线接触磨损数值仿真及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械零件的磨损一直是摩擦学界的研究热点之一。光面磨损是最常见的复合磨损形式,由于这种磨损具有缓慢的渐进性特点,对机械系统的性能影响与突发性相比往往容易被忽视,但其危害性却很大。
     目前,国内外对磨损的研究主要集中在实验研究方面,并已取得了大量成果。但是,实验研究需要大量的人力、物力、财力,所获得的结论也具有很强的应用条件性。另一方面,摩擦学工作者一直致力于将摩擦学研究成果应用于工程设计,但是效果并不明显。这也是因为摩擦学理论还未达到象经典力学理论一样应用于工程设计的程度,即使经典的磨损理论也很难直接与工程中所希望的磨损寿命预测、磨损动态过程监测和耐磨性设计相联系。
     随着摩擦学学科的发展,“计算摩擦学”正日益显示其强大的生命力。计算摩擦学就是将数值仿真技术应用到磨损研究中,以期预测零件的磨损寿命、指导摩擦副耐磨性优化设计。数值仿真是一种离散数学和计算机技术相结合的新技术,已广泛应用于工程领域并取得了优良的成果。
     本文就是通过对线接触零件摩擦副磨损数值仿真,考虑温度、压力等因素,建立磨损数值仿真模型,并将可靠性理论引入到数值仿真模型中,以期提供一种线接触零件磨损寿命预测、指导耐磨性优化设计方法。
     本文主要研究内容:
     (1)接触模型建立
     要建立磨损仿真的数学模型,首先要清楚赫兹接触区的压力分布规律,求解出赫兹接触区接触压力,为后续的仿真模型建立奠定基础。
     (2)材料磨损率的研究
     综合分析影响材料磨损的各种因素,选择具有适用范围广泛的实验方法,通过实验及实验数据处理、参数修正等方法,考虑压力、温度、润滑等因素影响获得线接触零件的材料磨损率通用公式。
     (3)线接触零件磨损仿真模型的建立
     基于数值仿真的基本思想,将连续的单个零件磨损过程离散化,在每一个离散单元中将动态过程准静态化,制定磨损数值仿真的算法方案,同时在磨损进程中,充分考虑磨损变位情况,作为下一步磨损计算的依据。
     (4)磨损寿命可靠性估算仿真算法建立
     对于磨损寿命预测迄今普遍仍采用固定值,这是不科学的。机械系统的抗磨损寿命具有显著的概率特征,考虑载荷、速度等参数以及磨损渐发性过程所具有的随机分布特性,应用蒙特卡洛法概率理论,建立磨损寿命可靠性估算算法,编制磨损概率寿命通用软件。
     (5)线接触典型零件仿真实例模型建立及仿真分析
     利用建立的磨损仿真通用模型,对凸轮机构系统、轴承机构系统和齿轮机构系统磨损数值仿真及可靠性寿命估算,为其进一步耐磨优化设计提供支持。
     本文得到国家自然基金项目《基于数值仿真的系统磨损概率寿命设计理论和方法研究》(项目编号:50375022)的资助。
Wear of mechanical parts has been one of the research focuses in the field of tribology. Smooth wear is the most common form of composite wear. Because this kind of wear has the feature of slow gradualness, the impact brought by the smooth wear to the properties of mechanical systems is often neglected as compared with unexpected wears. But it has great hazard.
     At present, domestic and foreign research on wear is mainly focused on experimental research. And it has got a lot of achievements. However, experimental research requires a lot of manpower, material and financial resources, and the conclusions obtained have strong application conditionalities. On the other hand, tribology researchers have been committed to apply the research achievements of tribology to engineering design. But the effect is not obvious, because the tribology theory has not achieved the being applied level in engineering design as classical mechanics theory. It is even very difficult for the classical wear theory to be directly connected with wear life prediction, wear dynamic process monitoring and abrasion resistance design in engineering projects as hoped.
     As the development of tribology,'computational tribology'has been showing its strong vitality increasingly. Computational tribology is to apply the numerical simulation technology to the study of wear, in order to predict the wear life of parts and direct the optimal design of abrasion resistance for friction pairs. Numerical simulation is a new technology combined with discrete mathematics and computer technology. It has been widely applied in engineering and achieved excellent results.
     In this paper the wear numerical simulation model will be established through making numerical simulatiing for the wear of friction pairs of line contact parts, taking factors such as temperature, pressure, etc. into consideration. Then by introducing the reliability theory into the numerical simulation model, a method will be provided in order to predict the wear life of line contact parts and direct the optimal design of abrasion resistance for friction pairs.
     The main research contens of this paper are:
     (1) The establishment of contact model
     In order to establish the mathematical model for wear simulation, the pressure distribution law of the Hertz contact area has to be known at first. Then the contact pressure of the Hertz contact area has to be solved in order to lay the foundation for the subsequent establishment of the simulation model.
     (2) Research on the material wear rate
     By analysing various factors affecting wear of materials comprehensively, and selectting experimental methods that have broad scope of applications, the general formula for the material wear rate of line contact parts will be obtained through experiments and methods such as experimental data processing, parameter correction, etc., taking consideration of the factors such as pressure, temperature, lubrication, etc.
     (3) The establishment of the simulation model for the wear of line contact parts
     Based on the basic idea of numerical simulation, the continuous wear process of a single part will be made discrete, and the dynamic process will be made quasi-static in each discrete element. Meanwhile, the wear displacement situation will be taken into full account in the wear process as the basis for the subsequent wear claculation.
     (4) The establishment of the simulation algorithm of the reliability estimation for the wear life
     So far, fixed values are still being generally used for the prediction of wear life. But it is not scientific. The wear life of mechanical systems has significant probability features. By using the probability theory of Monte-Carlo method, the algorithm of the reliability estimation of the wear life will be established and the general software for the wear probability life will be prepared, taking the parameters such as load, velocity, etc. and the random distribution features of the wear process of gradual onset into consideration.
     (5) The establishment of simulation models and the simulation analysis for typical line contact parts
     By using the established general wear simulation model, the wear numerical simulation and probability life estimation for the cam mechanism systems, bearing mechanism systems and gear mechanism systems will be established in order to support the further optimal design in abrasion resistance.
     This paper is supported by the project of National Natural Science Foundation of China—"Research of theory and methods for design of probability wear life of systems based on numerical simulation"(Project Number:50375022).
引文
[1]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990
    [2]王松年,苏诒福,江亲瑜.摩擦学原理与应用[M].北京:中国铁道出版社,1990
    [3]霍林J,上海交通大学摩擦学研究室译:摩擦学原理[M].北京:机械工业出版社,1979
    [4]克拉盖尔斯基著,汪一麟译.摩擦磨损计算原理[M].北京:机械工业出版社,1982
    [5]机械工程手册编写组.机械工程手册第22篇摩擦、磨损与润滑[M].北京:机械工业出版社,1978
    [6]Johnson K L,徐秉业,罗学富,等译.接触力学[M].北京:高等教育出版社,1992
    [7]高彩桥,刘家浚.材料的粘着磨损与疲劳磨损[M].北京:机械工业出版社,1989
    [8]克拉盖尔斯基.摩擦磨损与润滑手册(第二册)[M].余梦生,吴永伟,译.北京:机械工业出版社,1986
    [9]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆大学出版社,1991
    [10]格里布B.B..数值法解摩擦学技术问题[M].机械工业出版社,1989
    [11]费业泰.误差理论与数据处理[M].北京:机械工业出版社出版社,2000
    [12]方开泰,许建伦.统计分布[M].北京:科学出版社,1987
    [13]李良巧,顾唯明.机械可靠性设计与分析[M].国防工业出版社,1998
    [14]朱文予.机械可靠性设计[M].第二版,上海:上海交通大学出版社,1997
    [15]董玉革.机械模糊可靠性设计[M].北京:机械工业出版社,2000
    [16]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985
    [17]孙桓,陈作模.机械原理[M].北京:高等教育出版社,2004
    [18]陆煌,程林.传热原理与分析[M].北京:科学出版社,2000
    [19]Olofsson U, Andersson S, Bjorklund S. Simulation of mild wear in boundary lubricated spherical roller thrust bearings[J]. Wear,2000,241:180-185
    [20]Flodin A, Andersson S. Simulation of mild wear in spur gears[J]. Wear,1997,207(1-2):16-23
    [21]Flodin A, Andersson S. Simulation of wear in helical gears[J]. Wear,2000,241:123-128
    [22]Hugnell A B J, Bjorklund S, Andersson S. Simulation of mild wear in a cam-follower contact with follower rotation[J]. Wear,1996,199:202-210
    [23]Myshkin N K, Petrokovets M L, Chizhik S A. Simulation of real contact in tribology[J]. Ttribology International,1998,31:79-86
    [24]Zhang H Q, Sadeghipour K, Baran G. Numerical study of polymer surface wear caused by sliding contact[J]. Wear,1999,224:141-152
    [25]Mann D J, Hase W L. Computer simulation of sliding hydroxylated alumina surfaces[J]. Tribology Letters,2000, (7)L:153-159
    [26]Podra P, Andersson S. Finite element analysis of wear simulationof a conical spinning contact considering surface topography [J]. Wear,1999,224:13-21
    [27]Peterseim J, Elsing R, Deuerler F. Simulation of sliding wear of hard-phase-containing metallic compound materials [J]. etall(Germany),1998,52:643-651
    [28]Li D Y, Elalem K, Anderson M J, et al. A microscale dynamicalmodel for wear simulation[J]. Wear, 1999,225-229:380-386
    [29]Elalem K, Li D Y. Dynamical simulation of an abrasive wear process[J]. Journal of Computer-Aided Materials Design(Netherlands),1999,6:185-193
    [30]Franklin F J, Wdiyarta I, Kapoor A. Computer simulation of wear and rolling contact fatigue[J]. Wear,2001,250-251:49-955
    [31]Flasker J, Fajdiga G, Glodez S, et al. Numerical simulation of surface pitting due to contact loading[J]. International Journal of Fatigue(UK),2001,23(7):599-605
    [32]O'Neil D A, Wayne S F. Numerical simulation of fracture in coated brittle materials subjected to tribo-contact[J]. J Eng Mater Technol(Trans ASME),1994,116(4);471-478
    [33]Gu X J, Huang Y Y. The modeling and simulation of a rough surface[J]. Wear,1990,137(2):275-285
    [34]Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear,1990, 136(2):313-327
    [35]Lundvall O, Klarbring A. Simulation of wear by use of a non-smooth Nuwronian method-a spur gear application[J]. Mechanics of Structures and Machines,2001,29(2):223-238
    [36]Olofsson U, Andersson, Bjorklund S. Simulation of mild wear in boundary lubricated spherical roller thrust bearings[J]. Wear,2000,241(2):180-185
    [37]Ren Z, Glodez S, Flasker J. Simulation of surface pitting due'to contact loading[J]. International Journal for Numerical Methods in Engineering(U K),1998,43(1):33-50
    [38]Jacoson S, Wallen P, Hogmark S. Fundamental aspects of abrasive wear studied by a new numerical simulation model[J]. Wear,1988,123:207-223
    [39]Priit Podra, Soren Andersson. Simulating sliding wear with finite element method[J]. Ttribology International,1999,32:71-81
    [40]Q Chen, LiDY. Computer simulation of particle erosion[J]. Wear,2003,254:203-210
    [41]Chen Q, Li D Y. Computer simulation of solid-particle erosion of composite materials[J]. Wear,2003, 255:78-84
    [42]Fang L, Xing J, Liu W, et al. Computer simulation of two-body abrasive processe[J]. Wear,2001, 250-251:1356-1360
    [43]Jiun-Jong Wu. Simulation of rough surface with FFT[J]. Tribology international,2000,33:47-58
    [44]Yong Ao Q, Jane Wang, Penag Chen. Simulating the worn surface in a wear process[J]. Wear,2002, 252:37-47
    [45]汪选国,严新平等.磨损数值仿真技术的研究进展[J].摩擦学学报,2004,24(2):88-192
    [46]潘尔顺,王殊轶等.渐开线圆柱齿轮啮合过程中磨损的计算机仿真[J].上海交通大学学报.2000,34(3):415-418
    [47]王淑仁,丁津原.用于磨损仿真的空间啮合曲面离散化方法[J].东北大学学报,2002,23(3):277-280
    [[48]阎树田,胡赤兵等.齿轮齿廓滑动磨损的数值计算方法[J].设计与研究,2001,30(4):9-10
    [49]贲霖,徐辅仁.直齿渐开线齿轮齿面磨损模拟计算[J].航空精密制造技术,2003,39(5):29-32
    [50]刘峰壁.直齿圆柱齿轮磨损过程模拟[J].机械科学与技术,2004,23(1):55-56
    [51]王淑仁,阎玉涛,丁津原.渐开线直齿圆柱齿轮啮合磨损试验研究[J].东北大学学报,2004,25(2):146-149
    [52]左玉梅,马力等.内燃机凸轮挺柱磨损数值计算方法的研究[J].武汉理工大学学报(信息与管理工程版),2001,23(3):40-43
    [53]刘彦奎,关天民,魏延刚.预负荷空心圆柱滚子轴承刚度分析[J].制造技术与机床,2010,(2):46-48
    [54]薛峥,汪久根,Rymuza Z等.圆柱滚子轴承的动力学分析[J].轴承,2009,(7):1-6
    [55]郑学普,杜辉.弹流润滑中圆柱滚子轴承接触体内应力分析[J].机械设计与研究,2009,25(3):56-59
    [56]张风琴,杜辉,邓四二.基于ADAMS的圆柱滚子轴承仿真分析[J].河南科技大学学报,2009,30(2):15-18
    [57]杨德绪.线接触最小油膜厚度计算公式的简化及应用[J].哈尔滨轴承,2009,30(1):4-10
    [58]吴昊,王建文,安琦.圆柱滚子轴承阻尼的计算方法[J].轴承,2008, (9):1-5
    [59]田毅,张欣.预载荷空心圆柱滚子轴承的动态刚度分析[J].轴承,2008, (5):27-30
    [60]陈於学,王冠兵,杨曙年.弹性体线接触副的非线性振动研究[J].轴承,2007, (11):8-11
    [61]洪杰,苗学问,王大伟.航空发动机滚子轴承载荷分布分析及寿命计算[J].轴承,2008,(4):1-4
    [62]刘宁,张钢,高刚等.基于ANSYS的圆柱滚子轴承有限元应力分析[J].轴承,2006,(12):8-10
    [63]田爱琴.预负荷空心圆柱滚子轴承承载性能的有限元分析[J].内燃机与动力装置,2006,(3):7-11
    [64]张慧,邓四二,马小梅等.基于Pro/E的圆柱滚子轴承参数化结构设计[J].轴承,2006,(5):35-38
    [65]Ghorbanpoor A L, Ziiang J. Crack behavior for sliding contact problems[J]. Eng Fract Mech,1992, 41(1):41-48
    [66]Glodez S, Winter H, Stuwe H P. A fracture mechanics model for the wear of gear flanks by pitting[J]. Wear,1997,208:177-183
    [67]Komvopoulos K, Cho S S. Finite element analysis of subsurface crack propagation in a halfspace due to a moving asperity contact[J]. Wear,1997,209:57-68
    [68]Olofsson U, Dizdar S. Surface analysis of boundary lubricated spherical roller thrust bearings[J]. Wear 1998,215:485-493
    [69]Zum Gahr KH. Modelling of two-body abrasive wear [J]. Wear,1988,124:87-103
    [70]Sundaraan G. A new model for two-body abrasive wear based on the localization of plastic deformation [J]. Wear,1987,117:1-35
    [71]hokkirigawa K, Kato K. Theoretical estimation of abrasive wear resistance based on microscopic wear mechanism [M]. Wear of Materials,1989
    [72]Kitsunai H,Kato K, Hokkirigawa K, et al. The transition of microscopic wear modes during repeated sliding friction observed by SEM-tribo system[M]. Wear of Materials,1989
    [73]Kato K. Micro-mechanisms of wear-wear modes[J]. Wear,1992,153:277-295
    [74]Torrance A A, Buckley T R. A slip-line field model of abrasive wear[J]. Wear,1996,196:35-45
    [75]Brown G J. Erosion prediction in slurry pipeline tee-junctions[J]. Applied mathematical modeling, 2002,26:155-170
    [76]Cuastavsson M. Fluid dynamic mechanism of particle flow causing ductile and brittle erosion[J]. Wear,2002,252:845-858
    [77]Ingrid Serre, Marc, Bonnet. Modeling an abrasive wear experiment by the boundary element method[J]. C.R.Acad.Sci.Paris.t.b,2001,329, serie 11:803-808
    [78]Kapoor, Johoson K L. A model for the mild racheting wear of metals[J]. Wear,1996,200:38-44
    [79]Kapoor, Williams J A. Shakedown limits in sliding contacts on a surface hardened half-space[J]. Wear,1994,172:196-206
    [80]Kapoor, Williams J A., Johoson K. L.. The steady state sliding of rough surface[J]. Wear,1995, 175:81-92
    [81]Kapoor. Wear by plastic ratcheting[J]. Wear,1997,212:119-130
    [82]Molinari J F, Ortiz M, Radovitzky R, et al. Finite-element modeling of dry sliding wear in metals[J]. Engineering Computation,2001,18:592-609
    [83]Ringsberg J W, Loo-Morrey M. Prediction of fatigue cract initiation for rolling contact fatigue[J]. International Journal of Fatigue,2000,22:205-215
    [84]Rosenfiled A R. Fracture brittle materials under a simulated wear stress system[J]. J.Am. Ceram. Soc., 1989,72:2117-2120
    [85]Montmitonneet P, Edlinger M L, Felder E. Finite element analysis of elastic plastic indentation:Part 11. Application to hard coatings[J]. Tans ASMEJ Tribo,1993,115(1):15-19
    [86]Care G, Fischer Cripps A C. Elastic plastic indentation stress filed using the finite element method [J]. J.Mater.Sci.,1997,32(21):5653-5659
    [87]Sadeghipour K, Baran G, Fu Z, Jayaraman S. Finite element modeling of frack propagation inelastic plastic media. PartⅠ Vertical surface breaking cracks[J]. J.Mater.Sci., 1996,31(12):3167-3172
    [88]Ding Y, Jongs R, Kuhnell B T. Elastic plastic finite element anaysis of pall formation in gears[J]. Wear,1996,197(1-2):197-205
    [89]Alfredsson B, Olsson M. Initiation and growth of standing contact facture cracks[J]. Eng.Fract.Mech., 2000,65:89-106
    [90]Hsu S M, Shen M C, Ruff A W. Wear prediction for metals[J]. Ttribology International,1997, 30:377-383
    [91]Meng H C, Ludema K C. Wear models and predictive equations:their form and content[J]. Wear, 1995,181-183:443-457
    [92]Adachi K, Hutchings I M. Wear-mode mapping for the micro-scale abrasion test[J]. Wear,2003, 255:23-29
    [93]温诗铸.润滑理论研究的进展与思考[J].摩擦学学报,2007,27(6):497-503
    [94]刘伟,刘小君,王伟等.考虑颗粒分布影响的液-固二相流体润滑研究[J].中国机械工程,2007,18(24):2993-2997
    [95]刘红彬,孟永刚.基于区域分解法的纹理表面流体润滑分析-纹理分布模式的影响[J].摩擦学学报,2007,27(6):555-561
    [96]章易程,田红旗,唐进元等.基于摩擦功原理的高副滑动磨损的研究[J].中国机械工程,2010,21(3):344-347
    [97]Zhang B, Xie Y B. Two body mocro-cutting wear model, Part I:Two-dimesional roughness model[J]. Wear,1989,129:37-48
    [98]Zhang B, Xie Y B. Two body mocro-cutting wear model, Part II:Three-diemnsiona roughness model[J]. Wear,1989,129:49-58
    [99]Zhang B, Xie Y B. Two body mocro-cutting wear model, Part III:Stable profile height distribution of a worn surface[J]. Wear,1989,129:59-66
    [100]刘峰壁,李续峨,谢友柏.粗糙表面三体接触理论研究[J].机械工程学报,1997,33(3):27-31
    [101]刘峰壁,李续峨,谢友柏.三体磨损过程理论研究[J].机械工程学报,2000,19(1):9-12
    [102]顾新建,黄逸云.随机粗糙表面的幅值分布函数及其模拟方法的探讨[J].机械科学与技术,1991,38(2):78-82
    [103]张波.磨损动态过程理论及其在磨削加工中应用的研究[D].西安:西安交通大学,1988
    [104]张波,谢友柏.两体微切割磨削理论(Ⅰ)[C].成都:第四届全国摩擦学学术会议论文集,1987
    [105]张波,谢友柏.两体微切割磨削理论(Ⅱ)[C].成都:第四届全国摩擦学学术会议论文集,1987
    [106]张波,谢友柏.两体微切割磨削理论(Ⅲ)[C].成都:第四届全国摩擦学学术会议论文集,1987
    [107]贾群义.滚动轴承设计原理与应用技术[M].西安:西北工业大学出版社,1991,168-177.
    [108]贾志博,邱明.高速轻载圆柱滚子轴承打滑率的计算[J].轴承,1999,(4):4-6.
    [109]张成铁,李建华,陈国定.航空告诉滚动轴承的摩擦学效应分析[J].机械研究与应用,1998,(1):13-15.
    [110]赵渊,陈国定.高速滚动轴承运动特性的表面粗糙效应[J].西北大学学报(自然科学版),1997,27(6):505-508.
    [111]吴国清,张晓峰等.两体磨料磨损的三维动态模拟[J].摩擦学学报,2000,20(5):360-364
    [112]吴国清,方亮等.磨料尺寸对磨料磨损过程影响的随机模拟[J].西安交通大学学报,2001,35(5):527-531
    [113]林刚,谢敬佩,杨茹萍.疲劳磨损和压碎磨损的应力计算[J].洛阳工学院学报,1994,15(3):13-18
    [114]孔凌嘉.内燃机缸套-活塞环摩擦学系统研究[D].西安:西安交通大学,1991
    [115]孔凌嘉,谢友柏.缸套-活塞环摩擦学系统漏气与润滑和磨损的计算[J].内燃机学报,1992,10(3):267-264
    [116]严志军,陈东.铜针尖嵌入晶体过程的分子动力学模拟[J].摩擦学学报,2002,22(增刊):317-320
    [117]于敏,腾云.正十六烷LB膜承载过程的分子动力学模拟[J].摩擦学学报,2002,22(增刊):325-329
    [118]邹鲤,胡元中,温诗铸.薄膜流变与微观结构关系的分子动力学模拟[J].摩擦学进展,1998,3(2):27-32
    [119]王慧,胡元中,邹鳗.纳米摩擦学的分子动力学模拟研究[J].中国科学A,2001,31(3):261-266
    [120]胡元中,王慧,郭炎.纳米液体润滑膜分子动力学模拟:球形分子的模拟结果[J].材料研究学报,1994,11(2):131-136
    [121]张涛,王慧,胡元中.自组装膜原子尺度摩擦的分子动力学模拟[J].摩擦学学报,2002,22(增刊):387-390
    [122]董光能,陈志澜,谢友柏等.PEEK塑料摩擦销的温度场理论计算[J].摩擦学学报,2000,20(1):34-37
    [123]朱爱强,刘佐民.材料匹配性对盘式制动器摩擦温度场的影响[J].润滑与密封,2008,33(3):62-65
    [124]徐晓科,莫易敏,汤春球等.微型汽车离合器摩擦副温度场研究闭[J].现代制造工程,2009,(1):74-76
    [125]Ludema KC. Mechanism-based modeling of friction and wear[J]. Wear,1996, (200):1-7
    [126]孙志礼,陈良玉,张钰等.机械传动系统可靠性设计模型(Ⅰ)—考虑应力相关性的设计[J].东北大学学报(自然科学版),2003,24(6):548-551
    [127]郝静如,米洁,姚文席等.大型振动机械的可靠性研究[J].机械科学与技术,2003,22(1):18-20
    [128]冯刚,孙立德,黄洪钟等.疲劳寿命的模糊可靠度计算方法[J].中国机械工程,2003,14(19):1699-1702
    [129]喻天翔,张祖明.印刷机滚筒的耐腐蚀可靠性设计[J].北京印刷学院学报,2002,10(4):12-14
    [130]许中明,黄平.摩擦磨损的接触界面势垒理论研究[J].摩擦学学报,2007,27(1):54-59
    [131]王淑仁,闫玉涛,殷伟俐等.齿轮啮合摩擦疲劳磨损的计算模型[J].东北大学学报,2008,28(8):1164-1167
    [132]黄伟九,侯滨,庞佑霞等.两种压铸镁合金的微动磨损行为研究[J].摩擦学学报,2005,25(3):225-229
    [133]王思明,史小辉,许明恒.风力发电机变浆轴承微动磨损与防护[J].润滑与密封,2009,34(12):110-117
    [134]王李波,冯大鹏,刘维民.几种纳米微粒作为锂基脂添加剂对钢—钢摩擦副摩擦磨损性能的影响研究[J].摩擦学学报,2005,25(2):107-111
    [135]董凌,陈国需,等.SiO2/SnO2复合纳米添加剂的摩擦学性能及其对磨损表面的修复作用研究[J].摩擦学学报,2004,24(6):517-521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700