一维ZnO纳米结构的制备及其光化学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业化进程的发展,环境污染日益严重,环境保护和可持续发展成为人类必须考虑的首要问题。利用光催化技术处理有机污染物及利用具有自清洁作用的超疏水表面来避免污染引起了各国科研人员的兴趣。作为一种宽禁带半导体,ZnO具有多功能性、环境友好等特点,并且ZnO的一维纳米结构容易制备,形貌丰富,在发光器件、紫外探测器、太阳能电池、光催化和疏水表面等领域都有广泛的应用。但是目前ZnO材料在这些方面的研究还存在一些问题,如在光催化和疏水表面应用中的光化学问题:ZnO在溶液环境中进行光催化反应会发生光腐蚀现象,导致催化效率下降;ZnO基疏水表面受到紫外线照射后会向亲水表面转化,无法在户外长期应用。围绕这些问题,本论文进行了研究,并取得如下结果:
     (1)ZnO纳米线在空气中对有机染料进行光催化降解,表现出优良的固相光催化性能和重复使用性能。经过多次重复性实验,有机物在60分钟后的残留量仅为20%,光催化效率没有明显减弱。经过研究发现,在不同气体环境中ZnO的光催化活性不同,其中氧气和水在固相光催化过程中起重要作用,能够明显提高光催化效率。
     (2)在空气中进行固相光催化反应,ZnO纳米线表面没有产生新的缺陷,而在溶液环境中进行光催化反应的ZnO纳米线表面腐蚀严重,表明ZnO在固相光催化反应中几乎没有光腐蚀现象,因此能保持稳定的光催化效率,这说明ZnO适合于固相光催化反应。
     (3)通过电化学沉积法制备出ZnO/Ni多级纳米复合结构,在不使用有机物修饰的情况下构造出了稳定的超疏水表面,而且在这种多级结构中避免了ZnO材料在经过紫外线照射后会出现的浸润性转换现象。
Along with the development of global industrialization, environment pollutionbecomes an increasingly serious problem. Decomposing organic pollutants viaphotocatalysis and cleaning dirt by super-hydrophobic surface have attracted muchattention around the world. As a wide band gap semiconductor, ZnO is amultifunctional and environmentally friendly material, one-dimensional (1D) ZnOnanostructures could be fabricated easily and have various morphologies. Because ofall these merits,1D ZnO nanostructures have served as building blocks for applicationin light-emitting devices, photodetectors, solar cells, photocatalysts and hydrophobicsurfaces. But, there are still some drawbacks of ZnO, such as photochemical problemsin practical applications of photocatalysis and hydrophobicity: photocorrosion duringthe photocatalysis process and the photoinduced surface wettability conversion afterultraviolet irradiation. This paper presents the study of the above problems and theresults are outlined as follows:
     (1) The ZnO nanowire arrays showed good photocatalytic activity and stabilityunder air environment. Only20%organic material remained afterphotodecomposition of60min and photocatalytic efficiency did not decrease muchafter cyclic experiments. The photocatalytic properties were studied under differentgas atmosphere. The oxygen and the water both played important roles in photocatalytic process and could enhance the photodecomposition efficiency.
     (2) The structural defects and photocorrosion of ZnO were serious afterphotocatalytic process under solution environment. But these phenomena were notobserved after the photodecomposition process under air environment and thephotocatalytic efficiency was stable. ZnO was suitable for the photocatalytic processunder air environment.
     (3) The ZnO/Ni nanorod arrays were fabricated by electrodeposition method.The super-hydrophobic surface was realized without modification of low surfaceenergy organic material. The ZnO/Ni nanorod arrays avoided photoinducedwettability conversion and exhibited durable super-hydrophobicity under long-termultraviolet irradiation.
引文
[1] D. C. Look, D. C. Reynolds, J. R. Sizelove, et al. Electrical properties of bulk ZnO [J]. Solid StateCommun.,1998,105(6):399-401.
    [2] U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices [J]. J.Appl. Phys.,2005,98(4).
    [3] B. D. Yuhas and P. D. Yang Nanowire-Based All-Oxide Solar Cells [J]. JACS,2009,131(10):3756-3761.
    [4] Q. H. Li, Y. X. Liang, Q. Wan, et al. Oxygen sensing characteristics of individual ZnO nanowiretransistors [J]. Appl. Phys. Lett.,2004,85(26):6389-6391.
    [5] F. V. Farmakis, T. Speliotis, K. P. Alexandrou, et al. Field-effect transistors with thin ZnO as activelayer for gas sensor applications [J]. Microelectron. Eng.,2008,85(5-6):1035-1038.
    [6] J. Y. Park, S. W. Choi and S. S. Kim Fabrication of a Highly Sensitive Chemical Sensor Based onZnO Nanorod Arrays [J]. Nanoscale Research Letters,2010,5(2):353-359.
    [7] H. Cao, J. Y. Wu, H. C. Ong, et al. Second harmonic generation in laser ablated zinc oxide thinfilms [J]. Appl. Phys. Lett.,1998,73(5):572-574.
    [8] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. High temperature excitonic stimulated emission from ZnOepitaxial layers [J]. Appl. Phys. Lett.,1998,73(8):1038-1040.
    [9] Dewei Chu, Yoshitake Masuda, Tatsuki Ohji, et al. Formation and Photocatalytic Application ofZnO Nanotubes Using Aqueous Solution [J]. Langmuir,2010,26(4):2811-2815.
    [10] S. W. Jung, W. I. Park, H. D. Cheong, et al. Time-resolved and time-integrated photoluminescencein ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett.,2002,80(11):1924-1926.
    [11] F. Fang, D. X. Zhao, J. Y. Zhang, et al. Growth of well-aligned ZnO nanowire arrays on Sisubstrate [J]. Nanotechnology,2007,18(23).
    [12] C. Pacholski, A. Kornowski and H. Weller Self-assembly of ZnO: From nanodots, to nanorods [J].Angewandte Chemie-International Edition,2002,41(7):1188-1191.
    [13] L. E. Greene, M. Law, J. Goldberger, et al. Low-temperature wafer-scale production of ZnOnanowire arrays [J]. Angewandte Chemie-International Edition,2003,42(26):3031-3034.
    [14] J. Joo, B. Y. Chow, M. Prakash, et al. Face-selective electrostatic control of hydrothermal zincoxide nanowire synthesis [J]. Nature Materials,2011,10(8):596-601.
    [15] Sophie Peulon and Daniel Lincot Cathodic electrodeposition from aqueous solution of dense oropen-structured zinc oxide films [J]. Adv Mater,1996,8(2):166-170.
    [16] S. Peulon and D. Lincot Mechanistic study of cathodic electrodeposition of zinc oxide and zinchydroxychloride films from oxygenated aqueous zinc chloride solutions [J]. J. Electrochem. Soc.,1998,145(3):864-874.
    [17] L. F. Xu, Y. Guo, Q. Liao, et al. Morphological control of ZnO nanostructures by electrodeposition[J]. J. Phys. Chem. B,2005,109(28):13519-13522.
    [18] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission fromself-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett.,1998,72(25):3270-3272.
    [19] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature [J].Appl. Phys. Lett.,1997,70(17):2230-2232.
    [20] K. Govender, D. S. Boyle, P. O'Brien, et al. Room-temperature lasing observed from ZnOnanocolumns grown by aqueous solution deposition [J]. Adv. Mater.,2002,14(17):1221-1224.
    [21] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers [J].Science,2001,292(5523):1897-1899.
    [22] Jiming Bao, Mariano A. Zimmler, Federico Capasso, et al. Broadband ZnO Single-NanowireLight-Emitting Diode [J]. Nano Lett.,2006,6(8):1719-1722.
    [23] X. M. Zhang, M. Y. Lu, Y. Zhang, et al. Fabrication of a High-Brightness Blue-Light-EmittingDiode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film [J]. Adv. Mater.,2009,21(27):2767-2770.
    [24] X. W. Sun, B. Ling, J. L. Zhao, et al. Ultraviolet emission from a ZnO rod homojunctionlight-emitting diode [J]. Appl. Phys. Lett.,2009,95(13).
    [25] S. Chu, G. P. Wang, W. H. Zhou, et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology,2011,6(8):506-510.
    [26] H. Kind, H. Q. Yan, B. Messer, et al. Nanowire ultraviolet photodetectors and optical switches [J].Adv Mater,2002,14(2):158-160.
    [27] C. Soci, A. Zhang, B. Xiang, et al. ZnO Nanowire UV Photodetectors with High Internal Gain [J].Nano Lett,2007,7(4):1003-1009.
    [28] J. Zhou, Y. D. Gu, Y. F. Hu, et al. Gigantic enhancement in response and reset time of ZnO UVnanosensor by utilizing Schottky contact and surface functionalization [J]. Appl. Phys. Lett.,2009,94(19).
    [29] A. Manekkathodi, M. Y. Lu, C. W. Wang, et al. Direct Growth of Aligned Zinc Oxide Nanorods onPaper Substrates for Low-Cost Flexible Electronics [J]. Adv. Mater.,2010,22(36):4059-4063.
    [30] S. M. Peng, Y. K. Su, L. W. Ji, et al. ZnO Nanobridge Array UV Photodetectors [J]. Journal ofPhysical Chemistry C,2010,114(7):3204-3208.
    [31] A. Fujishima and K. Honda Electrochemical Photolysis of Water at a Semiconductor Electrode [J].Nature,1972,238(5358):37-38.
    [32] Z. Y. Zhang, C. L. Shao, X. H. Li, et al. Electrospun Nanofibers of ZnO-SnO(2) Heterojunctionwith High Photocatalytic Activity [J]. Journal of Physical Chemistry C,2010,114(17):7920-7925.
    [33] C. W. Zou, Y. F. Rao, A. Alyamani, et al. Heterogeneous Lollipop-like V(2)O(5)/ZnO Array: APromising Composite Nanostructure for Visible Light Photocatalysis [J]. Langmuir,2010,26(14):11615-11620.
    [34] Haibo Zeng, Weiping Cai, Peisheng Liu, et al. ZnO-Based Hollow Nanoparticles by SelectiveEtching: Elimination and Reconstruction of Metal Semiconductor Interface, Improvement of BlueEmission and Photocatalysis [J]. Acs Nano,2008,2(8):1661-1670.
    [35] D. Li and H. Haneda Morphologies of zinc oxide particles and their effects on photocatalysis [J].Chemosphere,2003,51(2):129-137.
    [36] S. Jung and K. Yong Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highlyefficient photocatalytic applications [J]. Chem. Commun.,2011,47(9):2643-2645.
    [37] X. J. Feng, L. Feng, M. H. Jin, et al. Reversible super-hydrophobicity to super-hydrophilicitytransition of aligned ZnO nanorod films [J]. Journal of the American Chemical Society,2004,126(1):62-63.
    [38] L. L. Wang, X. T. Zhang, B. Li, et al. Superhydrophobic and Ultraviolet-Blocking Cotton Textiles[J]. Acs Applied Materials&Interfaces,2011,3(4):1277-1281.
    [39] G. P. Li, T. Chen, B. Yan, et al. Tunable wettability in surface-modified ZnO-based hierarchicalnanostructures [J]. Appl. Phys. Lett.,2008,92(17).
    [40] S. S. Li, J. Hu, J. J. Li, et al. Anisotropic Wet Etched Silicon Substrates for Reoriented andSelective Growth of ZnO Nanowires and Enhanced Hydrophobicity [J]. Langmuir,2011,27(11):6549-6553.
    [41] D. L. Tian, X. F. Zhang, X. Wang, et al. Micro/nanoscale hierarchical structured ZnO mesh filmfor separation of water and oil [J]. PCCP,2011,13(32):14606-14610.
    [42] Y. B. Li, M. J. Zheng, L. Ma, et al. Fabrication of hierarchical ZnO architectures and theirsuperhydrophobic surfaces with strong adhesive force [J]. Inorg. Chem.,2008,47(8):3140-3143.
    [43] L. Schmidt-Mende and J. L. MacManus-Driscoll ZnO-nanostructures, defects, and devices [J].Mater. Today,2007,10(5):40-48.
    [44] M. Izaki and T. Omi Characterization of transparent zinc oxide films prepared by electrochemicalreaction [J]. J. Electrochem. Soc.,1997,144(6):1949-1952.
    [45] M. Izaki and T. Omi Transparent zinc oxide films prepared by electrochemical reaction [J]. Appl.Phys. Lett.,1996,68(17):2439-2440.
    [46] M. Izaki and T. Omi Electrolyte optimization for cathodic growth of zinc oxide films [J]. J.Electrochem. Soc.,1996,143(3): L53-L55.
    [47] L. C. Gao and T. J. McCarthy A commercially available perfectly hydrophobic material(theta(A)/theta(R)=180degrees/180degrees)[J]. Langmuir,2007,23(18):9125-9127.
    [48] L. C. Gao and T. J. McCarthy A perfectly hydrophobic surface (theta(A)/theta(R)=180degrees/180degrees)[J]. Journal of the American Chemical Society,2006,128(28):9052-9053.
    [49] Y. H. Leung, Z. B. He, L. B. Luo, et al. ZnO nanowires array p-n homojunction and its applicationas a visible-blind ultraviolet photodetector [J]. Appl. Phys. Lett.,2010,96(5):053102.
    [50] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, et al. ZnO p-n junction light-emitting diodes fabricated onsapphire substrates [J]. Appl. Phys. Lett.,2006,88(3).
    [51] H. Kind, H. Q. Yan, B. Messer, et al. Nanowire ultraviolet photodetectors and optical switches [J].Adv. Mater.,2002,14(2):158-160.
    [52] Z. P. Wei, Y. M. Lu, D. Z. Shen, et al. Room temperature p-n ZnO blue-violet light-emitting diodes[J]. Appl. Phys. Lett.,2007,90(4).
    [53] F. Fang, D. X. Zhao, J. Y. Zhang, et al. The influence of growth temperature on ZnO nanowires [J].Mater. Lett.,2008,62(6-7):1092-1095.
    [54] F. Fang, D. X. Zhao, D. Z. Shen, et al. Synthesis of ordered ultrathin ZnO nanowire bundles on anindium-tin oxide substrate [J]. Inorg. Chem.,2008,47(2):398-400.
    [55] L. D. Wang, D. X. Zhao, Z. S. Su, et al. High spectrum selectivity organic/inorganic hybridvisible-blind ultraviolet photodetector based on ZnO nanorods [J]. Org. Electron.,2010,11(7):1318-1322.
    [56] X. Fang, J. H. Li, D. X. Zhao, et al. Phosphorus-Doped p-Type ZnO Nanorods and ZnO Nanorodp-n Homojunction LED Fabricated by Hydrothermal Method [J]. Journal of Physical Chemistry C,2009,113(50):21208-21212.
    [57] Yaguang Wei, Wenzhuo Wu, Rui Guo, et al. Wafer-Scale High-Throughput Ordered Growth ofVertically Aligned ZnO Nanowire Arrays [J]. Nano Lett,2010,10(9):3414-3419.
    [58] Y. F. Chen, D. M. Bagnall, H. J. Koh, et al. Plasma assisted molecular beam epitaxy of ZnO onc-plane sapphire: Growth and characterization [J]. J. Appl. Phys.,1998,84(7):3912-3918.
    [59] Michael D. Kelzenberg, Shannon W. Boettcher, Jan A. Petykiewicz, et al. Enhanced absorptionand carrier collection in Si wire arrays for photovoltaic applications [J]. Nat Mater,2010,9(3):239-244.
    [60] A. Tsukazaki, A. Ohtomo, T. Onuma, et al. Repeated temperature modulation epitaxy for p-typedoping and light-emitting diode based on ZnO [J]. Nature Materials,2005,4(1):42-46.
    [61] Michael D. Kelzenberg, Shannon W. Boettcher, Jan A. Petykiewicz, et al. Enhanced absorptionand carrier collection in Si wire arrays for photovoltaic applications [J]. Nature Materials,2010,9(4):368-368.
    [62] Y. Q. Qu, R. Cheng, Q. Su, et al. Plasmonic Enhancements of Photocatalytic Activity of Pt/n-Si/AgPhotodiodes Using Au/Ag Core/Shell Nanorods [J]. JACS,2011,133(42):16730-16733.
    [63] Zhen Liu, Hui Wang, Xue-Mei Ou, et al. Si/poly-CuTAPC coaxial core-shell nanowire array asenhanced visible-light photocatalyst for hydrogen production [J]. Chem. Commun.,2012,48(22).
    [64] X. W. Liu, Q. Y. Hu, Q. Wu, et al. Aligned ZnO nanorods: A useful film to fabricate amperometricglucose biosensor [J]. Colloids and Surfaces B-Biointerfaces,2009,74(1):154-158.
    [65] C. W. Zou, Y. F. Rao, A. Alyamani, et al. Heterogeneous Lollipop-like V2O5/ZnO Array: APromising Composite Nanostructure for Visible Light Photocatalysis [J]. Langmuir,2010,26(14):11615-11620.
    [66] Mrinmoyee Basu, Arun Kumar Sinha, Mukul Pradhan, et al. Evolution of Hierarchical HexagonalStacked Plates of CuS from Liquid Liquid Interface and its Photocatalytic Application for OxidativeDegradation of Different Dyes under Indoor Lighting [J]. Environmental Science&Technology,2010,44(16):6313-6318.
    [67] M. W. Xiao, L. S. Wang, Y. D. Wu, et al. Preparation and characterization of CdS nanoparticlesdecorated into titanate nanotubes and their photocatalytic properties [J]. Nanotechnology,2008,19(1):015706.
    [68] T. J. Kuo, C. N. Lin, C. L. Kuo, et al. Growth of ultralong ZnO nanowires on silicon substrates byvapor transport and their use as recyclable photocatalysts [J]. Chem Mater,2007,19(21):5143-5147.
    [69] W. M. Zhou, L. J. Yan, Y. Wang, et al. SiC nanowires: A photocatalytic nanomaterial [J]. Appl.Phys. Lett.,2006,89(1):013105.
    [70] Q. Wan, T. H. Wang and J. C. Zhao Enhanced photocatalytic activity of ZnO nanotetrapods [J].Appl. Phys. Lett.,2005,87(8):083105.
    [71] J. L. Yang, S. J. An, W. I. Park, et al. Photocatalysis using ZnO thin films and nanoneedles grownby metal-organic chemical vapor deposition [J]. Adv Mater,2004,16(18):1661-1664.
    [72] Y. Y. Wu, H. Q. Yan and P. D. Yang Semiconductor nanowire array: potential substrates forphotocatalysis and photovoltaics [J]. Top. Catal.,2002,19(2):197-202.
    [73] A. Mills and S. LeHunte An overview of semiconductor photocatalysis [J]. Journal ofPhotochemistry and Photobiology a-Chemistry,1997,108(1):1-35.
    [74] H. Zhang, X. J. Lv, Y. M. Li, et al. P25-Graphene Composite as a High Performance Photocatalyst[J]. Acs Nano,2010,4(1):380-386.
    [75] J. Y. Wang, Z. H. Liu, Q. Zheng, et al. Preparation of photosensitized nanocrystalline TiO2hydrosol by nanosized CdS at low temperature [J]. Nanotechnology,2006,17(18):4561-4566.
    [76] X. Y. Zhang, Y. J. Sun, X. L. Cui, et al. A green and facile synthesis of TiO2/graphenenanocomposites and their photocatalytic activity for hydrogen evolution [J]. Int. J. Hydrogen Energy,2012,37(1):811-815.
    [77] H. Tada, Q. Jin, H. Nishijima, et al. Titanium(IV) Dioxide Surface-Modified with Iron Oxide as aVisible Light Photocatalyst [J]. Angewandte Chemie-International Edition,2011,50(15):3501-3505.
    [78] W. Chen, Z. L. Fan, B. Zhang, et al. Enhanced Visible-Light Activity of Titania via Confinementinside Carbon Nanotubes [J]. Journal of the American Chemical Society,2011,133(38):14896-14899.
    [79] Y. F. Li and Z. P. Liu Particle Size, Shape and Activity for Photocatalysis on Titania AnataseNanoparticles in Aqueous Surroundings [J]. Journal of the American Chemical Society,2011,133(39):15743-15752.
    [80] H. G. Yu, H. Irie and K. Hashimoto Conduction Band Energy Level Control of Titanium Dioxide:Toward an Efficient Visible-Light-Sensitive Photocatalyst [J]. Journal of the American ChemicalSociety,2010,132(20):6898-6899.
    [81] Zhenyi Zhang, Changlu Shao, Xinghua Li, et al. Electrospun Nanofibers of p-Type NiO/n-TypeZnO Heterojunctions with Enhanced Photocatalytic Activity [J]. Acs Applied Materials&Interfaces,2010,2(10):2915-2923.
    [82] C. Wang, J. C. Zhao, X. M. Wang, et al. Preparation, characterization and photocatalytic activity ofnano-sized ZnO/SnO2coupled photocatalysts [J]. Appl. Catal. B-Environ.,2002,39(3):269-279.
    [83] W. W. Wang, Y. J. Zhu and L. X. Yang ZnO-SnO2hollow spheres and hierarchical nanosheets:Hydrothermal preparation, formation mechanism, and photocatalytic properties [J]. Adv. Funct. Mater.,2007,17(1):59-64.
    [84] R. Georgekutty, M. K. Seery and S. C. Pillai A highly efficient Ag-ZnO photocatalyst: Synthesis,properties, and mechanism [J]. Journal of Physical Chemistry C,2008,112(35):13563-13570.
    [85] Z. B. Zhan, Y. H. Wang, Z. Lin, et al. Study of interface electric field affecting the photocatalysisof ZnO [J]. Chemical Communications,2011,47(15):4517-4519.
    [86] J. H. Zeng, B. B. Jin and Y. F. Wang Facet enhanced photocatalytic effect with uniformsingle-crystalline zinc oxide nanodisks [J]. Chem. Phys. Lett.,2009,472(1-3):90-95.
    [87] P. Spathis and I. Poulios The corrosion and photocorrosion of zinc and zinc oxide coatings [J].Corros. Sci.,1995,37(5):673-680.
    [88] L. W. Zhang, H. Y. Cheng, R. L. Zong, et al. Photocorrosion Suppression of ZnO Nanoparticlesvia Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity [J]. Journal ofPhysical Chemistry C,2009,113(6):2368-2374.
    [89] H. B. Fu, T. G. Xu, S. B. Zhu, et al. Photocorrosion Inhibition and Enhancement of PhotocatalyticActivity for ZnO via Hybridization with C-60[J]. Environmental Science&Technology,2008,42(21):8064-8069.
    [90] A. van Dijken, A. H. Janssen, M. H. P. Smitsmans, et al. Size-selective photoetching ofnanocrystalline semiconductor particles [J]. Chem Mater,1998,10(11):3513-3522.
    [91] Robert N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER [J].Industrial&Engineering Chemistry,1936,28(8):988-994.
    [92] A. B. D. Cassie Contact angles [J]. Discussions of the Faraday Society,1948,3:11-16.
    [93] P. Roach, N. J. Shirtcliffe and M. I. Newton Progess in superhydrophobic surface development [J].Soft Matter,2008,4(2):224-240.
    [94] C. H. Xue, S. T. Jia, J. Zhang, et al. Large-area fabrication of superhydrophobic surfaces forpractical applications: an overview [J]. Sci Technol Adv Mat,2010,11(3).
    [95] A. Nakajima, K. Hashimoto and T. Watanabe Recent studies on super-hydrophobic films [J].Monatsh. Chem.,2001,132(1):31-41.
    [96] X. Zhang, F. Shi, J. Niu, et al. Superhydrophobic surfaces: from structural control to functionalapplication [J]. Journal of Materials Chemistry,2008,18(6):621-633.
    [97] W. Barthlott and C. Neinhuis Purity of the sacred lotus, or escape from contamination in biologicalsurfaces [J]. Planta,1997,202(1):1-8.
    [98] Jungmok Seo, Soonil Lee, Jaehong Lee, et al. Guided Transport of Water Droplets onSuperhydrophobic–Hydrophilic Patterned Si Nanowires [J]. Acs Applied Materials&Interfaces,2011.
    [99] Ho Sun Lim, Donghoon Kwak, Dong Yun Lee, et al. UV-Driven Reversible Switching of aRoselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity [J]. JACS,2007,129(14):4128-4129.
    [100] Dongliang Tian, Xiaofang Zhang, Jin Zhai, et al. Photocontrollable Water Permeation on theMicro/Nanoscale Hierarchical Structured ZnO Mesh Films [J]. Langmuir,2011,27(7):4265-4270.
    [101] Joseph W. Krumpfer and Thomas J. McCarthy Dip-Coating Crystallization on aSuperhydrophobic Surface: A Million Mounted Crystals in a1cm2Array [J]. JACS,2011,133(15):5764-5766.
    [102] Jilin Zhang, Weihuan Huang and Yanchun Han Wettability of Zinc Oxide Surfaces withControllable Structures [J]. Langmuir,2006,22(7):2946-2950.
    [103] R. Ledesma-Aguilar, R. Nistal, A. Hernandez-Machado, et al. Controlled drop emission bywetting properties in driven liquid filaments [J]. Nat Mater,2011,10(5):367-371.
    [104] X. Yao, Y. L. Song and L. Jiang Applications of Bio-Inspired Special Wettable Surfaces [J]. AdvMater,2011,23(6):719-734.
    [105] L. Jiang Super-hydrophobic surfaces: From natural to artificial [J]. Proceedings of2005International Conference on Advanced Fibers and Polymer Materials (ICAFPM2005), Vol1and2,2005,58-59.
    [106] L. Feng, S. H. Li, Y. S. Li, et al. Super-hydrophobic surfaces: From natural to artificial [J]. AdvMater,2002,14(24):1857-1860.
    [107] K. K. S. Lau, J. Bico, K. B. K. Teo, et al. Superhydrophobic carbon nanotube forests [J]. NanoLett,2003,3(12):1701-1705.
    [108] A. Lafuma and D. Quere Superhydrophobic states [J]. Nat Mater,2003,2(7):457-460.
    [109] K. Tsujii, T. Yamamoto, T. Onda, et al. Super oil-repellent surfaces [J]. Angew Chem Int Edit,1997,36(9):1011-1012.
    [110] S. T. Wang, X. J. Feng, J. N. Yao, et al. Controlling wettability and photochromism in adual-responsive tungsten oxide film [J]. Angewandte Chemie-International Edition,2006,45(8):1264-1267.
    [111] X. T. Zhang, O. Sato and A. Fujishima Water ultrarepellency induced by nanocolumnar ZnOsurface [J]. Langmuir,2004,20(14):6065-6067.
    [112] M. Lee, G. Kwak and K. Yong Wettability Control of ZnO Nanoparticles for UniversalApplications [J]. Acs Applied Materials&Interfaces,2011,3(9):3350-3356.
    [113] J. L. Zhang, W. H. Huang and Y. C. Han Wettability of zinc oxide surfaces with controllablestructures [J]. Langmuir,2006,22(7):2946-2950.
    [114] J. Wang, J. Chen, S. H. Cao, et al. A facile route to prepare ZnO super-hydrophobic surface withhierarchical structure [J]. Mater. Chem. Phys.,2009,117(1):183-186.
    [115] B. Xu and Z. S. Cai Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabricsvia a wet chemical route and hydrophobic modification [J]. Applied Surface Science,2008,254(18):5899-5904.
    [116] M. Piech, T. L. Sounart and J. Liu Influence of Surface Morphology on the Wettability ofMicrostructured ZnO-Based Surfaces [J]. Journal of Physical Chemistry C,2008,112(51):20398-20405.
    [117] M. Sakai, H. Kono, A. Nakajima, et al. Sliding of Water Droplets on the SuperhydrophobicSurface with ZnO Nanorods [J]. Langmuir,2009,25(24):14182-14186.
    [118] E. L. Papadopoulou, M. Barberoglou, V. Zorba, et al. Reversible Photoinduced WettabilityTransition of Hierarchical ZnO Structures [J]. Journal of Physical Chemistry C,2009,113(7):2891-2895.
    [119] H. Liu, L. Feng, J. Zhai, et al. Reversible wettability of a chemical vapor deposition preparedZnO film between superhydrophobicity and superhydrophilicity [J]. Langmuir,2004,20(14):5659-5661.
    [120] X. Q. Meng, D. X. Zhao, J. Y. Zhang, et al. Wettability conversion on ZnO nanowire arrayssurface modified by oxygen plasma treatment and annealing [J]. Chem. Phys. Lett.,2005,413(4-6):450-453.
    [121] R. D. Sun, A. Nakajima, A. Fujishima, et al. Photoinduced surface wettability conversion of ZnOand TiO2thin films [J]. J. Phys. Chem. B,2001,105(10):1984-1990.
    [122] G. Kwak, M. Seol, Y. Tak, et al. Superhydrophobic ZnO Nanowire Surface: ChemicalModification and Effects of UV Irradiation [J]. Journal of Physical Chemistry C,2009,113(28):12085-12089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700