仿壁虎脚掌粘附材料及驱动材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中壁虎能在光滑的墙壁上行走自如,甚至能贴在天花板上快速爬行。壁虎单腿上有3条神经控制脚趾的外翻、内收和脚掌的扭转三种运动模式,从而进行简单、有效和精巧的运动控制。同时显微镜下可以看到壁虎脚掌上有近50万根直径为几十到几百纳米的刚毛。壁虎脚底微纳米刚毛所产生的尺寸效应与壁虎脚趾外翻内收的精巧运动控制的结合,最终成就了壁虎“飞檐走壁”的绝活。因此,模仿壁虎脚趾的运动对仿壁虎脚掌实现简单有效的驱动,研制具有尺寸效应的仿生微纳刚毛阵列,进而获得一种对各种环境和各种表面具有良好适应性的可控的粘附机构十分必要。
     本课题以壁虎科的大壁虎为仿生对象,从结构-驱动一体化角度入手,研制爬壁机器人实现三维空间运动的关键部件-脚掌的粘附结构和智能驱动材料(IPMC人工肌肉材料)。同时,在理解壁虎具有非凡的全空间运动能力的内在本质上,认识软材料与粗糙表面间的接触力学规律,为仿壁虎爬壁机器人研制中的关键技术提供支持。本文主要研究内容如下:
     1.针对仿壁虎机器人脚掌粘附性能的需求,设计了性能改良的聚氨酯/硅橡胶聚合体材料的配方。比照壁虎空间运动受力关系,对所制备的聚氨酯等试样进行粘着力和切向力相互关系的分析。以JKR接触理论和GW模型为基础,进行建模分析,得出在粘着弹性接触下接触点数对聚氨酯材料粘着力的影响关系。为仿壁虎机器人脚掌材料弹性模量等指标的选择、刚毛阵列几何尺寸的设计提供依据。
     2.对仿壁虎脚掌刚毛阵列的研制进行了丝材植毛法、激光刻蚀法、激光模型浇铸法、光刻模型浇铸法等多种方法的探索。并针对制备实验,建立刚毛缠结的力学模型,从能量角度分析刚毛阵列克服缠结必须满足的几何条件。首次提出PET“海岛”结构端部接枝聚氨酯及消融方法,有望获得二级结构的微纳米级的仿生刚毛。这种微纳复杂结构的制备是目前国际上该领域的最前沿的还未突破的难点技术。PET“海岛”结构端部接枝聚氨酯及消融方法为制备仿壁虎刚毛二级阵列结构提供了一个很好的设计思路。
     3.IPMC人工肌肉材料的制备和应用研究目前是国际上智能材料研究的热点之一。通过对IPMC的前期研究,发现IPMC材料在几伏电压驱动下的软性可控往复摆动恰好可实现类似壁虎脚趾外翻和内收的运动。论文首次提出了用IPMC材料驱动仿生壁虎脚掌的思路,进行了IPMC材料的制备研究,实验摸索总结了从Nafion基体的厚膜浇铸工艺到IPMC表面电极化学镀的一套IPMC制备完整工艺。并测试研究了不同波形、电压、频率激励信号对IPMC试样位移、力和电流输出的影响。从而为解决爬壁机器人用仿壁虎脚掌主动控制的关键技术提供支持。
     4.IPMC在低电压驱动下能产生大的位移,但其输出力却相对较小。如何提高输出力就成为IPMC驱动器应用的一个关键和难点。为增加IPMC力输出,从Nafion厚膜浇铸、电极制备工艺及多片叠加工艺三个方面进行探索实验,进一步提高了IPMC的力输出能力。
Gecko can climb freely on the smooth wall, and it even can move quickly on the ceiling. Gecko’s single foot has three nerves which can control the pad’s abduction、adduction and rotation respectively, so it can perform simple, effective and precise control. In the mean time, under microscope, it can be clearly observed that there are about 500 thousand setae whose diameter is from scores to hundreds nanometer padded in the gecko’s toes. The combination of size effect from gecko’s pad micro-nano scale setae and precise control from gecko’s pad movement can contribute to gecko’s leap onto roofs and over walls. So, to achieve the bio-mimic gecko pad’s effective movement and control, it is necessary to fabricate the size effect biomimetic micro/nano-meter seta array and then develop a kind of controllable adhesive mechanism adapting to all circumstance and surface.
     In this subject, Gecko.gecko (gekkonidae) is regarded as the bio-mimic object, from the view of structure-actuating integration, the pad adhesive mechanism and smart actuating materials which are the crucial parts for 3DOF wall-climbing robot have been deeply studied. In the mean time, based on the internal principle understanding of gecko’s extraordinary all round space physical ability, contact mechanics between soft material and rough surface has been researched in detail, which can provide theoretical support for the key technique in bio-mimic gecko robot development. The main research content is summarized as follows:
     1. To meet the adhesive property demand of bio-mimic gecko robot pad, performance improved Polyurethane/Silicone rubber polymer material has been successfully fabricated. According to gecko’s space movement mechanical relation, the mutual relation between adhesive and tangential forces tested from fabricated Polyurethane samples has been fully analyzed, modeling and analysis were also achieved based on the JKR theory and GW model, from this ,the impact of contact points on the Polyurethane material under adhesive elastic contact condition has been concluded, which can provide theoretical fundamental for the parameter selection of bio-mimic gecko robot pad material and the geometric size designation for artificial seta array.
     2. Wire material seta-planting, laser etching, laser model casting and lithography model casting technology have been experimentally explored respectively to develop bio-mimic gecko pad seta array material. Seta entangling model has been established according to the fabrication experiment. Geometric condition which must be satisfied to avoid seta entangling was analyzed from the view of energy. The PET“island”structure ending grafting Polyurethane and ablation method were first proposed in the world in this dissertation, so it can hopefully obtain the secondary structure micro-nano scale bio-mimic seta. This fabrication of micro-nano scale complicated structure is currently the international frontier and the technique difficulty in this filed, and it can take a great effect in fabricating bio-mimic gecko secondary structure micro-nano scale seta.
     3. According to the previous IPMC (Ionic Polymer Metal composite) research, it has been found that IPMC artificial muscle’s controllable flexible swing under several voltages can realize gecko’s pad abduction and adduction movement effectively. The concept of using IPMC material as bio-mimic gecko pad was first proposed internationally in this dissertation, and IPMC artificial muscle fabricating research has been experimentally carried out in the subject, at the same time, fabricated IPMC samples generated force, displacement and current were tested and analyzed with different actuating signal wave, voltage and frequency, which can provide support for the key technique of active control in developing wall-climbing robot using bio-mimic gecko pad.
     4. IPMC artificial muscle can generate large displacement at a low voltage, but the generated fore is relatively small. How to improve IPMC output force has become a key and tough point in IPMC application. To improve IPMC output force, Nafion thick film casting technique, electrode manufacturing process and muti-layer process have been experimentally studied in the subject, and the results show these methods can improve IPMC output force effectively.
引文
[1]机器人技术软科学研究组.我国机器人技术需求分析与研究重点探索.机器人技术与应用, 2001, 2: 1-5.
    [2] Ryu SW, Park JJ, Ryew SM, et al. Self-contained wall-climbing robot with closed link mechanism. Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems, USA, 2001, 2: 839-844.
    [3] Nishi A. Development of wall-climbing robots. Journal of Computers and Electrical Engineering, 1996, 22 (2): 123-149.
    [4] Bahr B, Li Y, Najafi M. Design and suction cup analysis of a climbing robot. Journal of Computers and Electrical Engineering, 1996, 22 (3): 193-209.
    [5] Zhang Y, Nishi A. Low-pressure air motor for wall-climbing robot actuation. Mechatronics, 2003, 13 (4): 377-392.
    [6]郑元芳.世界机器人发展现状和我国战略规划探讨.服务机器人发展战略研讨会,北京, 2005, 1-7.
    [7]李鲁虹.英国特种机器人的应用研究情况.机器人情报, 1992, 5: 3-6.
    [8]谈士力,万德钧,龚振邦.真空气吸附壁面行走机器人动态路径规划.东南大学学报, 26 (5): 89-94.
    [9]钱晋武,龚振邦,张启先.六足爬壁机器人过渡行走运动规划.上海大学学报(自然科学版), 1996, 2 (3): 328-334.
    [10]黄维纲,王显正.两足步行爬壁机器人控制系统的研究.传动技术, 1998, 12 (1): 11-15.
    [11]邵浩,赵言正,王炎,等.用于玻璃幕墙清洗作业的爬壁机器人系统.制造业自动化, 2000, 22 (2): 6-9.
    [12]刘呈则,朱新坚,等.自导向磁吸附爬壁机器人控制系统的实现.测控技术, 2004, 23 (12): 43-45.
    [13] Autumn K, Liang Y, Hsieh T, et al. Adhesive force of a single gecko foot hair. Nature, 2000, (405): 681-685.
    [14]许冯平,邓宗权.管道机器人在弯道处通过性的研究.机器人, 2004, 26 (2), 155-160.
    [15] Choi H R, Ryew S M. Robotic system with active steering capability for internal inspection of urban gas pipeline. Mechatronics, 2002, 12 (5): 713-736.
    [16]周本濂.复合材料的仿生研究.物理, 1995, 24: 577-582.
    [17]任露泉,佟金.生物脱附与机械仿生-多学科交叉新技术领域.中国机械工程, 1999, 10(9): 984-986.
    [18] Barthlott W, Neinhuis C. Purity of the sacred lotus or escape from contamination in biological surfaces. Planta, 1997, 202 (1): 1-8.
    [19] Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. PNAS, 2005, 102 (45): 16293-16296.
    [20] Alibardi L. Ultrastructural autoradiographic and immunocytochemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus (Gekkonidae, Reptilia). Tissue & Cell, 2003, 35: 288-296.
    [21]孙久荣,郭策,程红,等.蜣螂与壁虎刚毛的比较及改形对其功能的影响.动物学报, 2005, 51 (4): 761-767.
    [22]戴振东,孙久荣.壁虎的运动及仿生研究进展.自然科学进展. 2006,16(5): 519-523.
    [23]戴振东,于敏,吉爱红,等.动物驱动足摩擦学特性研究及仿生设计.中国机械工程, 2005, 16 (16): 1454-1457.
    [24]郭策,王文波,于敏,等.大壁虎与无蹼壁虎脚底刚毛结构与其黏附性能的比较研究.中国科学, 2007, 37 (5): 568-574.
    [25] Liang Y, Autumn K, Hsieh S, et al. Adhesion force measurements on single gecko setae. Solid-State Sensor and Actuator Workshop. South Carolina, USA. 2000: 33-38.
    [26]谢文心,郭李有,蒋云峰.高分子物理.北京:国防工业出版社, 1989.
    [27] Autumn K, Peattie A. Mechanisms of Adhesion in Geckos. Integrative and Comparative Biology. 2002, 42: 1081-1090.
    [28] Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. PNAS, 2005, 102 (45): 16293-16296.
    [29] Gao H, Yao H. Shape insensitive optimal adhesion of nanoscale fibrillar structures. PANS, 2004,101(21): 7851-7856.
    [30] Gao H, Wang X, Yao H, et al. Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 2005, 37(22): 275-285.
    [31] Gao H, Ji B, Markus J, et al. Flaw tolerant bulk and surface nanostructures of biological systems. Mechanics and Chemistry of Biosystems. 2004, 1(1): 37-52.
    [32] Gaurav Shah, Metin Sitti. Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs. Proceedings of the IEEE conference on robotics and biomimetics, Shenyang, China, 2004: 1-6.
    [33] Persson BN. On the mechanism of adhesion in biological systems. American institute of Physics, 2003,118(16): 7614-7621.
    [34]王辉静,梅涛.仿壁虎粘附阵列与粗糙表面间粘附仿真分析.中国科学技术大学学报, 2006, 36 (8): 845-850.
    [35] Gorb SN and Scherge M. Frictional forces of orthopteran attachment pads measured by a novel microfriction tester. In: Technische Biologie und Bionik. III. Biomechanic Workshop of the Studygroup Morphology (DZG). Mainz.1999:28-30.
    [36]吉爱红.动物运动接触反力测试系统、实验与分析.南京航空航天大学博士学位论文. 2007.
    [37]朱平平,杨海洋,何平笙.微制造技术与仿生壁虎腿.化学通报, 2004, 7: 506-510.
    [38] Sitti M, Fearing RS. Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs. Proceedings of the IEEE conference on Nanotechnology, Piscataway, USA, 2002: 137-140.
    [39] Sitti M. High Aspect Ratio Polymer Micro/ Nano-Structure Manufacturing using Nanoembossing, Nanomolding and Directed Self-Assembly. Proceedings of the IEEE/ASME International Conference on Advanced Mechatronics Conference, Kobe, Japan, 2003: 886-890.
    [40] Geim AK, Dubonos SV. Microfabricated adhesive mimicking gecko foot-fair. Nature Materials, 2003, 2: 461-463.
    [41] Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. IEEE international conference on robotics and biomimetics, Shenyang, China, 2004: 431- 436
    [42] Jin M, Feng X, Feng L, et al. Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Advanced Materials, 2005, 17(1616): 1977-1981.
    [43]单建华.仿壁虎微米粘附阵列制备及柔性触觉关键技术研究.中国科学技术大学博士学位论文.2006.
    [44]戴振东,惠春, Stanislav Gorb.表面粗糙度对4种聚氨酯弹性体粘着性能的影响.摩擦学学报, 2003, 23 (3): 245-249.
    [45]李明孜,戴振东,张杰.聚氨酯材料在负法向力下的摩擦性能研究.聚氨酯工业, 2003, 18 (2): 21-24.
    [46] Bar-cohen Y, Leary S, Yavrouian A, et al. Challenges to the Transition of IPMC ArtificialMuscle Actuators to Practical Application. MRS Symposium on Electroactive Polymers, Boston, 1999: 13-20.
    [47] WorldWide Electroactive Polymers (EAP) Newsletter, 1999, 1 (1): 1-12.
    [48] WorldWide Electroactive Polymers (EAP) Newsletter, 2005, 7 (1): 1-26.
    [49] WorldWide Electroactive Polymers (EAP) Newsletter, 2006, 8 (1): 1-26.
    [50] Shahinpoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. International Journal of Smart Materials and Structures, 1992, 1: 91-94.
    [51] Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper. Smart Materials and Structures, 1992, 1(2): 172-179.
    [52] Oguru K, Kawami Y, Takenaka H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. Journal of Micromachine Society, 1992, 5: 27-30.
    [53] Bao X, Bar-Cohen Y, Lih SS. Measurements and Macro Models Models of Ionomeric Polymer–metal Composites (IPMCs). Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, San Diego, 2002,: 220-227.
    [54] Bonomo C, Fortuna L, Graziani S. A Circuit to Model an Ionic Polymer-Metal Composite as Actuator. Proceedings of the 2004 International Symposium on Circuits and Systems, 2004, 4: 864-867.
    [55] Paquette JW, Kim KJ, Nam JD. An Equivalent Circuit Model for Ionic Polymer-Metal Composites and their Performance Improvement by a Clay-Based Polymer Nano-Composite Technique. Journal of Intelligent Material Systems and Structures, 2003, 14 (10): 633-642.
    [56] Sia Nemat-Nasser. Micromechanics of Actuation of Ionic Polymer–metal Composites. Journal of Applied Physics, 2002, 92 (5): 2899-2915.
    [57] Zhang L, Yang Y. Modeling of ionic polymer-metal composite beam on human tissues. Smart Structures and Materials. 2007, 16(2): 197-206.
    [58] Chung CK, Fung PK, Hong YZ, et al. A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sensors and Actuators, 2006, 117(2): 367-375.
    [59] Nemat-Nasser S, Zamani S. Modeling of electrochemomechanical response of ionicpolymer-metal composites with various solvents. Journal of applied physics, 2006, 100 (6): 1-18.
    [60] Tadokoro S, Yamagami S, Takamori T, et al. An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. IEEE International Conference on Robotics and Automation, Symposia Proceedings, 2000, 2 (2): 1340-1346.
    [61] Gennes PG, Okumura K, Shahinpoor M, et al. Machanoelectric Effects in Ionic Gels. Europhysics Lettters, 2000, 50 (4): 513-518.
    [62] Shahinpoor M, Kim KJ. Ionic polymer-metal composites: I. fundamentals. Smart Materials and Structures, 2001, 10 (4): 819-833.
    [63] Bar-Cohen Y, Leary S, Yavrouian A, et al. Challenges to the application of IPMC as actuators of planetary mechanisms. Proceeding of SPIE Annual International Symposium on Smart structures and Materials, Newport, 2000:3987-4021.
    [64] Bar-Cohen Y, Sherrit S, Lih SS. Characterization of the Electromechanical Properties of EAP materials. Proceedings of SPIE Annual International Symposium on Smart Structures and Materials, Newport, 2001, 4329-4343.
    [65] Bar-cohen Y, Bao X. Characterization of the Electromechanical Properties of Ionomeric Polymer-Metal Composite(IPMC). Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, SanDiego, 2002, 4965-5033.
    [66] Nasser SN, Wu Y. Comparative experimental study of ionic polymer metal composites with different backbone ionomers and in various cation forms. Journal of Applied Physics, 2003, 93 (9): 5255-5267.
    [67] Lee S, Park H, Pandita SD, et al. Performance Improvement of IPMC (Ionic Polymer Metal Composites) for a Flapping Actuator. International Journal of Control Automation and Systems, 2006, 4 (6): 748-755.
    [68] Bar-Cohen Y. Electroactive Polymers as Artificial Muscles-Capabilities, Potentials and Challenges. Robotics 2000; Proceedings of the 4th International Conference and Exposition/Demonstration on Robotics for Challenging Situations and Environments. Albuquerque, NM, USA. 2000:188-196.
    [69] Bar-Cohen Y, Leary S, Shahinpoor M, et al. Flexible low-mass device and mechanisms actuated by electroactive polymers. Proceeding of SPIE Conference Electroactive Polymer Actuators and Devices. Newport Beach, 1999: 51-56.
    [70] Shahinpoor M, Kim KJ. Ionic polymer-metal composites: IV. Industrial and medicalapplications, Smart Materials and Structures, 2005 (14): 197-214.
    [71] WorldWide Electroactive Polymers (EAP) Newsletter, 2004, 6 (1): 1-20.
    [72] Byungkyu Kima, Jaewook Ryua,Younkoo Jeonga, et al. A Ciliary Based 8-Legged Walking Micro Robot Using Cast IPMC Actuators. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, 2003, 2940-2945.
    [73] WorldWide Electroactive Polymers (EAP) Newsletter, 2003, 5 (1): 1-15.
    [74]边历峰,焦正,刘锦淮.离子聚合物人工肌肉材料应用研究进展.传感器世界, 2001, 7 (11): 1-10.
    [75]谭湘强,钟映春,杨宜民. IPM人工肌肉的特性及其应用.高技术通讯, 2002, 12 (1): 50-52.
    [76]樊建平,龚亚琦,邓泽贤.离子交换膜金属复合材料的特性及应用.材料导报, 2007, 21 (5): 73-75.
    [77]罗玉元,李朝东,张国贤.基于离子聚合物金属复合结构(IPMC)的柔性致动器研究.中国机械工程, 4 (17): 410-413.
    [78]王海霞,余海湖,李小甫,等. Pt-Ni/Nafion膜电致动材料的制备及性能研究.武汉理工大学学报, 2004, 26 (12): 5-8.
    [79]唐运军,唐华平,殷陈锋.一种离子交换树脂金属复合材料( IPMC)的力学参数测定.高技术通讯, 2007, 17 (5): 508-511.
    [80]代丽君.化学还原工艺制备离子聚合物金属复合材料的研究.化学与黏合, 2007, 29 (4): 238-240.
    [81] Sitti M, Fearing RS. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology. 2003,17(8):1055-1073.
    [82]郭锺福,郭玉瑛.合成材料手册.上海:上海科学技术出版社, 1986.
    [83]李绍雄,朱吕民.聚氨酯树脂.南京:江苏科学技术出版社, 1992.
    [84]周珊珊,李长胜.高分子材料.北京:化学工业出版社, 1993.
    [85]张殿荣,马占兴.现代橡胶配方设计, 1994.
    [86]范炯,戴振东,姜澄宇.多功能摩擦试验机的研制与应用.南京航空航天大学学报, 2000,32(4):405-409.
    [87]高家武.高分子材料近代测试技术.北京:北京航空航天大学出版社,1994.
    [88]许凤和.高分子材料力学试验.北京:科学出版社,1988.
    [89]贾有权.材料力学实验.北京:高等教育出版社,1984.
    [90]张洁,朱永,陈伟民,黄尚廉.柔性固体燃料弹性模量测试的实验研究.光子学报,2005,34(10):1494-1496.
    [91]邓勃.分析测试数据的统计处理方法.北京:清华大学出版社. 1994.
    [92]数学手册编写组.数学手册.北京:人民教育出版社.1979.
    [93] Min Yu, Aihong Ji, Zhendong Dai. Effect of Microscale Contact State of Polyurethane Surface on Adhesion and Friction. Journal of Intelligent Material Systems and Structures. 2006,17(8/9): 819 - 822.
    [94] Johnson KL, Kendall K, Roberts AD. Surface energy and contact of elastic solids. Proc.R.Soc.Lond. 1971,A324:301-313.
    [95]赵亚溥,王立森,孙克豪. Tabor数、粘着数与微尺度粘着弹性接触理论.力学进展, 2000, 30(4):529-537.
    [96]戴振东,张昊,张明,等.非连续约束变结构机器人运动机构的仿生:概念及模型.科学通报, 2007,52(2):236-239.
    [97]王双睿,张博.影响海岛法纺PET超细纤维剥离性的因素.聚酯工业, 2003, 16(3):29-31.
    [98] Landman U. Atomistic mechanisms and dynamics of adhesions,nanoindentation and fracture. Science. 1990,248:454-461.
    [99] Derjaguin BV, Muller VM, Toprov YP. Effect of contact deformation on the adhesion of particles. J Colloid Interface Science. 1975,53(2): 314-326.
    [100] Blakley JM. Surface physics of materials. VolumeⅡ. London: Academic Press, 1975.
    [101] Greenwood JA. Adhesion of elastic spheres. Proc.R.Soc.Land.A.1997,453: 1227-1297.
    [102]郑林庆.摩擦学原理.北京:高等教育出版社,1994.
    [103] http://www.xh-fiber.com/011/020/034/2005/08/19/47,34.aspx
    [104] Jiang Yuli, Sia Nemat-Nasser. Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mechanics of Materials. 2000 (32) :303-314.
    [105] Enikov ET, Seo GS. Experimental Analysis of Current and Deformation of Ion-exchange Polymer Metal Composite Actuators, Experimental Mechanics. 2006(45): 383~391.
    [106] Oguro K. Preparation Procedure Ion-Exchange Polymer Metal Composite (IPMC) Membranes. http: //ndeaa.jpl.nasa.gov/ nasa-nde/ lommas/ eap/ IPMC_PrepProcedure.htm 2005.
    [107] Texas Instrument, OPA548 manual, http://www.ti.com 2006.
    [108]颜化冰,吉爱红,沈辉,等.用于昆虫足力测试的三维微力传感器.传感器与微系统, 2006,25(4):82-84.
    [109]于景荣,衣宝廉,刘富强等.再铸Nafion膜的制备和应用.膜科学与技术, 2002,22(4):26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700