17(3):326―331.
    [137]曾祥勇.筏板基础无网格计算方法及其在考虑上部结构共同作用分析中的应用[M].重庆:重庆大学土木工程学院,2007.
    [138]胡玮军,龙述尧.用无网格径向点插值法分析弹性地基厚板弯曲.工程力学, 2009,26(5):58-63.
    [139]熊渊博,龙述尧.用无网格局部Petrov-Galerkin方法分析Winkler弹性地基板[J].湖南大学学报(自然科学版),2004,31(4):101-104.
    [140] Miyamoto A. Behavior of prestressed beam strengthened with external tendons [J]. Journal of Structural Engineering, 2000, 126(9):1030-1036.
    [141]楼梦麟,洪婷婷.体外预应力梁动力特性的分析方法[J].同济大学学报,2006,34(10):1284-1288.
    [142]楼梦麟,洪婷婷.预应力梁横向振动分析的模态摄动方法[J].工程力学,2006,23(1): 107-111.
    [143]刘宏伟,张伟,庄惠平.预加力对梁的动力影响分析[J].黑龙江科技学院学报,2002,12(3):37.
    [144]吕中荣,罗绍湘,刘济科.预应力对预应力梁振动的影响[J].中山大学学报,2006,45(2):119-121.
    [145]张耀庭,张长跑.体外预应力简支混凝土梁基频的理论与实验研究[J].华中科技大学学报,2006,22(1):13-15.
    [146]熊学玉.体外预应力梁振动特性的分析与研究[J].地震工程与工程振动, 2005,25(2): 55-61.
    [147]熊学玉.体外预应力结构设计[M].北京:中国建筑工业出版社,2005.
    [148] SAIIDIN, DOUGLAS B, FENG S. Prestress Force Effect on Vibration Frequency of Concrete Bridges [J]. Journal of Structural Engineering, ASCE, 1994, 120(7): 2233-2241.
    [149] MIYAMOTO A, TEIK, NAKAMURAH, et a.l. Behavior of prestressed beam strengthened with external tendons[J].Journal of Structural Engineering, ASCE, 2000, 126(9): 1033-1044.
    [150] ABRAHAM MA, PARK SY, STUBBS N. Loss of pre-stress prediction on nondestructive damage locational gorithms [J]. SPIE, Smart Structures and materials, 1995, 2446: 60-67.
    [151] E Hamed, Y Frostig. Natural frequencies of bonded and unbonded prestressed beams–prestress force effects [J]. Journal of Sound and Vibration, 2006, 295:28-39.
    [152]罗松南,杨敬林.预应力混凝土桥梁在移动荷载作用下的动力响应分析[J].应用力学学报,2008,25(1):103-109.
    [153]凌秋发,杨敬林.预应力桥梁在移动荷载作用下的动力响应分析[J].湘潭师范学院学报,2009,31(2):84-90.
    [154]罗松南,杨敬林.预应力简支桥梁在移动荷载作用下的非线性动力特性分析[J].土木工程学报,2009,42(1):49-54.
    [155] Kocaturk, Simsek. Vibration of viscoelastic beams subjected to an eccentric compressive force and a concentrated moving harmonic force [J].Journal of Sound and Vibration, 2006, 291:302-22.
    [156] Kocaturk, Simsek.Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load [J]. Computers and Structures,2006, 84 :2113-2127
    [157] Kocaturk, Simsek. Dynamic Analysis of Eccentrically Prestressed Damped Beam under Moving Harmonic Force Using Higher Order Shear Deformation Theory [J].ASCE,2007, 133:1712-1733.
    [158] Kocaturk, Simsek Nonlinear dynamic analysis of an eccentrically prestressed damped beam a concentrated moving harmonic load [J]. Journal of Sound and Vibration, 2009, 320:235-253.
    [159]陈玲莉.工程结构动力分析数值方法[M].西安:西安交通大学学出版社, 2006.
    [160]汪梦甫,周锡元.结构动力方程的更精细积分方法[J].力学学报, 2004, 36(2): 191-195.
    [161]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136.
    [162]郭泽英,李青宁.结构地震反应分析的一种新精细积分法[J].工程力学,2007,24(4):35-40.
    [163]汪梦甫,周锡元.结构动力方程的高斯精细时程积分法[J].工程力学, 2004, 21(4): 13-16.
    [164]张森文.计算结构动力响应的状态方程直接积分法[J].计算力学学报,2000,17(1): 94-97.
    [165] Timoshenko SP. Strength of Materials [M].NewYork:Van Nostrand Reinhold Company,1972.
    [166] Owen D R J, Hinton E. Finite Elements in Plasticity-Theory and Practice [M].London:Swansea Pineridge Press, 1980.
    [167] Przmieniecki JS.Theory of Matrix Structural Analysis [M].NewYork:McGraw-Hall Book,1968.
    [168] Oral S. Anisoparametric interpolation in hybrid-stress Timoshenko beam element [J]. ASCE Journal of Structural Engineering, 1991, 117(4):1070-1 078.
    [169]王荣辉.杆板壳结构计算理论及应用[M].北京:中国铁道出版社,1999.
    [170]周世军.一种新的Timoshenko梁单元一致矩阵公式[J].兰州铁道学院学报,1994,13(2):1-7.
    [171]钟万勰.大型辛矩阵本征问题的逆迭代法[J].计算结构力学及其应用,1992,9(3):227-238.
    [172] Williams F W, Zhong Wanxie. Computation of the eigenvalues of wave propagation in periodic substructure system [J].Journal of Vibration and Acoustic Transfer ASME, 1993, 115:422-426.
    [173]钟万勰.代数黎帚提方程的求解与辛子空间迭代法[J].上海力学,1994,15(2):1-11.
    [174] Zhong Wanxie,Lin Jiallao.Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetric matrics[J].Computer and Structure,1994,52(5):999-1009
    [175]钟万勰,钟翔翔.反对称矩阵的一种计算方法[J].数学研究与评论,1995,15(1):123-128.
    [176] Zhong wanxie,Williams F W.A prccise time step integration method[C]. Proc lnst Mech Engr, 1994, 208:427-430.
    [177]钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6.
    [178]钟万勰.分离变量法与哈密顿体系[J].计算结构力学及其应用,1990,8(3):229-240.
    [179]张鸿庆.Hamilton体系与辛止交系的完备性[J].应用数学和力学,1997,18(3):217-221.
    [180]钟万勰.发展型哈密顿核积分方程[J].大连理工大学学报,2003,43(1):1-11.
    [181]钟万勰.哈密顿阵本征向量辛正交的物理意义[J].大连理工大学学报,1999,33(1):110-111
    [182]罗建辉,刘光栋.弹性力学的一种正交关系[J].力学学报,2003,35(4):489-492.
    [183]郑宇,张鸿庆.固体力学中的Hamilton正则表示[J].力学学报,1996,28(1):119-124.
    [184]周建方,卓家寿.弹性力学混合方程和Hami1ton正则方程的几种推导方法[J].河海大学学报,1997,25(6):119-121.
    [185]周建方,卓家寿.HarniIton体系下弹性力学的两个守恒律[J].固体力学学报,1999,20(1):90-94.
    [186]周建方,卓家寿,李典庆.Hamilton体系下弹性力学半解析法的一个守恒律[J].河海大学学报,2000,28(5):34-41.
    [187]周建方,卓家寿.弹性力学Hamilton方法广义解的适定性[J].力学学报,200l,33(4): 492-498.
    [188]周建方,卓家寿,李典庆.基于Harnilton方法的有限元[J].河海大学常州分校学报,2000,14(3): 1~6.
    [189] Wanxie Zhong, WeianYao.The Saint Venant Solution of multi-layered composite plates[J] Advances in the Structureal Engineering,1997,1(2):127-133.
    [190]丁皓江,彭南陵,李育.受r n分布载荷的楔:佯谬的解决[J].力学学报,1997,29(1):62-73.
    [191] Markensxofrx. Some remark on the wedge paradox and Saint Venant principle[J].Journal of Applied Mechanics,1994,61:519-523.
    [192]张洪武,徐新生.多材料楔形结合点的奇性分析[J].大连理工大学学报,1996,36(4):391-395.
    [193]徐新生,张洪武,齐朝晖.关于弹性回转体问题的直接方法[J].大连理工大学学报,1997,37(5):510-519.
    [194]钟万勰,姚伟岸.板弯曲与平面弹性问题的多类变量变分原理[J].力学学报,1999,31(6):712- 723.
    [195] Yao Weian, Zhong Wanxie. New solution system for circular sector plate bending and its application.Acta Mechanica Solida Sinica, 1999, 12(4):307-315.
    [196]钟阳,陈静云,王苏岩.矩形悬臂薄板的解析解[J].计算力学学报,2006,23(3):268-372.
    [197] YAO wei-an, SuiYong-feng.Symplectic soIution system for Reissner plate bending[J].Applied Mathematics and Mechanics,2004,25(2):178-185.
    [198]鲍四元,邓子辰.Mindlin中厚板的辛求解方法[J].固体力学学报,2005,26(1):102-106.
    [199]钟万勰,姚伟岸,郑长良.Reissner板弯曲与平面偶应力模拟[J].大连理工大学学报,2002,42(5): 519-52l.
    [200]钟万勰,欧阳华江.复合材料力学的Hamilton体系和辛几何方法(I)一般原理[J].应用数学和力学,1992,13(11):971-975.
    [201]钟万勰,欧阳华江.复合材料力学的Hamilton体系和辛几何方法(III)[J].弯曲问题和板的振动[J].应用数学和力学,1993,14(1):19-23.
    [202] YaoWeian, LIxiao-chua. Symplectic duaisystem on plane magnetoelectroelastic solids[J].Applied Mathematics and Mechanics, 2006,27(2):195-205.
    [203]徐新生,张维祥.粘弹性厚壁筒问题的辛本征解方法[J].计算力学学报,2007,24(2):153-158.
    [204]邹贵平.压电陶瓷材料的Hamilton体系与辛正交模型[J].计算物理,1997,14(6):735-739.
    [205]李俊永,吕和祥.弹性力学Hamilton体系下的稳定问题[J].工程力学,2007,24(8):81-85.
    [1]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995.
    [2] Weyl H. The Classical Groups: Their Invariants and Representations [M]. Princeton: Princeton University Press, 1939.
    [3]周建方,卓家寿.Hamilton体系下变分原理和半解析有限元解[J].工程力学,1998,15(1):30-38.
    [4]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [1] Cowper GR.On the accuracy of Timoshenko’s beam theory[J].Journal of Engineering Mechanics Division 94, 1968, 21:1447-1453.
    [2] Teoh LS, Huang CC.The vibration of beams of fibre reinforced material [J].Journal of Sound and Vibration, 1977, 51(4): 467-473.
    [3] Eisenberger M, Abramovich H.Dynamic stiffness analysis of laminated beams using a first order shear deformation [J]. Composite Structures, 1995, 31(4):265-271.
    [4] Banerjee JR.Frequency equation and mode shape formulae for composite Timoshenko beams [J].Composite Structures, 2001, 51(4):381-388.
    [5] Heyliger PR, Reddy JN.Higher order beam finite element for bending and vibration problems [J]. Journal of Sound and Vibration, 1988,126 (2):309-326.
    [6] Marur SR.Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling[J].Journal of Sound and Vibration,1996,194 (3):337-351.
    [7] Timoshenko SP, Goodier JN.Theory of elasticity [M]. New York: McGraw-Hill, 1970.
    [8]徐芝论.弹性力学(上册)[M].北京:人民教育出版社,1992.
    [9]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [10] Hetenyi M.Ageneral solution for the bending of beams on an elastic foundation of arbitrary continuity [J]. Journal of Applied Physics, 1950, 21(I): 55-58.
    [11] Eisenberger M, Clastornik J. Vibrations and buckling of a beam on a variable Winkler elastic foundation [J].Journal ofSounal and Vibration, 1987, 115 (2):233-241.
    [12] Au FTK, Zheng DY, Cheung YK. Vibration and stability of non-uniform beams with abrupt changes of cross-section by using C' modified beam vibration functions[J].Applied Mathematical Modelling,1999,29 (1): 19-34.
    [13] De Rosa MA. Free vibrations of Timoshenko beams on two-parameter elastic foundation and Structures [J]. Computers and Structures,1995, 57 (1):151-156.
    [14] Kerr AD. Elastic and Vscoelastic Foundation Models [J]. ASME, Journal of Applied Mechanics, 1994, 31(3): 491-498.
    [15] Pasternak PL. On a new method of analysis of an elastic foundation by means of two foundation constants [M]. Gos.Izd. Lip. Moscow, 1954.
    [16] Jones RM. Mechanics of composite materials [M]. Washington: Scripta Book Company, 1975.
    [17]孙训方,方孝淑,关来泰.材料力学(第三版)[M].北京:高等教育出版社,1994.
    [18] Wang CM, Lam KY, He XQ. Solutions for Timoshenko beams on elastic foundations using Green functions [J]. Mechanics of Structures and Machines, 1998, 26 (1):101-113.
    [19] Chen WQ, Lu CF, Bian ZG. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation [J]. Applied Mathematical Modeling 2004, 28 (10):877-890.
    [20] Jones RM. Mechanics of Composite Materials, 2"d ed [M]. New York: Hemisphere, 1999.
    [21] Pagano NJ. Exact solutions for composite laminates in cylindrical bending [J]. Journal of Com- posite Materials, 1996, 3: 398-411.
    [22] Yuan FG. Miller RE. A higher order finite element for laminated beams [J]. Composite Structure,1990, 14 (2):125-150.
    [23]吕超锋.基于状态空间构架的微分求积法及其应用[D].浙江:浙江大学建筑工程学院,2006.
    [24] Rao MK, Desai YM. Vibration of laminated beams using mixed theory [J].Composite Structures, 2001, 52 (2):149-160.
    [25] Vinson JR, Sierakowski RL. The Behavior of Structures Composed of Composite Materials 2"d Ed [M]. London: Kluwer, 2002.
    [26] Herakovich CT. Mechanics of fibrous composites [M]. New York: John Wiley & Sons,1998
    [27] Ren JG.Bending theory of laminated plate[J].Composites Science and Technology, 1986, 27:225- 234
    [1] Whitney JM.Bending extensional coupling 1aminated plates under transverse load [J].Composite Materials, 1969, (3):20-28.
    [2] Whitney JM, Leissa AW. Finite Elements for Analysis of Composite Structures [J].ASME Journal of Applid Mechanics, 1969,(36):261-266.
    [3] Whitney JM. The effect of boundary conditions on the response of laminated composite [J]. Journal of Composite Materical, 1970, (4):192~203.
    [4]黄炎.正交异性矩形板弯曲问题的解析解[J].上海力学,1986,7(l):1-5.
    [5]张承宗,杨光松.各向异性板结构横向弯曲一般解析解[J].力学学报,1996,28(4):12-18.
    [6]张承宗.各向异性矩形板平面问题位移型一般解析解[J].海军工程学院学报,1999,58(1):58-62.
    [7]杨端生,黄炎.双参数弹性地基上的正交异性矩形板的弯曲[J].工程力学,2009,26(3):26-30.
    [8]杨端生,黄炎.各向异性平面应力问题的一般解析解[J].工程力学,2006,23(8):31-35.
    [9] Ferdinando AC.A mixed enhanced finite element for the analysis of laminated composite plates [J].International Journal of Numerical Methanics Engineering, 1999, 44(1): 1481-1504.
    [10] Panda SC, Natarajan R. Finite element analysis of laminated composite plates[J].International Journal for Numerical Methods in Engineering, 2005, 14 (1):69 -79.
    [11] Kulkarni SD, Kapuria S.Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory [J].Computational Mech- anics, 2008, 42(6):803-824.
    [12] Kulkarni SD, Kapuria S. A new discrete Kirchhoff quadrilateral element based on the third-order theory for composite plates [J].Computational Mechanics, 2005, 39(3):237-246.
    [13] Jean Marie Berthelot. Damping analysis of laminated beams and plates using the Ritz method [J]. Composite Structures, 2006, 74 (2):186-201.
    [14] Metin Aydogdu. A new shear deformation theory for laminated plate[J].Composite Structure 2009, 89(3):94-101.
    [15]罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994.
    [16]王兴业.复合材料力学分析与设计[M].北京:国防科技大学出版社,1999.
    [17]钟万勰.分离变量法与哈密顿体系[J].计算结构力学及其应用,1991,8(3):12-18.
    [18]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [19]张承宗.复合材料斜交板弯曲解析[J].桥梁建设,1998,2,16-19.
    [20] Timoshenko SP, Goodier JN. Theory of Elasticity [M]. London: McGraw-Hill, 1970.
    [21] Qin QH. Hybrid-Treffiz finite element method for Reissner plates on an elastic foundation [J]. Journal of Applied Mechanics Engineering, 1995, 122: 379-92.
    [22] Wang J, Wang X. Fundamental solutions and boundary integral equations for Reissner’s plates on two parameter foundation [J].International Journal of Solids Structures 1992, 29:1233-1249.
    [23] Lam KY, Wang CM, He XQ.Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions [J]. Engineering Structures, 2000, 22:364-378.
    [24]张福范,黄晓梅.弹性地基上的自由矩形板[J].应用数学和力学,1984, 5(3):345-354.
    [25] Galerkin, BG. Collectedd papers [M].Moscow, 1953.
    [26] Lee SL, Ballesteros PA.Uniformly loaded rectangular plate supported at the corners [J]. International Journal of Mechanics, 1960, 2:206-11.
    [27] Wang CM, Wang YC, Ressy JN. Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates [J].Computers and Structures, 2002, 8(1):245-254.
    [28]杨有贞,葛修润.基于哈密顿体系辛几何算法求解空间地基问题.岩土力学,2009, 30(2):536-641.
    [29]杨有贞,葛修润.层状地基问题的辛几何本征解法.上海交通大学学报,2008, 42(11): 1876-1879.
    [30]熊渊博,王浩等.弹性地基上正交各向异性板的无网格局部Petrov-Galerkin法分析[J].岩土工程学报,2005,27(9),1097-1100.
    [31] Rajamohan, Raamachandran.Bending of anisotropic plates by charge simulation method[J].Advance in Engineering Software, 1999, 30(5):369-373.
    [32] Lakshminarayana.A shear-flexible triangular finite element model for laminated composite plates [J]. International Journal for Numerical Method in Engineering, 2005, 201(4):591-623.
    [33] Noor AK, Mathers MD.Shear ?exible finite element models of laminated composite plates and shells [C].Technical Report TND-8044, NASA, Houston, TX, 1995.
    [34] Albuquerque EL.Boundary element analysis of anisotropic Kirchho? plates [J].International Journal of Solids and Structures, 2006,43, 4029-4046.
    [35]梁礼平.角铺设层板弯曲问题的一种半解析法[J].复合材料学报,1987,4(l:)73-78.
    [36]熊渊博.Kirchhoff板问题无网格局部Petrov-Galerkin方法研究[D].湖南:湖南大学工程力学系, 2004.
    [37] Jones RM. Mechanics of Composit Materials [M].Philadelphian: Taylor&Frnaeis, 1999.
    [1] Karmar TV. Die mittragende breite beitrage zur technischen mechanik and technischen phvsik [M].Berlin: August Foppl Festschrift, Julius Springer, 1922, 112-127.
    [2] Lee JAN. Effective width of Tee-beams [J].The Structural Engineer, 1962, 20 (1):21-27.
    [3] Rerssner E.On the problem of stress distribution in wide flanged box beam [J].Journal Aero Sc, 1938, (5):295-299.
    [4] Goldbery JE, Leve HL.Theory of prismatic folded plate structures [J].International Assoc for Bridge and Structural Engineering Publications, 1957, (17):59-86.
    [5] Defries SA, Scrodelis AC. Direct stiffens solution for folded plates [J].Journal of Structural Division, ASCE, 1964, 90(ST4):15-47.
    [6]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M].北京:人民交通出版社,1998.
    [7]唐怀平.大跨径连续刚构箱梁剪力滞效应分析[J].西南交通大学学报,2001, 36(6):617-619.
    [8]蔡松柏,程翔云,邵旭东.∏型梁剪力滞效应的解析解[J].工程力学,2003,20(5):82-86.
    [9] Lertsima C, Chaisomphob T. Stress concentration duo to shear lag in simply supported box girders[J].Journal of Engineering and Structure,2004,(26):1093-1101.
    [10] Yp Wu, Xj Wang. A solution for laminated box beams under bending loads using the principle of complementary energy [J].Composite Structure, 2007, 79(3):376-380.
    [11] TJ Ld Oliveira. Modeling beam-to-girder semi-rigid composite connection with angles including the effects of concrete tension stiffness [J].Engineering Structures, 2009, 31(8):1865-1879.
    [12] Lee CK, Wu GJ.Shear lag analysis by the adaptive finite element method: Analysis of simple plated structures [J].Thin-Walled Structure, 2000a, (38):285-309.
    [13]程翔云.梁桥理论与计算[M].北京:人民交通出版社,1990.
    [14] Moffattt, Dowling PJ.British shear lag rules for composite girders [J].Journal of the Structural Division, ASCE, 1978, 104(7):1123-1130.
    [15]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法[J].湖南大学学报,1991, 18(2):33-39.
    [16]吴亚平,赖远明.薄壁钢箱梁的极限强度及有效宽度比分析[J].铁道学报,1999,21(3):13-18.
    [17]铁道部基建第三勘测设计院.日本铁路结构设计标准和解释[S].天津:铁道部第三勘测设计院,1996.
    [1]江冰,李兴丹,吴代华.Smart结构及其应用Pl.力学进展,1994, 24(3): 353-361.
    [2]李永,宋健,张志民.梯度功能力学[M].北京:清华大学出版社,2003.
    [3] Muller E, Drasar C, Schilz J. Functionally graded materials for sensor and energy applications [J]. Materials Science&EngineeringP, 2003, 362(1-2): 17-39.
    [4] Ding HJ,Chen WQ.Three Dimensional Problems of Piezoelasticity [M].New York: Nova Science Publishers,2001.
    [5]仲政,尚尔涛.功能梯度热释电材料矩形板的二维精确分析[J].力学学报,2003, 35(5): 542-552.
    [6] Gao JX, Shen YP, Wang J. Three dimensional analysis for free vibration of rectangular composite laminates with piezoelectric layers [J]. Journal of Sound and Vibration, 1998, 213(2): 383-390.
    [7] Lee JS., Jiang LZ. Exact electroelastic analysis of piezoelectric lamiae via state space approach[J].International Journal of Solids and Structures, 1996, 33:977-990.
    [8]黄小林,沈惠申.热环境下贴压电层的功能梯度材料板的自由振动和动力响[J].应用力学学报, 2005,22(3): 456 -460.
    [9] Shen MH, Chen FM, Chen SN. Piezoelectric study on circularly cylindrical layered media [J]. International Journal of Solids and Structures, 2006, 43(7-8): 2336-2350.
    [10] Marcus MA. Performance characteristics of piezoelectric polymer flexure mode devices [J]. Ferroelectrics, 1984, 57: 203-220.
    [11] Shi ZF.General solution of a density functionally gradient piezoelectric cantilever and itsapplica- tions [J].Smart Mater Struct, 2002, 11(1):122-129.
    [12] Zhang LN,Shi ZF.Analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading[J].Applied Mathematics and Mechiancs,2003,24(10):1215-1223.
    [13] Shi ZF, Chen Y.Functionally graded piezoelectric cantilever beam under load [J].Archive of Applied Mechanics, 2004, 74:237-247.
    [14] Zheng Zhong,Tao Y.Electroelastic Analysis of Functionally Graded Piezoelectric Material Beams Structures [J]. Journal of Intelligent Material Systems, 2008, 19(6):707-713.
    [15] Zheng JJ. Symplectic method for intelligent device and singularity problems[D].HongKong: Department of Building and Construction, City university of HongKong, 2007.
    [16] Gu Q,Xu XS, Leung, AYT. Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media [J]. Journal of Zhejiang University SCIENCE, 2005,6 (9):915-921.
    [17] Xu XS,Gu Q, Leung AYT, Zheng JJ. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media [J].Journal of Zhejiang University, 2005, 6A (9):922-927.
    [18] Leung AYT,Zheng JJ, Lim CW.A new symplectic approach for piezoelectric cantilever composite plates [J].Computers & Structures, 2008, 86:1865-1874.
    [19]陈伟球,赵莉.功能梯度材料平面问题的辛弹性力学解法[J].力学学报,2009,41(4):2-7.
    [20]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995.
    [21] Leung AYT, Xu XS, GU Q, Leung CTO. The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion [J].International Journal for Numerical Methods in Engineering, 2007, 69:2381-2408.
    [22] Timoshenko SP, Goodier JN.Theory of elasticity [M].New York: McGraw-Hill, 1970.
    [23] Hauke T, houvatov A, Steinhausen R.Bending behavior of functionally gradient materials[J]. Ferroelectrics, 2000, 238(1-4): 195-202.
    [24] Ruan XP, Stephen CD, Ahmad S.Saint-Venant end effects in piezoceramic materials [J]. Interna- tional Journal of Solids and Structures, 2000, 37:2625-2637.
    [1] Williams ML. Stress singularities resulting from various boundary conditions in angular corners of plates in extension [J]. Journal of Applied Mechanics, 1952, 19(4):526-528.
    [2] Timoshenko SP, Goodier JN.Theory of Elasticity [M].New York: McGraw-Hill, 1970.
    [3] GregoryRD.The traction boundary-value problem for the elastostatic semi-infinite strip-existence of solution and completeness of Papkovich-Fadle eigenfunctions [J].Journal of Elasticity,1980,10 (3):295-327.
    [4] Gregory RD, Gladwell I. The cantilever beam under tension, bending or flexure at infinity [J]. Journal of Elasticity, 1982, 12(4):317-343.
    [5] Gregory RD, Wan FYM.Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory [J].Journal of Elasticity, 1984, 14(1):27-64.
    [6] Horgan CO, Simmonds JG. Asymptotic analysis of an end-loaded semi-infinite strip weak in shear [J].International Journal of Solids and Structures, 1991, 27(15):1895-1914.
    [7] Choi I, Horgan CO. Saint-Venants principle and end effects in anisotropic elasticity [J]. Journal of Applied Mechanics, 1977, 44(3):424-430.
    [8] Lin YH, Wan FYM.Bending and flexure of semi-infinite cantilevered orthotropic strips[J].Com- puters & Structures, 1990, 35(4):349-359.
    [9] Lin YH, Wan FYM. Semi-infinite orthotropic cantilevered strips and the foundations of plate theories [J]. Studies in Applied Mathematics, 1990, 82(3):217-244.
    [10] Savoia M, Tullini N. Beam theory for strongly orthotropic materials [J]. International Journal of Solids and Structures, 1996, 33(17):2459-2484.
    [11] Leung AYT.Mode-I crack problems by fractal2-level finite element methods [J]. Engineering Fracture Mechanics, 1994, 48(6):847-856.
    [12] Leung AYT,Su RKL. Order of the singular stress fields of through-thickness cracks [J].Interna- tion Journal of Fracture, 1996, 75(1):85-93.
    [13] Levinson M.A new rectangular beam theory[J].Journal of Sound and Vibration,1981,74(1):81-84.
    [14] Heyliger PR, Reddy JN. A higher order beam finite element for bending and vibration problems [J].Journal of Sound and Vibration, 1988, 126(2):309-326.
    [15] Leung AYT. An improved3rd-order beam theory[J].Journal of Sound and Vibration,1990,142(3): 527-528.
    [16] Spence DA. A class of biharmonic end-strip problems arising in elasticity Stokes flow[J]. IMA Journal of Applied Mathematics, 1983, 30(2):107-139.
    [17]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [18]梁以德,郑建军.二维弹性平面问题中任意边界条件下应力分布的封闭解[J].应用数学和力学,2007,28(12):1455-1467.
    [1]楼梦麟,洪婷婷.体外预应力梁动力特性的分析方法[J].同济大学学报,2006,34(10):1284-1288.
    [2]楼梦麟,洪婷婷.预应力梁横向振动分析的模态摄动方法[J].工程力学,2006,23(1):107-111.
    [3]吕中荣,罗绍湘,刘济科.预应力对预应力梁振动的影响[J],中山大学学报,2006,45(2):119-121
    [4]刘宏伟,张伟,庄惠平.预加力对梁的动力影响分析[J].黑龙江科技学院学报,2002,12(3):37-39
    [5]张耀庭,张长跑.体外预应力简支混凝土梁基频的理论与实验研究[J].华中科技大学学报,2006 ,22(1):13-15
    [6]熊学玉,王寿生.体外预应力梁振动特性的分析与研究[J].地震工程与工程振动,2005,25(2): 55-61.
    [7]熊学玉.体外预应力结构设计[M].北京:中国建筑工业出版社,2005.
    [8] Abraham MA, Park SY, Stubbs N.Loss of pre-stress prediction on nondestructive damage locational gorithms [ J]. SPIE, Smart Structures and materials, 1995, 2446: 60-67.
    [9] E Hamed, Y Frostig. Natural frequencies of bonded and unbonded prestressed beams–prestress force effects[J].Journal of Sound and Vibration,2006,295:28-39.
    [10] Saiidiin, Douglas B, Feng S. Prestress Force Effect on Vibration Frequency of Concrete Bridges [J]. Journal of Structural Engineering, ASCE, 1994, 120(7): 2233-2241.
    [11] Miyamoto A, Teik, Nakamurah. Behavior of prestressed beam strengthened with external tendons [J].Journal of Structural Engineering, ASCE, 2000, 126(9): 1033-1044.
    [12]凌秋发,杨敬林.预应力梁桥在移动荷载作用下的动力响应分析[J].湘潭师范学院学报,2009, 31(2):84-89.
    [13] Kocaturk, Simsek.Vibration of viscoelastic beams subjected to an eccentric compressive force and a concentrated moving harmonic force [J].Journal of Sound and Vibration, 2006, 291:15–22.
    [14] Kocaturk, Simsek.Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load [J]. Computers and Structures,2006, 84 :2113–2127.
    [15] Kocaturk, Simsek. Dynamic Analysis of Eccentrically Prestressed Damped Beam under Moving Harmonic Force Using Higher Order Shear Deformation Theory[J].ASCE,2007, 133:1712-1733.
    [16] Kocaturk,Simsek.Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load [J].Journal of Sound and Vibration, 2009, 320:235-253.
    [17]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136.
    [18]陈玲莉.工程结构动力分析数值方法[M].西安:西安交通大学学出版社, 2006.
    [19]汪梦甫,周锡元.结构动力方程的更精细积分方法[J].力学学报, 2004, 36(2): 191-195.
    [20]郭泽英,李青宁.结构地震反应分析的一种新精细积分法[J].工程力学,2007,24(4):35-40.
    [21]汪梦甫,周锡元.结构动力方程的高斯精细时程积分法[J].工程力学, 2004, 21(4): 13-16.
    [22]张森文计算结构动力响应的状态方程直接积分法[J].计算力学学报,2000,17(1):94-97.
    [23]李金桥.非线性动力系统精细积分下的显式级数解[J].四川大学学报,2002,34(2):24-27.
    [24] Tse FS.Mechanical Vibrations, Theory and Applications [M].Boston: Allyn, Bacon Inc, 1978.
    [25]顾传青,王烽.一种系数可选择的矩阵Padé逼近[J].上海大学学报,2008,14(1):36-39.
    [26] Timoshenko SP. Strength of Materials [M].NewYork: Van Nostrand Reinhold Company, 1972.
    [27] Owen DRJ, Hinton E. Finite Elements in Plasticity-Theory and Practice [M].London:Swansea Pineridge Press, 1980.
    [28] Przmieniecki JS.Theory of Matrix Structural Analysis [M].NewYork: McGraw-Hall Book Company, 1968.
    [29] Oral S. Anisoparametric interpolation in hybrid-stress Timoshenko beam element [J]. Journal of Structural Engineering, 1991, 117(4):1070-1 078.
    [30]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [31]王荣辉.杆板壳结构计算理论及应用[M].北京:中国铁道出版社,1999.
    [32] Luo Y. Explanation elimination of shear locking and membrane locking with field consistence approach. Computer Methods Applied. Mechanics. Engineering, 1998, 162: 249- 269.
    [33] Cook R, Malkus D, Plesha M. Concepts and applications of finite element analysis[M].John Wiley & Sons, NewYork, U.S.A, 3rd edn, 1989.
    [34] Geradin, M Rixen R. Theory and application to structural dynamics [M]. Chichester: John Wiley &Sons, U.K, 2nd edn, 1997.
    [35] Chan Tht, Yung TH. A theoretical study of force identification using prestressed concrete bridges [J]. Engineering Structures, 2000, 22 (11):1529-1537.
    [36] E Hamed Y Frostig. Natural frequencies of bonded and unbonded prestressed beams–prestress force effects [J].Journal of Sound and Vibration, 2006, 295(1-2): 28-39.
    [37] Naidu N, Rao G.Vibrations of initially stressed uniform beams on a two-parameter elastic founda- tion [J]. Computer &Structure, 1995, 57:941-943.
    [38] Timoshenko S. Vibration problems in engineering, 3rded [M]. New York: VanNostrand Company, 1955.
    [39] Ghali A, Neville A. A unified classical and matrix approach [M]. London: E & FN Spon, U.K,3rd edn, 1995.
    [40] Thambiratnam D, Zhuge Y. Free vibration analysis of beams on elastic foundation [J]. Computer & Structure, 1996, 60:971-980.
    [41] Feng Z, Cook R. Beam elements on two-parameter elastic foundations[J]. Journal of Engineering Mechanics, 1983, 109:1390 -14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700