核电蒸汽发生器传热管切向微动磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源已成为严重制约我国经济与社会持续发展的战略问题,而安全、高效地利用核能则是解决能源问题的重要途径。核电系统中,蒸汽发生器是关键设备之一由于蒸汽发生器一回路和二回路热传导及高温高压介质流致振动,使传热管与支撑部件之间产生微动磨损,导致传热管局部损伤甚至破裂,使用寿命降低,危及核电安全。因此,防止蒸汽发生器传热管的破损,提高核电设备安全性和使用寿命,是核电工程的重大课题。开展不同环境法向交变载荷下微动磨损的试验研究,不仅对探索特殊工况下的复杂微动损伤机理具有重要意义,而且也能为核电设备抗微动损伤设计及运行安全提供理论支持和工程实践指导。
     基于高精度液压式微动磨损试验机,通过附加径向电磁激振加载装置和控制系统,成功研制了高温可控气氛传热管微动磨损试验装置,实现了试验模拟高温、可控气氛及法向交变载荷下的微动磨损过程,试验数据具有良好的重现性和稳定性。
     本文选用两种传热管(Inconel690和Incoloy800合金),在不同环境(常温大气、高温大气、高温氮气、纯水和碱性去离子水溶液)下,系统地进行了微动磨损试验。在微动运行行为分析的基础上,结合光学显微镜(OM)、激光共焦扫描显微镜(LCSM)、扫描电子显微镜(SEM)、电子能谱(EDX)、X射线光电子能谱(XPS)、X射线衍射(XRD)和原位纳米力学测试系统等微观分析手段,系统揭示了传热管切向微动磨损的运行行为和损伤机理。获得的主要结论如下:1.高温(300℃)、可控气氛及法向交变载荷下Incone1690合金的微动运行特性及损伤机理(1)针对Incone1690合金,系统研究了在不同环境法向交变载荷下微动的运行特性。结果显示,微动运行行为与径向频率密切相关,微动的Ft-D曲线呈现摩擦力周期波动的平行四边形型特征,微动运行于滑移区。(2)在不同环境条件下,摩擦力的动态变化均可以分为5个阶段,即跑合阶段、上升阶段、峰值、下降阶段和稳定阶段。环境温度和含氧量对摩擦力产生显著影响。常温大气环境下的稳态摩擦力比300℃大气环境下高,比300℃氮气环境低。(3)Incone1690合金在不同环境法向交变载荷下的微动损伤行为强烈地依赖于载荷、位移幅值、环境温度、气氛及径向频率等试验条件。从表面损伤形貌看,径向频率和气氛对磨屑的形态、化学成分及结构有重要影响;由于交变法向力和切向力的共同作用,微动产生叠加效应,使剥层现象更加突出。在常温大气环境下,Incone1690合金的磨损机制主要表现为磨粒磨损与剥层。在300℃大气环境下,Incone1690合金的磨损机制主要表现为磨粒磨损、氧化磨损与剥层。而在300℃氮气环境下,Incone1690合金的磨损机制主要是磨粒磨损与剥层。
     2.水及碱性去离子水中Incone1690合金的微动运行特性及损伤机理
     (1)在滑移区,水及碱性去离子水均具有润滑作用,降低摩擦系数。水中的摩擦系数比碱性去离子水低;摩擦系数随介质温度增加而增加。
     (2)Incone1690合金在碱性去离子水中,磨损程度除受到位移幅值、载荷影响以外,温度对磨损体积有显著影响。温度增加,虽然促进了联氨与溶解氧的吸收反应,起到了降低氧化腐蚀的作用,但因金属氧化物的致密性和稳定性下降,材料磨损更加严重。Incone1690合金在水中磨损机制主要表现为磨粒磨损、氧化磨损和剥层,而在碱性去离子水中磨损机制主要是磨粒磨损和剥层。
     3.大气环境中Incoloy800合金的微动运行特性及损伤机理
     (1)载荷、位移幅值、温度及材料性质等对微动的运行区域和损伤行为有重要影响,温度的变化未对微动运行区域特性产生显著影响。
     (2)在部分滑移区,磨痕呈现环状,接触中心黏着,微滑、轻微的磨损和微裂纹发生在接触边缘的椭圆环内;磨损机制主要表现为轻微的磨粒磨损和微裂纹。
     (3)在混合区,在常温大气下,接触中心因强烈的塑性变形,产生颗粒状的磨屑;随温度升高,摩擦氧化效应增强,易聚集的氧化磨屑覆盖于接触区;温度升高到400℃,磨痕表面呈现高温氧化和塑性流变特征;磨损机制主要是磨粒磨损、氧化磨损与剥层。
     (4)在滑移区,在常温大气下,材料表面以剥层方式剥离,损伤较为严重;而在高温大气下磨痕表面呈现出清晰的层状结构和塑性流动特征;在此区域磨损机制主要表现为氧化磨损、磨粒磨损与剥层。
Energy problem has been limiting the sustainable development of domestic economy and society, as a strategically severe problem, the solution of which lies in safe and efficient use of nuclear energy. Steam generator (SG) tube is an important component in nuclear power plants. SG (Steam Generator) is one of the major equipment of nuclear power systems, and heat exchanger tube is a key component of SG. Inside the SG of nuclear power plants, the flow-induced vibrations usually cause an oscillatory movement with the relatively small amplitude between heat exchanger tubes and their supports, where fretting wear might occur due to the combined effect of stress and media. The phenomena would lead to a reduction of U-tubes life time. Therefore, it is of great importance to prevent the damages of the heat exchanger tubes in order to enhance the safety and service life of the nuclear power equipment. Thus the research on the tangential fretting under alternating loads is not only of significance to realize and understand the mechanisms of the fretting damages, but also can provide theoretical supports and practical guides for engineering application of nuclear power equipment in the resistance against fretting.
     On the basis of hydraulic fretting test system, a new-style device for the fretting wear test rig, by employing the radial cyclic loading device and control system, has been developed, which can actually simulate the fretting wear process under alternating loads in high temperature and controlled atmosphere environment. The tester presents high stability, and its test results indicate a better comparability and repeatability.
     The fretting tests have been carried out by the new-style device. The systematic studies have been conducted on the fretting wear behavior of two typical heat exchanger tubes (Inconel690and Incoloy800) in different environments (air, high-temperature air, high-temperature nitrogen, water, and alkaline ionized water). The fretting running behaviors and damage mechanisms of the fretting have been studied systematically, based on the frictional dynamic behavior analyses and by means of the optical microscopy (OM), laser confocal scanning microscopy (LCSM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and triboindenter in-situnanomechanical test system. The main research work and obtained conclusions are listed as follows:
     1. The running and damage mechanisms of the fretting for Inconel690under alternating lo-ads conditions in high temperature (300℃) and controlled atmosphere environment
     (1) The running behaviors of the fretting of Inconel690alloy have been investigated in detail. The research revealed that the fretting running behaviors were closely related to the radial frequency. In parallelogram shaped Ft-D curves, the friction fluctuates periodically, and accordingly, the fretting was running in the slip regime (SR).
     (2) Five stages of friction force curves could be observed in different environments, i.e. initial stage, ascending stage, peak value, descending stage and steady stage. Under the same conditions, the oxygen content of the atmosphere and temperature had significant effect on the friction force. The steady-state friction force in air at room temperature was higher than that at300℃, while much lower than that in nitrogen at300℃.
     (3) The damage behaviors of the fretting for Inconel690strongly depended on the normal load, displacement amplitude, temperature, atmosphere and radial frequency in different environments. By observing the damage morphology, the radial frequency and atmosphere had a major impact on the morphology, chemical composition and structure of the wear debris. The delamination phenomenon became severer due to the superposition effect of the fretting under alternating loads. Specifically, compared with the single mode of the tangential or radial fretting, more severe material failure would be induced under the combination of the two modes. There were significant differences in the fretting damage mechanisms for Inconel690in different environments:The abrasive wear and delamination were the major mechanisms of Inconel690in air at room temperature. The wear mechanisms were mainly abrasive wear, oxidation wear, and delamination in air at300℃while in nitrogen at300℃, the abrasive wear and delamination were the main mechanisms.
     2. The running and damage mechanisms of fretting wear for Inconel690in water and alkal-ine ionized waters
     (1) In gross regime, the friction coefficient was reduced because of the lubricating effect of water and alkaline ionized water. It was also found that friction coefficient depended on the medium property and test parameters. The friction coefficient was lower in water than that in alkaline ionized water, while the friction coefficient increased with the increase of solution temperature.
     (2) The fretting wear behavior of Inconel690in alkaline ionized water was affected by the displacement amplitude, normal load and especially the temperature. The increasing temperature promoted the absorption reaction of hydrazine and dissolved oxygen, and obviously reduced oxidative corrosion rate, but the compactness and stability of the oxide films were weakened. Consequently, fretting wear became more serious. The abrasive, oxidative wear and delamination were the main mechanisms of Inconel690in water. In alkaline ionized water, whereas abrasive wear and delamination were the dominant mechanisms.
     3. The running and damage mechanisms of fretting wear for Incoloy800in air
     (1) The fretting running regimes and damage behaviors of fretting were strongly dependent upon the normal load, displacement amplitude, temperature and material properties. It was found that temperature had no significant effect on the fretting running regime.
     (2) In the partial slip regime (PSR), the wear scar appeared in shape of the annularity, and little damage was observed in the contact center due to the sticking. The micro-slip, slight wear and microcracks occurred in the oval ring at the contact boundary zone. The damage mechanisms were mainly slight abrasive wear and microcracks.
     (3) The mixed fretting regime (MFR), the debris of the crushed metallic detached particles at the contact zone were formed due to intense plastic deformation, and the debris congregated at the contact zone at room temperature. As the increase of test temperature, a large number of debris layers, produced during the fretting wear processes, could easily congregate and adhere at the contact zone. The plastic flow characteristics accompanied by adhesion traces and high temperature oxidation could be observed in wear scars at400℃. In the MFR, the damage mechanisms were mainly abrasive wear, oxidation wear and delamination.
     (4) In the slip regime (SR), the particles were detached by delamination mechanism at room temperature, causing severe damages. However, some phenomena of the layered structure and plastic flow characteristics could be observed on the wear surface at high temperature. The damage mechanisms were mainly abrasive wear, oxidation wear and delamination in the SR.
引文
[1]Jost H P. Modern tribology:Past and future [J]. Lubrication Engineeing,1994,50: 159-166
    [2]温诗铸,黄平.摩擦学原理[M].北京:高等教育出版社,2008
    [3]薛群基.中国摩擦学研究和应用的重要进展[J].科技导报,2008,(23):3
    [4]宋天虎.我国摩擦学发展回顾-在第八届全国摩擦学大会上的致辞[J].摩擦学学报,2008,1(28):94-96
    [5]Ku P M. Energy and materials conservation through tribology [J]. Lubrication Engineering,1978,34(3):131-134
    [6]张嗣伟.我国摩擦学工业应用的节约潜力巨大-谈我国摩擦学工业应用现状的调查[J].中国表面工程,2008,21(2):50-52
    [7]王国彪,雷源忠.关注和发展摩擦学推动经济可持续发展[J].表面工程资讯,2005,5(25):3-4
    [8]Waterhouse R B. Fretting corrosion [M]. Pergamon Press, Oxford,1972
    [9]Waterhouse R B. Fretting fatigue [M]. Elsevier Applied Science, London,1981
    [10]周仲荣,Vincent L.微动磨损[M].北京:科学出版社,2002
    [11]周仲荣,朱曼昊.复合微动磨损[M].上海:上海交通大学出版社,2004
    [12]周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状与趋势[J].摩擦学学报,1997,17(3):272-280
    [13]Fisher J. Biomedical applications [J]. CRC Press LLC,2001
    [14]Zhou Z R, Fayeulle S, Vincent L. Cracking behaviour of various aluminium alloys during fretting wear [J]. Wear,1992,155(7):317-330
    [15]Zhou Z R, Vincent L. Cracking induced by fretting of aluminum alloys [J]. ASME Journal of Tribology,1997,119(6):36-42
    [16]Zhu M H, Zhou Z R. An experimental study on radial fretting behaviour [J]. Tribology International,2001,34 (5):321-326
    [17]Yu H Y, Quan H X, Cai Z B, Gao S S, Zhu M H. Radial fretting behavior of cortical bone against titanium [J]. Tribology Letters,2008,31(3):69-76.
    [18]Cai Z B, Zhu M H, Shen H M, Zhou Z R, Jin X S. Torsional fretting wear behaviour of 7075 aluminium alloy in various relative humidity environment [J]. Wear,2009, 267(5):330-339
    [19]Mo J L, Zhu M H, Zheng J F, Luo J, Zhou Z R. Study on rotational fretting wear of 7075 aluminum alloy [J]. Tribology International,2010,43(5-6):912-917
    [20]Cai Z B, Zhu M H, Zhou Z R. An experimental study torsional fretting behaviors of LZ50 steel [J]. Tribology International,2010,43(1-2):361-369
    [21]Zheng J F, Yang S, Shen M X, Luo J, Zhu M H. Study on rotational fretting wear under a ball-on-concave contact configuration [J]. Wear,2011,271(9-10):1552-1562
    [22]朱旻昊,周惠娣,陈建敏,周仲荣.二硫化钼粘结固体润滑涂层的径向和切向微动损伤的比较研究[J].摩擦学学报,2002,22(1):34-40
    [23]Zhu M H, Yu H Y, Cai Z B, Zhou Z R. Radial fretting behaviours of dental feldspathic ceramics against different counterbodies [J]. Wear,2005,259(7-12):996-1004
    [24]蔡振兵,高姗姗,何莉萍,朱旻昊.聚甲基丙烯酸甲酯的扭动微动摩擦学特性[J].四川大学学报(工程科学版),2009,41(1):96-101
    [25]莫继良,朱旻昊,廖正君,姚崇跃,周仲荣.转动微动的模拟与试验研究[J].中国机械工程,2009,20(6):631-635.
    [26]Luo J, Zhu M H, Wang Y D, Zheng J F, Mo J L. Study on rotational fretting wear of bonded MoS2 solid lubricant coating prepared on medium carbon steel [J]. Tribology International,2011,44(10):1565-1570
    [27]Mo J L, Liao Z J, Zhu M H, Zhou Z R. An Experimental Study on the Rotational Fretting Wear Behavior of LZ50 Steel [J]. Advanced Tribology,2010, Part 3, Ⅱ: 300-301
    [28]Luo J, Wang Y D, Song C, Mo J L, Zhu M H. Rotational fretting wear of ion nitrided medium carbon steel [J]. International Conference on Manufacturing Science and Engineering (ICMSE 2009) Advanced Material Research,2010,97-101(12): 1532-1541
    [29]Cai Z B, Zhu M H, Shen H M, Zhou Z R, Jin X S. Torsional fretting wear behaviors of 7075 aluminum alloy in various relative humidity environment [J]. Wear,2009, 267(1-4):30-339
    [30]Cai Z B, Zhu M H, Zheng J F, Jin X S, Zhou Z R. Torsional fretting behaviors of LZ50 steel in ambient air and nitrogen atmosphere [J]. Tribology International,2009, 42(11-12):1676-1683
    [31]Cai Z B, Zhu M H, Zheng J F, Jin X S, Zhou Z R. Torsional fretting behaviors of LZ50 steel in air and nitrogen [J]. Tribology International,2009,42(1-2):1676-1683
    [32]Cai Z B, Zhu M H, Lin X Z. Friction and wear of 7075 aluminum alloy induced by torsional fretting [J]. Transactions of Nonferrous Metals Society of China,2010,20(3): 371-376
    [33]朱旻昊.径向与复合微动的运行和损伤机理研究[D].西南交通大学博士论文.2001
    [34]Zhu M H, Zhou Z R, Kapsa P H, Vincent L. An experimental investigation on composite fretting mode [J]. Tribology International,2001,34(11):1503-1510
    [35]Zhu M H, Zhou Z R. Dual-motion fretting wear behaviour of 7075 aluminum alloy [J]. Wear,2003,255(1-6):269-275
    [36]Zhu M H, Zhou Z R. Composite fretting wear of aluminum alloy [J]. Key Engineering Materials,2007,353-358(6):868-873
    [37]朱旻昊,周仲荣.关于复合式微动的研究[J].摩擦学学报,2001,21(3):182-186
    [38]朱旻昊,周仲荣.7075铝合金复合微动行为的研究[J].摩擦学学报,2003,23(4):320-325
    [39]朱旻昊,李政,周仲荣.低碳钢的复合微动磨损特性研究[J].材料工程,2004,257(10):12-15
    [40]沈明学,谢兴源,蔡振兵,莫继良,朱旻昊.扭动复合微动模拟及其试验研究[J].机械工程学报,2011,15(9):89-94
    [41]Shen M X, Xie X Y, Cai Z B, Zheng J F, Zhu M H. An experiment investigation on dual rotary fretting of medium carbon steel [J]. Wear,2011,271 (9-10):1504-1514
    [42]高姗姗,蔡振兵,朱旻昊,于海洋.人下颌骨密致骨的复合微动磨损特性研究[J].四川大学学报(工程版),2008,40(1):96-100
    [43]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006
    [44]Zhou Z R, Gu S R, Vincent L. An investigation of fretting wear for two aluminium alloys [J]. Tribology International,1997,30(5):1-7
    [45]Waterhouse R B微动磨损与微动疲劳[M].周仲荣译.西南交通大学出版社,1999
    [46]李诗卓,董祥林.材料的冲蚀与微动磨损[M].北京:机械工业出版社,1987
    [47]Ren P D, Chen G X, Zhu M H, Zhou Z R. Influence of oil and water mediums on fretting behaviour of AISI 5200 steel rubbing against AISI 1045 steel [J]. Transactions of Nonferrous Metals Society of China,2004,14 (Special2):364-369
    [48]任平弟,陈光雄,周仲荣.不同水介质下GCr15钢的微动磨损特性[J].摩擦学报,2003,239(3):331-335
    [49]任平弟,王勇,朱旻昊,于海洋,周仲荣.阴极极化对滑移区微动腐蚀行为的影响[J].材料研究学报,2006,20(4):372-376
    [50]任平弟,朱旻昊,周仲荣.水介质对GCr15钢微动磨损特性的影响[J].西安交通大学学报,2004,38(11):1152-1155
    [51]任平弟,朱旻昊,赵婧,杜润,周仲荣.水介质对0Cr18Ni9不锈钢微动运行特征的影响[J].机械工程材料,2005,29(1):20-26
    [52]王勇,任平弟,朱旻昊,于海洋,周仲荣.纯钛在蒸馏水和Saline溶液中的微动腐蚀行为[J].上海交通大学学报,2005,39(9):1437-1440
    [53]Seung M H, Kim I S. Impact fretting wear of alloy 690 tubes at 250℃ and 290℃ [J]. Wear,2005,259(3):356-360
    [54]Zhang X Y, Ren P D, Zhong F C, Zhu M H, Zhou Z R. Fretting wear and friction oxidation behavior of 0Cr20Ni32AlTi alloy at high temperature [J]. Transactions of Nonferrous Metals Society of China,2012,22(4):825-830
    [55]张晓宇,任平弟,张亚非,朱曼昊,周仲荣.Incoloy800合金的高温微动磨损特性研究[J].中国有色金属学报,2010,8(20):1545-1551
    [56]Park M H, Wang Y H, Choi Y S, Kim T G Analysis of a J69-T-25 engine turbine blade fracture [J]. Engineering Failure Analysis,2002,9(3):593-601
    [57]Eden E M, Rose W N, Cunningham F L. The Endurance of Metals. Proc [J]. Institution of Mechanical Engineers,1911,4(12):839-974
    [58]陶峰,张丽.LY12CZ铝合金微动损伤机制研究[J].航空材料学报,2002,22(2):1-4
    [59]赵元刚.压气机叶片榫头处的微动磨损与“银脆”问题分析[J].燃气涡轮试验与研究,2001,14(2):34-37
    [60]李东紫,支福相,刘文宾,杨连贵.LY12CZ铝合金铆接件微动损伤防护技术研究[J].航空学报,1989,10(12):576-580
    [61]Fouvry S, Kapsa P H, Vincent L. Quantification of fretting damages [J]. Wear,2000, 1997,16(3):186-205
    [62]Azevedo C R F, Cescon T. Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Parana River [J]. Engineering Failure analysis.2002,9(3):645-664
    [63]Zhou Z R, Fiset M, Cardou A, Clotier L, Goudreau S. Effect of lubricant in electricalconductor fretting fatigue[J].Wear,1995,189(9):51-57
    [64]Zhou Z R, Goudreau S, Fiset M, Cardou A. Single wire fretting fatigue tests for electrical conductor bending fatigue evaluation [J]. Wear,1995,181-183(7):537-543
    [65]毛庆祥.货车断轴机理与失效分析.铁道车辆[J].1997,35(8):11-15
    [66]王丽娟,王纪高,候淑娥.某机尾桨叉耳耳环断裂分析[J].材料工程,2001,10(9):39-41
    [67]Arakere N K, Swanson G. Fretting stresses in single crystal superalloy turbine blade attachments. Journal of Tribology [J]. Transactions of the ASME,2001,123(3): 413-423
    [68]赵锁宗,王大智.车辆的微动磨蚀与对策[J].铁道车辆,1995,33(7):10-13
    [69]张德坤,葛世荣,朱真才.提升钢丝绳的钢丝微动摩擦磨损特性研究[J].中国矿业大学学报,2002,31(5):367-370
    [70]张德坤,葛世荣,熊党生.矿井提升机用提升钢丝绳的微动磨损行为研究[J].摩擦学学报,2001,21(5):362-365
    [71]Ciavarella M, Demelio G. A review of analytical aspects of fretting fatigue, with extension to damage parameters, and application to dovetail joints [J]. International Journal of Solids and Structures,2001,38(7):1791-1811
    [72]Kim H K. Mechanical analysis of fuel fretting problem [J]. Nuclear Engineering and Design,1999,192(4):81-93
    [73]Zhou Z R, Cardou A, Goudreau S, Fiset M. Fundamental investigations of fretting fatigue of electrical conductor [J]. Tribology International,1996,29(3):221-232
    [74]Tian H, Saka N, Rabinowicz E. Fretting failure of electroplated gold contacts [J]. Wear,1991,142(8):265-289
    [75]徐进,朱旻昊,江晓禹,沈永平,周仲荣.柴油机连杆齿形配合面裂纹成因研究[J].机械工程材料,2003,27(4):51-54
    [76]裴礼清,张峰.滚动轴承的滚动体与内圈接触部分的相对滑动分析[J].机械设计与研究,2001,16(2):53-55
    [77]Rudolphi A K, Jacobson S. Gross plastic fretting mechanical deterioration of silver coated electrical contacts [J]. Wear,1996,201(10):244-254
    [78]Rudolphi A K, Jacobson S. Surface damage, adhesion and contact resistance of silver copper contacts subjected to fretting motion [J]. Wear,1993,165(5):227-230
    [79]Low M B J. Fretting problems and some solutions in power plant machinery [J]. Wear, 1985,106(3):315-336
    [80]唐辉.世界核电设备与结构将长期面临的一个问题-微动损伤[J].核动力工程,2000,21(3):222-231
    [81]张晓宇,任平弟,李长香,蔡振兵,朱曼昊.I-800合金微动磨损特性研究[J].核动力工程,2009,30(5):67-74
    [82]张亚非,任平弟,张晓宇,李长香,朱旻昊.TA16钛合金微动磨损特性[J].核动力工程,2011,32(2):24-28
    [83]Waterhouse R B. Fretting wear [M]. In:P.J. Blau, Editor, ASM Handbook, Friction, Lubrication and Wear Technology, ASM,1992,18(3):242-256
    [84]Waterhouse R B. Fretting fatigue [J]. International Materials Reviwer,1992,37(2): 77-97.
    [85]Hill D A. Mechanics of fretting fatigue [J]. Wear,175,1994,12(3):107-113
    [86]Vingsbo O, Soderberg S. On fretting maps [J]. Wear,1988,126(7):131-1471
    [87]Zhou Z R Fissuration Induite en Petits Debattements:Application Aucasd'Allagesd' Aluminium Aeronautiques [J]. Thesis, Ecole Cenle Centrale de Lyon,1992
    [88]Zhou Z R, Vincent L. Effect of external loading on wear maps of aluminium alloys [J]. Wear,1993,162-164(3):619-623
    [89]Zhou Z R, Vincent L. Mixed fretting regime [J]. Wear,1995,181-183(11):531-536
    [90]样文斗.反应堆材料学[M].原子出版社,2006
    [91]Helmi A M. Fretting fatigue and wear damage of structural components in nuclear power station-fitness for service and life management perspective [J]. Tribology,2006, 39(2):1294-1304
    [92]Hong J K, Kim I S, Park C Y, Kim E S. Microstructural effects on the fretting wear of Incnel 690 steam generation tube [J].Wear,2005,259(3):349-355
    [93]Attia M H, Magel E. Experimental investigation of long-term fretting wear of multi-span steam generator tubes with U-bend sections [J]. Wear,1999,225-229(10): 563-574
    [94]Quanglia G M, et al. Fretting-Corrosion studies related to steam generator of PWR Power plants [J]. Corrosion Abstracts,1998.
    [95]Kim D G, lee Y Z. Experimental investigation on sliding and fretting wear of steam generator tube materials [J]. Wear,2001,250(7):637-680
    [96]Kwon J D, Park D K, Woo S W, Yoon D H, Chung I. A study on fretting fatigue life for the Inconel alloy 600 at high temperature [J]. Nuclear Engineering and Design, 2010,250(1/12):673-680
    [97]丁训慎.核电站蒸汽发生器传热管的腐蚀及防护[J].腐蚀科学与防护技术,2000,2(1):14-18
    [98]丁训慎.压水堆核电站蒸汽发生器传热管的检修[J].核动力程,1991,12(4):31-35
    [99]沈长斌,陶晓杰,杨怀玉,王福会.高温高压水环境下传热管失效形式及防腐措施研究进展[J].腐蚀科学与防护技术,2003,15(4):223-227
    [100]Lee Y H, Al E. A Comparative Study on the Fretting Wear of Steam Generator Tubes in Korean Power Plants [J]. Wear,2003,255(7/12):1198-1208
    [101]Lee Y H, Kim I S, A1 E. A study on wear coefficients and mechanisms of steam generator tube materials [J].Wear,2001,250(1/12):718-725.
    [102]Levy G, Morri J. Impact fretting wear in CO2-based environment [J]. Wear,1985,106 (1/3):97-137
    [103]Jones D H, Nehru Y, Skinner J. The impact fretting wear of a Nuclear reactor Component [J].Wear,1985,106(11):138-162
    [104]Guerout F M, Fisher N J. Steam generator fretting-wear damage:a summary of recent findings [J]. Pressure Vessel Technol,1999,121(9):304-310
    [105]Sung H J, Chun W C, Lee Y Z. Fretting and wear of Inconel 690 for steam generator tube in elevated temperature Water under fretting condition [J]. Tribology Internation, 2005,38(4):283-288
    [106]Chunga I, Lee M. An experimental study on fretting wear behavior of cross-contacting Inconel 690 tubes [J]. Nuclear Engineering and Design,2011,241(5): 4103-4110
    [107]Hong J K, Kim I S. Environment effects on the reciprocating wear of Incone1690 steam generator tubes [J]. Wear,2003,255(9):1174-1182
    [108]Dutta R S, Tewari R, De P K. Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of Alloy 690 [J]. Corrosion Science,2007, 49(4):303-318
    [109]Meng F J, Wang J Q, Han E H, Ke W. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water [J]. Corrosion Science,2010,52(6):927-932
    [110]Chen J H, Wu W T. Cavitation erosion behavior of Inconel 690 alloy. Materials Science and Engineering [J].2008,489(10):451-456
    [111]Peng B, Lu B T, Luo J L, Lu Y C, Ma H Y. Investigation of passive films on nickel Alloy 690 in lead-containing environments [J]. Journal of Nuclear Materials,2008, 378(5):333-340
    [112]Zhang Z M, Wang J Q, Han E H, Ke W. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corrosion Science,2011,53(7):3623-3635
    [113]Huang J B, Wu X Q, Han E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corrosion Science,2010,52(2):3444-3452
    [114]Tsai W T, Chou C H. Corrosion fatigue crack growth behavior of nickel base alloys in sodium thiosulfate solution [J]. Materials Science and Engineering,2000,288(4):5-11
    [115]Young B A, Gao X S, Srivatsan T S, King P J. An investigation of the fatigue crack growth behavior of Inconel 690 [J]. Materials Science and Engineering,2006,416(4): 187-191
    [116]Prakash B, Al E. Ti-B and Ti-B-C coatings deposited by plasma immersion ion implantation and their fretting behavior [J]. Surface and Coatings Technology,2003, 177(7/12):150-160
    [117]刘捍卫,黄鲲鹏,朱旻昊,邱绍宇,周仲荣.TiAlZr合金及其热喷涂Ni-Cr高温微动磨损的研究[J].核动力工程,2005,26(4):380-383
    [118]刘捍卫,邱绍宇,周彤,黄鲲鹏,朱旻昊,周仲荣.TiC/Ti(C,N)/TiN双向涂层在滑移区的高温微动磨损特性[J].核动力工程,2005,26(4):414-417
    [119]王允江,刘捍卫,张鹏程.等离子体浸没离子注入与沉积TiN/Ti双向涂层高温微动磨损特性研究[J].润滑与密封,2007,32(4):77-80
    [120]刘捍卫TiN/TiN+Si/TiN多层膜的高温微动磨损行为研究[J].四川大学学报(自然科学版),2008,45(1):156-160
    [121]Liu H W, Xu X J, Zhu M H, Ren P D, Zhou Z R. High temperature fretting wear behavior of WC-25Co coatings prepared by D-gun spraying on Ti-A1-Zr Titanium Alloy [J]. Tribology International,2011,44(11):1461-1470
    [122]Zhu M H, Zhou Z R, Kapsa P H, Vincent L. radial fretting fatigue damage of surface Coatings [J]. Wear,2001,250(1/12):650-657
    [123]薛汉俊.核能动力装置[M].北京:原子能出版社,1990
    [124]姜晓霞,王景韫.合金相电化学[M].上海科学技术出版社,1984
    [125]Qian L M, Li M, Zhou Z R, Yang H, Shi X Y. Comparison of nanoindentation hardness to microhardness [J]. Surface coating technology,2005,195(4):264-271
    [126]刘如铁.镍基高温及耐海水腐蚀固体自润滑减摩材料的研究[D].中南大学博士学位论文.2006
    [127]Payne B P, Biesinger M C, Mcintyre N S. X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces [J]. Journal of Electron Spectroscopy and Related Phenomena,2011,184(1/2):29-37
    [128]Rosvenor A P, Biesinger M C, Smart R S C, Mcintyre N S. New interpretations of XPS spectra of nickel metal and oxides [J]. Surface Science,2006,600(9):1771-1779
    [129]Toru Y, Peter H. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Applied Surface Science,2008,254(8):2441-2449
    [130]Huang J B, WU X Q, Han E H. Electrochemical properties and growth mechanism of passive films On Alloy690 in high-temperature alkaline environments [J]. Corrosion Science,2010,52(10):3444-3452
    [131]Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress and strain conditions [J]. Proceedings of the Institution of Mechanical Engineers,1973,187(6): 745-755
    [132]童志平,刘静,周先礼.工程化学[M].成都:西南交通大学出版社,2000
    [133]Wang F, Cui X H, Yang Z R, Wei M X, Wang S Q. Oxidation and tribo-oxidation of an alloy Steel HI3 at elevated temperature [J]. Journal of Engineering Tribology,2009, 233(6):881-885
    [134]Mlgaard J, Srivastava V K. The activation energy of oxidation in wear [J]. Wear,1977, 41(2):263-270
    [135]叶毅,任平弟,张晓宇,郭洪,李长香.高温N2中Incone16901Cr13不锈钢的微动磨损特性[J].中国有色金属学报,2013,7(23):1900-1906
    [136]Guo H, Ren P D, Zhang X Y, Chen G X, Ye Y. Fretting wear behavior of NC30Fe in distilled water and hydrazine solution [J]. Nuclear Engineering,2013, in press

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700