主要乙醇代谢酶编码基因及JWA基因单核苷酸多态性与结直肠癌遗传易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结直肠癌(Colorectal Cancer, CRC)是当前人类最常见的恶性肿瘤之一。全球目前每年有超过100万的结直肠癌新发病例,而死亡人数约50万,在肿瘤新发病例数和因肿瘤死亡人数中均处于第三位。中国结直肠癌发病率也正处于上升之中,至2008年,中国结直肠癌标化发病率已达24/10万。随着中国经济的进一步发展,若不采取有效干预措施,结直肠癌的发病率将会继续大幅上升,成为我国的主要“癌症负担”之一。新近制订的《中国癌症预防与控制规划纲要(2004~2010年)》将结直肠癌与肺癌、乳腺癌、肝癌、食管癌、胃癌、宫颈癌和鼻咽癌列为我国现阶段重点防治的8大癌症,这8类癌症死亡约占癌症死因的80 %以上。
     对结直肠癌的病因研究发现,结直肠癌是在环境因素与遗传因素交互作用下,多步骤、多阶段发展演变而形成的。目前研究认为,环境因素中,膳食结构、体力活动等与结直肠癌发病显著相关;而对于遗传因素与结直肠癌易感性的关系,目前研究较多的是叶酸相关代谢酶编码基因、Ⅱ相代谢酶基因等。
     全球的结直肠癌流行病学调查发现,饮酒与亚洲人群结直肠癌的发病较欧美人群更为显著。研究人员推测,造成人群间结直肠癌易感性的差异,遗传因素比生活因素起到了更为重要的作用。针对主要乙醇代谢酶编码基因功能多态性位点的研究也确实发现,这些基因多态性在亚洲人群和欧美人群间存在显著差异。就目前亚洲人群的资料来说,已报道的中国人群资料很少,仅我国东部地区一份资料对ADH1B、ALDH2、CYP2E1中的功能性多态位点进行了研究。从文献检索的结果来看,目前尚无应用标签单核苷酸多态性(tag single nucleotide polymorphism, tagSNP)进行主要乙醇代谢酶基因多态性与结直肠癌发病的关联研究,因此,我们在中、日、韩三国协作课题的基础上,利用该课题所建立的结直肠癌病例-对照标本库为基础,加上后续收集的东北结直肠癌病例-对照标本库,进行主要乙醇代谢酶(ADH1B、ALDH2、CYP2E1)编码基因tagSNPs及CYP2E1和环境应答基因JWA中功能多态性位点和与结直肠癌易感性的关联研究。
     目的:
     1.筛选中国北京汉族人群(CHB)乙醇代谢酶编码基因ADH1B、ALDH2、CYP2E1中tagSNPs,并在中国西南地区人群中进行tagSNPs与结直肠癌易感性的关联研究;
     2.研究西南地区人群和东北地区人群CYP2E1功能多态位点与结直肠癌易感性的关系,并对两地间的结果进行比较;
     3.研究西南地区人群JWA基因功能多态位点与结直肠癌易感性的关系。
     方法:
     1.以CHB信息为蓝本,从HapMap(http://www.hapmap.org)获取主要乙醇代谢酶(ADH1B、ALDH2、CYP2E1)编码基因全长及上游1200bp序列内的SNP信息,应用Haploview 4.0软件,按稀有等位频率(minor allele frequency, MAF)大于0.03进行多态性位点的纳入,并构建LD区域,在每个区域选择一个与该区域内其他位点关联最强的SNP,作为tagSNP纳入候选位点,以西南地区人群为研究对象,采用SNPlex技术对tagSNPs进行基因型分型;
     2.以西南地区和东北地区人群为研究对象,采用PCR-RFLP对CYP2E1中研究较多的功能多态位点RsaⅠ、DraⅠ、TaqⅠ(rs2031920、rs6413432、rs2070676)进行基因型分型;以西南地区人群为研究对象,采用PCR-RFLP对JWA中两个功能多态位点-76 G>C和723 T>G进行基因型分型;
     3.采用Statistical Analysis System (version 9.0)软件,应用非条件Logistic回归模型,计算各基因型对结直肠癌易感性影响的独立主效应,以比值比(odds ratio, OR)衡量其相对风险度;采用Haploview 4.0软件,构建单倍型;采用unphased 3.0.13软件计算单倍型OR;以MDR 1.0.0软件评估各位点间的交互作用;以分层分析计算吸烟、饮酒与多态性位点的交互作用。
     结果:
     1. ADH1B, ALDH2, CYP2E1三个基因中共筛选出16个候选位点,进入分型15个,成功分型14个;ALDH2 rs671 AA基因型、CYP2E1 rs1329149 CC基因型使西南地区人群结直肠癌易感性显著升高(OR值分别为1.86和4.01,95% CI分别为1.12-3.08和2.4-6.66),且两位点均在直肠癌发生中表现出更高的风险(rs671 AA与结肠癌遗传易感性无关联,在直肠癌中OR=2.20, 95% CI=1.25-3.86;rs1329149 CC基因型在结肠癌中OR=3.05,95% CI=1.54-6.06,在直肠癌中OR=4.72,95% CI=2.73-8.16);ALDH2和CYP2E1间存在交互作用,当个体同时携带rs671和rs1329149风险基因型(分别为AA和CC)时,个体患结直肠癌风险升高4.97倍;两位点间与饮酒也存在交互作用,在风险基因型合并作下,饮酒个体患结直肠癌的风险由非饮酒者的2.55升高到7.39,P均小于0.05。
     2.西南地区人群发病年龄低于东北人群,饮酒人群少于东北人群,两地人群间CYP2E1 rs6413432和rs2070676的基因型频率分布存在显著差异。关联分析发现,西南地区人群中,相对于GG基因型,rs2070676 GC基因型具有微弱升高直肠癌易感性的作用(OR=1.38,95% CI=1.04-1.84);与饮酒间的交互作用分析发现在西南地区人群中,相对携带非风险基因型且不饮酒的个体,当合并饮酒时,携带rs6413432 T等位和rs2070676 C等位个体对结直肠癌易感性升高(OR分别为2.26和3.54,95% CI分别为1.05-4.88和1.03-12.13)。
     3.西南地区人群中,JWA -76G>C和723T>G这两个位点与结直肠癌的发病不具有显著关联,与吸烟、饮酒也不具有交互作用。
     结论:
     1.主要乙醇代谢酶编码基因多态性中,ALDH2 rs671 AA基因型,CYP2E1 rs1329149 CC基因型,rs2070676 GC基因型是西南地区人群结直肠癌的遗传易感因素,CYP2E1和ALDH2间存在基因-基因交互作用,两基因的多态性位点与饮酒间存在环境-基因交互作用,表现出危险因素叠加时,增强西南地区人群结直肠癌易感性。
     2.西南地区人群和东北地区人群间,CYP2E1存在显著遗传差异,且饮酒习惯、结直肠癌发病年龄也存在显著差异。
     3.环境应答基因JWA基因多态性可能不是西南人群结直肠癌的遗传易感因素。综上所述,中国西南地区和东北地区人群在所研究的基因中具有遗传差异,提示多人群的对比研究在遗传易感性研究中具有重要意义。西南地区人群中,主要乙醇代谢酶基因多态性与结直肠癌易感性相关,同时与饮酒具有交互作用,提示个体是否罹患结直肠癌,除个体的生活习惯外,与遗传因素的作用也有很大关系,对制定个性化干预措施以降低结直肠癌发病风险具有指导意义。
Backgroud:
     Colorectal cancer (CRC) is one of the most common malignant cancers in modern society. More than 1 million people develop CRC all over the world every year, and about 500 thousand people die of it, which made CRC ranking the 3rd of both morbidity and mortality in all cancers. In China, the morbidity of CRC is increasing sharply. It counted about 24 incidences in 100 thousand people in year 2008 in China. In a newly enacted document“Essentials in the plan of cancer prevention and control in China”, CRC was listed as one of the eight“emergency cancers”which are responsible for 80% of the mortality caused by cancers.
     Like most cancers, etiology study suggested that both genetic and environmental factors take effects in developing CRC. Studies revealed that diet and phisycal activities are related environmental factors while genes coding folic acid metabolizing enzymes and some phaseⅡmetabolizing enzymes play important roles in the genetic susceptibily to CRC.
     Most epidemiology studies found alcohol consumption to be a risk factor of developing CRC, especially in Asians. The different effects of alcohol consumption among populations indicate that genetic factors may play important roles in the association between alcohol consumption and CRC development. Studies on the fanctional polymorphisms in alcohol metaolizing enzymes found significant genetic differences between western people and Asians. However, there are only a few reported researches focused on Chinese population, and no tagSNPs based research into alcohol metabolizing enzymes was reported. On account of this, we conducted a case-control study based on the Japan, Korea and China Colorectal Cancer collaboration study, adding the newly recruited samples from northeastern China, to study the genetic association between polymorphisms of genes coding major alcohol metabolizing enzymes, JWA gene and CRC.
     Objectives:
     1. To screen tagSNPs in major alcohol metabolizing genes ADH1B, ALDH2, CYP2E1 and to study the association between the tag SNPs and CRC susceptibility in southwestern Chinese.
     2. To study the association between CYP2E1 functional polymorphisms and CRC susceptibility in both southwestern and northeastern Chinese, and the difference between the two district.
     3. To study the association between JWA functional polymorphisms and CRC susceptibility in southwestern Chinese.
     Method:
     1. Obtaining CHB population SNPs data of whole length plus 1200bp upper strand of ADH1B, ALDH2, CYP2E1 from HapMap (http://www.hapmap.org), accepting the loci that the minor allele frequency (MAF) is above 0.03, constructing LD blocks with software Haploview v4.0, select the locus which ranks the highest r2 with other loci in the very block as the tagSNP, using SNPlex to genotype these tagSNPs in southwestern Chinese.
     2. Using PCR-RFLP to genotype CYP2E1 functional polymorphisms RsaⅠ, DraⅠ, TaqⅠ(rs2031920, rs6413432, rs2070676) in southwestern and northeastern Chinese; using PCR-RFLP to genotype JWA functional polymorphisms -76 G>C and 723 T>G in southwestern Chinese.
     3. Using software Statistical Analysis System version 9.0 to apply unconditional logistic regression model to evaluate the risk by odds ratio (OR); using software Haploview v4.0 for reconstructing haplotypes; using software unphased v3.0.13 for evaluating the ORs of haplotypes; using Multifactor dimensionality reduction (MDR) v1.0.0 to assess the interactions between loci; dividing samples into subgroups by drinking or smoking habits to assess interactions between genetic polymorphisms and smoking and alcohol consumption.
     Results:
     1. In the three candidate genes coding major alcohol metabolizing enzymes (ADH1B, ALDH2, CYP2E1), sixteen candidate loci were screened and fourteen of them were genotyped successfully; ALDH2 rs671 AA and CYP2E1 rs1329149 CC genotypes were found to be associated with increased risk of CRC in southwestern Chinese (OR=1.86 and 4.01, 95% CI=1.12-3.08 and 2.40-6.66, respectively), both the loci showed higher effect in rectum cancer (rs671 AA genotype was not associated with colon cancer but showed 2.20-fold of increased risk in rectum cancer, 95% CI=1.25-3.86; rs1329149 CC genotype showed 3.05-fold and 4.72-fold of increased risk in colon cancer and rectum cancer, respectively); Interaction between ALDH2 and CYP2E1 was found, individuals with risk genotypes of rs671 AA and rs1329149 CC, showed an increased risk of 4.97-fold; Interactions existed between the two loci and alcohol consumption, the risk to CRC susceptibility of people with rs671 AA and rs1329149 CC increased from 2.55-fold in non-drinkers to 7.39-fold in drinkers.
     2. The age of diagnosing CRC was significantly lower in southwestern Chinese than that in northeastern Chinese. Drinking people was fewer in southwestern Chinese than that in northeastern Chinese. Genetic differences were found in CYP2E1 between southwestern and northwestern Chinese. In southwestern Chinese, rs2070676 CC genotype was associated with slightly increased risk of CRC (OR=1.38, 95% CI=1.04-1.84), combined with alcohol consumption, rs6413423 T allele and rs2070676 C allele were associated with increased risk of CRC (OR=2.26 and 3.54, respectively), which were not found in northeastern Chinese.
     3. JWA -76G>C and 723 T>G were not associated with CRC in southwestern Chinese. No interaction was found between the polymorphisms and smoking or alcohol consumption.
     Conclusion:
     1. Among the polymorphisms in major alcohol metabolizing genes, ALDH2 rs671 AA, CYP2E1 rs1329149 CC and rs2070676 GC genotypes are genetic susceptibility factors of CRC in southwestern Chinese. Gene-gene interaction exists between CYP2E1 and ALDH2, and gene-environment interaction also exists between CYP2E1, ALDH2 polymorphisms and alcohol consumption, the result showed increased risk with more risk factors in southwestern Chinese.
     2. Significant genetic differences exist between southwestern and northeastern Chinese, drinking habit, the age of developing CRC are significantly different between the two populations.
     3. JWA gene polymorphisms may be not associated with CRC risk in southwestern Chinese.
     To be summary, the genetic background differs in southwestern and northeastern Chinese, indicating the importance of multi population research. Polymorphisms in major alcohol metabolizing enzymes are associated with CRC susceptibility, and they interact with alcohol consumption, indicating that, beyond genetic factors which are hardly to be modified, life style is an important factor in developing CRC, which we can be easily taken into control. This may lead to a new direction of individual intervention in CRC prevention.
引文
1. International Agency for Research on Cancer, W. World Cancer Report (2008).
    2. Group, U.S.C.S.W. United States Cancer Statistics: 1999–2005 Incidence and Mortality Web-based Report. (2009).
    3. Jemal, A., et al. Cancer statistics, 2008. CA Cancer J Clin 58, 71-96 (2008).
    4. Yako-Suketomo, H. & Marugame, T. Comparison of time trends in colon, rectum and anus cancer incidence (1973-2002) in Asia, from 'Cancer Incidence in Five Continents, Vols IV-IX'. Jpn J Clin Oncol 39, 196-198 (2009).
    5.王强,郑海涛,丁德祥.结直肠癌的流行病学和筛查进展.中国现代医生46, 103-104 (2008).
    6.李鸿宝,黄振华. 2002~2004年上海市普陀区大肠癌发病率与死亡率分析.上海预防医学杂志17, 481-482 (2005).
    7.郑永兰,周海龙,王正松.重庆市某区2001~2004年恶性肿瘤发病率分析.检验医学与临床3, 148-149 (2006).
    8. Institute, N.C., NIH, DHHS, Bethesda MD. Cancer trends progress report-2007 update. (2007).
    9. Ries, L.A., et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer 88, 2398-2424 (2000).
    10.张思维,陈万青,雷正龙,邹小农,赵平.中国肿瘤登记处2004年恶性肿瘤发病资料分析.中国肿瘤17, 909-912 (2008).
    11.杨玲,李连弟,陈育德, Parkin, D.M.中国2000年及2005年恶性肿瘤发病死亡的估计与预测.中国卫生统计22, 218-221,231 (2005).
    12.中华人民共和国卫生部.中国癌症预防与控制规划纲要(2004-2010).中国肿瘤13, 65-68 (2003).
    13. Tejpar, S. Risk stratification for colorectal cancer and implications for screening. Acta Gastroenterol Belg 68, 241-242 (2005).
    14. Rustgi, A.K. The genetics of hereditary colon cancer. Genes Dev 21, 2525-2538 (2007).
    15. Kim, I.J., et al. Mutational analysis of OGG1, MYH, MTH1 in FAP, HNPCC and sporadic colorectal cancer patients: R154H OGG1 polymorphism is associated withsporadic colorectal cancer patients. Hum Genet 115, 498-503 (2004).
    16. Potter, J.D. Colorectal cancer: molecules and populations. J Natl Cancer Inst 91, 916-932 (1999).
    17. Jover, R. & Castells, A. Molecular information defines a new entity of hereditary colorectal cancer. Gastroenterology 134, 888-889; discussion 889-890 (2008).
    18. Hahn, M., Koufaki, O.N. & Schackert, H.K. Molecular biology of colorectal cancer and clinical consequences for colorectal cancer syndromes. Langenbecks Arch Surg 383, 389-396 (1998).
    19. Lin, O.S. Acquired risk factors for colorectal cancer. Methods Mol Biol 472, 361-372 (2009).
    20. Huxley, R.R., et al. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer 125, 171-180 (2009).
    21. Harriss, D.J., et al. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Colorectal Dis (2009).
    22. Harriss, D.J., et al. Lifestyle factors and colorectal cancer risk (2): a systematic review and meta-analysis of associations with leisure-time physical activity. Colorectal Dis (2009).
    23. Huxley, R. The role of lifestyle risk factors on mortality from colorectal cancer in populations of the Asia-Pacific region. Asian Pac J Cancer Prev 8, 191-198 (2007).
    24. Lutz, W.K. Carcinogens in the diet vs. overnutrition. Individual dietary habits, malnutrition, and genetic susceptibility modify carcinogenic potency and cancer risk. Mutat Res 443, 251-258 (1999).
    25. Theodoropoulos, G.E., et al. P53 and EGFR expression in colorectal cancer: a reappraisal of 'old' tissue markers in patients with long follow-up. Anticancer Res 29, 785-791 (2009).
    26. Speetjens, F.M., et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res 15, 1086-1095 (2009).
    27. Torsello, A., et al. P53 and bcl-2 in colorectal cancer arising in patients under 40 years of age: distribution and prognostic relevance. Eur J Cancer 44, 1217-1222 (2008).
    28. Howard, J.H., et al. Epigenetic downregulation of the DNA repair gene MED1/MBD4 in colorectal and ovarian cancer. Cancer Biol Ther 8 (2009).
    29. Grindedal, E.M., et al. High risk of endometrial cancer in colorectal cancer kindred is pathognomonic for MMR-mutation carriers. Fam Cancer (2008).
    30. Aaltonen, L., Johns, L., Jarvinen, H., Mecklin, J.P. & Houlston, R. Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 13, 356-361 (2007).
    31. Sanchez de Abajo, A., et al. Dual role of LOH at MMR loci in hereditary non-polyposis colorectal cancer? Oncogene 25, 2124-2130 (2006).
    32. Wu, B.P., Zhang, Y.L., Zhou, D.Y., Gao, C.F. & Lai, Z.S. Microsatellite instability, MMR gene expression and proliferation kinetics in colorectal cancer with famillial predisposition. World J Gastroenterol 6, 902-905 (2000).
    33. Herath, N.I., Doecke, J., Spanevello, M.D., Leggett, B.A. & Boyd, A.W. Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer 100, 1095-1102 (2009).
    34. Derks, S., et al. Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the Deleted in Colon Cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis (2009).
    35. Matsuda, A., Sasajima, K., Matsutani, T. & Tajiri, T. Prevention of postoperative infection and micrometastasis by preoperative administration of a PPARgamma agonist following colorectal cancer surgery. J Nippon Med Sch 76, 47-49 (2009).
    36. Lohsiriwat, V. & Lohsiriwat, D. Antibiotic prophylaxis and incisional surgical site infection following colorectal cancer surgery: an analysis of 330 cases. J Med Assoc Thai 92, 12-16 (2009).
    37. Matsuda, A., et al. Preoperative Plasma Adiponectin Level Is a Risk Factor for Postoperative Infection Following Colorectal Cancer Surgery. J Surg Res (2008).
    38. Hayanga, A.J. HPV, cervical dysplasia and anal cancer screening--a need for liaison between gynecology and colorectal clinics. Gynecol Oncol 102, 600-601 (2006).
    39. Yu, H.G., et al. Deletion of the FHIT gene in human colorectal cancer is independent of high-risk HPV infection. Int J Colorectal Dis 17, 396-401 (2002).
    40. Theodoratou, E., et al. Modification of the associations between lifestyle, dietary factors and colorectal cancer risk by APC variants. Carcinogenesis 29, 1774-1780 (2008).
    41. de Vogel, S., et al. Associations of dietary methyl donor intake with MLH1 promoter hypermethylation and related molecular phenotypes in sporadic colorectal cancer. Carcinogenesis 29, 1765-1773 (2008).
    42. Terry, P., Jain, M., Miller, A.B., Howe, G.R. & Rohan, T.E. Dietary intake of folic acid and colorectal cancer risk in a cohort of women. Int J Cancer 97, 864-867 (2002).
    43. Luebeck, E.G., Moolgavkar, S.H., Liu, A.Y., Boynton, A. & Ulrich, C.M. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions. Cancer Epidemiol Biomarkers Prev 17, 1360-1367 (2008).
    44. Strohle, A., Wolters, M. & Hahn, A. Folic acid and colorectal cancer prevention: molecular mechanisms and epidemiological evidence (Review). Int J Oncol 26, 1449-1464 (2005).
    45. Porcelli, B., et al. Levels of folic acid in plasma and in red blood cells of colorectal cancer patients. Biomed Pharmacother 50, 303-305 (1996).
    46. Wingo, P.A., et al. Annual report to the nation on the status of cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst 91, 675-690 (1999).
    47. Wu, A.H., Paganini-Hill, A., Ross, R.K. & Henderson, B.E. Alcohol, physical activity and other risk factors for colorectal cancer: a prospective study. Br J Cancer 55, 687-694 (1987).
    48. Flood, A., et al. Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women. Am J Epidemiol 158, 59-68 (2003).
    49. Wu, I.C., et al. Consumption of cigarettes but not betel quid or alcohol increases colorectal cancer risk. J Formos Med Assoc 108, 155-163 (2009).
    50. Acott, A.A., Theus, S.A., Marchant-Miros, K.E. & Mancino, A.T. Association of tobacco and alcohol use with earlier development of colorectal cancer: should we modify screening guidelines? Am J Surg 196, 915-918; discussion 918-919 (2008).
    51. Bongaerts, B.W., van den Brandt, P.A., Goldbohm, R.A., de Goeij, A.F. & Weijenberg, M.P. Alcohol consumption, type of alcoholic beverage and risk of colorectal cancer atspecific subsites. Int J Cancer 123, 2411-2417 (2008).
    52. Joshi, A.D., et al. Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk. Carcinogenesis 30, 472-479 (2009).
    53. Santarelli, R.L., Pierre, F. & Corpet, D.E. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer 60, 131-144 (2008).
    54. Toriola, A.T., Kurl, S., Laukanen, J.A., Mazengo, C. & Kauhanen, J. Alcohol consumption and risk of colorectal cancer: the Findrink study. Eur J Epidemiol 23, 395-401 (2008).
    55. Shrubsole, M.J., et al. Alcohol drinking, cigarette smoking, and risk of colorectal adenomatous and hyperplastic polyps. Am J Epidemiol 167, 1050-1058 (2008).
    56. Thygesen, L.C., et al. Alcohol intake and colorectal cancer: a comparison of approaches for including repeated measures of alcohol consumption. Epidemiology 19, 258-264 (2008).
    57. Longnecker, M.P., Orza, M.J., Adams, M.E., Vioque, J. & Chalmers, T.C. A meta-analysis of alcoholic beverage consumption in relation to risk of colorectal cacner. Cancer Causes and Control 1, 59-68 (1990).
    58. Cho, E., et al. Alcohol Intake and Colorectal Cancer: A Pooled Analysis of 8 Cohort Studies. Annals of Internal Medicine 140, 603-614 (2004).
    59. Mizoue, T., et al. Alcohol drinking and colorectal cancer in Japanese: a pooled analysis of results from five cohort studies. Am J Epidemiol 167, 1397-1406 (2008).
    60.周紫垣,易东,曹佳, et al.重庆地区人群半定量食物频数问卷的效度和信度研究.第三军医大学学报25, 1706-1709 (2003).
    61. Badger, T.M., et al. Alcohol Metabolism: Role in Toxicity and Carcinogenesis. Alcohollism: Clinical and Experimental Research 27, 336-347 (2003).
    62. Seitz, H.K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7, 599-612 (2007).
    63. CM, O., et al. Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 36, 47-52 (2002).
    64. CS, L. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)– a review. Alcohol Clin Exp Res 23, 991-1007 (1999).
    65. AJ, G., Seitz, H.K. & Lieber, C.S. Enhancement of dimethylnitrosamine metabolism and activation to a mutagen following chronic ethanol consumption. Cancer Res 41, 120-124 (1981).
    66. Emanuele, A., P, C., M, M., A, T. & SW, I.-S.M.F. Role of cytochrome P-4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rat fed intragastrically with ethanol. Hepatology 23, 155-163 (1996).
    67. I, D., D, L., P, C., C, M. & Emanuele, A. Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. Hepatol 28, 564-571 (1998).
    68. RC, P. & S, L.C. Energy wastage in rats given drugs that induce microsomal enzymes. J Nutr 105, 1544-1548 (1975).
    69. Homann, N., Jousimies-Somer, H., Jokelainen, K., Heine, R. & Salapuro, M. High acetaldehyde levels in saliva after ethanol consumption: methodological aspects and pathogenetic implications. Carcinogenesis 18, 1739-1743 (1997).
    70. Sarkola, T., Lles, M.R., Kohlenberg-Mueller, K. & Eriksson, C.J. Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole. Alcohol Clin Exp Res 26, 239-245 (2002).
    71. Aleynik, S.I., A., L.M., Aleynik, M.K. & Lieber, C.S. Increased circulation products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res 22, 192-196 (1998).
    72. Leo, M.A. & Lieber, C.S. Hepatic vitamin A depletion in alcoholic liver injury. N. Enla. J. Med. 304, 597-600 (1982).
    73. Druesne-Pecollo, N., et al. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet 10, 173-180 (2009).
    74. Baan, R., et al. Carcinogenicity of alcoholic beverages. Lancet 8, 292-293 (2007).
    75. Morita, M., et al. Genetic polymorphisms of CYP2E1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Epidemiol Biomarkers Prev 18, 235-241 (2009).
    76. Gao C.M., et al. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males. World J Gastroenterol 14, 5078-5083 (2008).
    77. JC, B., B, F., J, M. & MJ, D. Haploview: analysis and visualization of LD andhaplotype maps. Bioinformatics 21, 263-265 (2005).
    78. A, G., AVS, T., Krishnan, L. & Stein, L.D. A User's Guide to the International HapMap Project. (International HapMap Project Web Site, 2005).
    79.中国保健协会,中华医学会,世纪蓝图市场调查有限公司&劲牌有限公司. 2007年度中国25省民众健康饮酒状况调查报告. (2008).
    80. Thompson, D., Stram, D., Goldgar, D. & Witte, J.S. Haplotype tagging single nucleotide polymorphisms and association studies. Hum Hered 56, 48-55 (2003).
    81. Gu, C.C., Yu, K., Ketkar, S., Templeton, A.R. & Rao, D.C. On transferability of genome-wide tagSNPs. Genet Epidemiol 32, 89-97 (2008).
    82. Zeggini, E., et al. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 37, 1320-1322 (2005).
    83. Tobler, A.R., et al. The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16, 398-406 (2005).
    84. De la Vega, F.M., Lazaruk, K.D., Rhodes, M.D. & Wenz, M.H. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat Res 573, 111-135 (2005).
    85. Cen, H., Zheng, S., Fang, Y.M., Tang, X.P. & Dong, Q. Induction of HSF1 expression is associated with sporadic colorectal cancer. World J Gastroenterol 10, 3122-3126 (2004).
    86.李霆. HSF1与XAF1基因在胃肠肿瘤中表达的研究.南方医科大学学报28, 487-490 (2008).
    87.方永明,董琦,岑辉,唐小萍,郑树. HSF1基因表达升高与大肠癌.浙江大学学报(医学版) 33, 390-394 (2004).
    88. Yin, S.J. & Peng, G.S. Acetaldehyde, polymorphisms and the cardiovascular system. Novartis Found Symp 285, 52-63; discusion 63-58, 198-199 (2007).
    89. Deitrich, R.A., Petersen, D. & Vasiliou, V. Removal of acetaldehyde from the body. Novartis Found Symp 285, 23-40; discussion 40-51, 198-199 (2007).
    90. Seitz, H.K. & Homann, N. The role of acetaldehyde in alcohol-associated cancer of the gastrointestinal tract. Novartis Found Symp 285, 110-119; discussion 119-114, 198-119 (2007).
    91. Niemela, O. Acetaldehyde adducts in circulation. Novartis Found Symp 285, 183-192;discussion 193-187 (2007).
    92. Yokoyama, A., et al. Multiple primary esophageal and concurrent upper aerodigestive tract cancer and the aldehyde dehydrogenase-2 genotype of Japanese alcoholics. Cancer 77, 1986-1990 (1996).
    93. Badger, T.M., et al. Alcohol metabolism: role in toxicity and carcinogenesis. Alcohol Clin Exp Res 27, 336-347 (2003).
    94. Kang, T.S., Woo, S.W., Park, H.J., Lee, Y. & Roh, J. Comparison of genetic polymorphisms of CYP2E1, ADH2, and ALDH2 genes involved in alcohol metabolism in Koreans and four other ethnic groups. J Clin Pharm Ther 34, 225-230 (2009).
    95. Yin, G., et al. Alcohol dehydrogenase and aldehyde dehydrogenase polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci 98, 1248-1253 (2007).
    96. Gonzalez, F.J. The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos 35, 1-8 (2007).
    97. Cartmell, M.T., et al. Cytochrome P450 2E1 high activity polymorphism in alcohol abuse and end-organ disease. World J Gastroenterol 11, 6445-6449 (2005).
    98. Bolt, H.M., Roos, P.H. & Thier, R. The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int Arch Occup Environ Health 76, 174-185 (2003).
    99. Song, B.J., Veech, R.L., Park, S.S., Gelboin, H.V. & Gonzalez, F.J. Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J Biol Chem 264, 3568-3572 (1989).
    100. Sohn, O.S., Ishizaki, H., Yang, C.S. & Fiala, E.S. Metabolism of azoxymethane, methylazoxymethanol and N-nitrosodimethylamine by cytochrome P450IIE1. Carcinogenesis 12, 127-131 (1991).
    101. Wu, D. & Cederbaum, A.I. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. Toxicol Appl Pharmacol 207, 70-76 (2005).
    102. Cederbaum, A.I. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J Gastroenterol Hepatol 21 Suppl 3, S22-25 (2006).
    103. Hiyama, T., Yoshihara, M., Tanaka, S. & Chayama, K. Genetic polymorphisms and esophageal cancer risk. Int J Cancer 121, 1643-1658 (2007).
    104. Danko, I.M. & Chaschin, N.A. Association of CYP2E1 gene polymorphism with predisposition to cancer development. Exp Oncol 27, 248-256 (2005).
    105. Uchimoto, T., et al. Role of the genetic polymorphisms in the 5'-flanking region for transcriptional regulation of the human CYP2E1 gene. Alcohol Clin Exp Res 31, S36-42 (2007).
    106. Hayashi, S., Watanabe, J. & Kawajiri, K. Genetic polymorphisms in the 5'-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 110, 559-565 (1991).
    107. Tsutsumi, M., Wang, J.S., Takase, S. & Takada, A. Hepatic messenger RNA contents of cytochrome P4502E1 in patients with different P4502E1 genotypes. Alcohol Alcohol Suppl 29, 29-32 (1994).
    108. Kim, R.B., O'Shea, D. & Wilkinson, G.R. Relationship in healthy subjects between CYP2E1 genetic polymorphisms and the 6-hydroxylation of chlorzoxazone: a putative measure of CYP2E1 activity. Pharmacogenetics 4, 162-165 (1994).
    109. Watanabe, J., Hayashi, S. & Kawajiri, K. Different regulation and expression of the human CYP2E1 gene due to the RsaI polymorphism in the 5'-flanking region. J Biochem 116, 321-326 (1994).
    110. Ruwali, M., et al. Cytochrome P450 2E1 and head and neck cancer: Interaction with genetic and environmental risk factors. Environ Mol Mutagen (2009).
    111. Druesne-Pecollo, N., et al. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol 10, 173-180 (2009).
    112. Morita, M., et al. Genetic polymorphisms of CYP2E1 and risk of colorectal adenomas in the Self Defense Forces Health Study. Cancer Epidemiol Biomarkers Prev 17, 1800-1807 (2008).
    113. Soya, S.S., Vinod, T., Reddy, K.S., Gopalakrishnan, S. & Adithan, C. CYP2E1 polymorphisms and gene-environment interactions in the risk of upper aerodigestive tract cancers among Indians. Pharmacogenomics 9, 551-560 (2008).
    114. Gao, C.M., et al. CYP2E1 Rsa I polymorphism impacts on risk of colorectal cancer association with smoking and alcohol drinking. World J Gastroenterol 13, 5725-5730(2007).
    115. Reszka, E., Wasowicz, W. & Gromadzinska, J. Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility. Br J Nutr 96, 609-619 (2006).
    116. Seitz, H.K., Maurer, B. & Stickel, F. Alcohol consumption and cancer of the gastrointestinal tract. Dig Dis 23, 297-303 (2005).
    117. van der Logt, E.M., et al. Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res 593, 39-49 (2006).
    118. Agundez, J.A. Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab 5, 211-224 (2004).
    119.李代蓉. CYP2E1基因多态性与肺癌遗传易感性的关系.第三军医大学学报30, 1231-1234 (2008).
    120. Le Marchand, L., et al. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res 58, 4858-4863 (1998).
    121. Persson, I., et al. Genetic polymorphism of xenobiotic metabolizing enzymes among Chinese lung cancer patients. Int J Cancer 81, 325-329 (1999).
    122. Vodicka, P., et al. Association between genetic polymorphisms and biomarkers in styrene-exposed workers. Mutat Res 482, 89-103 (2001).
    123. Li, D., Dandara, C. & Parker, M.I. Association of cytochrome P450 2E1 genetic polymorphisms with squamous cell carcinoma of the oesophagus. Clin Chem Lab Med 43, 370-375 (2005).
    124. Uematsu, F., et al. Restriction fragment length polymorphism of the human CYP2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure. Pharmacogenetics 4, 58-63 (1994).
    125. Wu, X., et al. Cytochrome P450 2E1 DraI polymorphisms in lung cancer in minority populations. Cancer Epidemiol Biomarkers Prev 7, 13-18 (1998).
    126. Soya, S.S., Padmaja, N. & Adithan, C. Genetic polymorphisms of CYP2E1 and GSTP1 in a South Indian population--comparison with North Indians, Caucasians and Chinese. Asian Pac J Cancer Prev 6, 315-319 (2005).
    127. Haufroid, V., Buchet, J.P., Gardinal, S. & Lison, D. Cytochrome P4502E1 phenotypingby the measurement of the chlorzoxazone metabolic ratio: assessment of its usefulness in workers exposed to styrene. Int Arch Occup Environ Health 75, 453-458 (2002).
    128. Wong, N.A., Rae, F., Simpson, K.J., Murray, G.D. & Harrison, D.J. Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis. Mol Pathol 53, 88-93 (2000).
    129. Yang, M., Tsuang, J. & Yvonne Wan, Y.J. A haplotype analysis of CYP2E1 polymorphisms in relation to alcoholic phenotypes in Mexican Americans. Alcohol Clin Exp Res 31, 1991-2000 (2007).
    130. Chen, R., et al. JWA--a novel environmental-responsive gene, involved in estrogen receptor-associated signal pathway in MCF-7 and MDA-MB-231 breast carcinoma cells. J Toxicol Environ Health A 68, 445-456 (2005).
    131. Wei, X., et al. Relationship between structure and function of JWA in the modulation of cell differentiation. Chinese Science Bulletin 46, 2063-2067 (2001).
    132. Wang, S., et al. JWA regulates XRCC1 and functions as a novel base excision repair protein in oxidative-stress-induced DNA single-strand breaks. Nucleic Acids Res 37, 1936-1950 (2009).
    133. Zhou, J., Ye, J., Zhao, X. & Li, A. JWA is required for arsenic trioxide induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria linked signal pathway. Toxicol Appl Pharmacol 230, 33-40 (2008).
    134. Chen, R., et al. Identification of JWA as a novel functional gene responsive to environmental oxidative stress induced by benzo[a]pyrene and hydrogen peroxide. Free Radic Biol Med 42, 1704-1714 (2007).
    135.王南平,周建伟,李爱萍,曹海霞,王心如. JWA基因参与细胞氧化应激的机制研究.中华劳动卫生职业病杂志21, 212-215 (2003).
    136.茆文革,李爱萍,周建伟, et al.诱导分化剂和热应激对K562细胞JWA和热应激蛋白70表达的影响.中华劳动卫生职业病杂志21, 253-256 (2003).
    137.齐泓,李爱萍,周建伟.可能参与调节中枢神经系统病变的新的信号分子:JWA基因对HEK293细胞谷氨酸转运的影响.中国临床康复8, 1259-1261 (2004).
    138.周海龙, PY, D., YH, Z.新的细胞骨架相关基因——JWA的克隆、鉴定、序列分析、表达调控和组织分布研究(军事医学科学出版社,北京, 1999).
    139. Li, C., et al. The Drosophila homolog of jwa is required for ethanol tolerance. Alcohol Alcohol 43, 529-536 (2008).
    140. Tang, W.Y., et al. Identification and functional characterization of JWA polymorphisms and their association with risk of gastric cancer and esophageal squamous cell carcinoma in a Chinese population. J Toxicol Environ Health A 70, 885-894 (2007).
    141. Li, C.P., et al. Functional polymorphisms of JWA gene are associated with risk of bladder cancer. J Toxicol Environ Health A 70, 876-884 (2007).
    142. Wu, W., et al. [A case-control study on JWA promoter -76G-->C polymorphism and the susceptibility of bladder cancer]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22, 648-652 (2005).
    143. Shen, Q., et al. Functional variations in the JWA gene are associated with increased odds of leukemias. Leuk Res 31, 783-790 (2007).
    144.茆文革,李爱萍,周建伟, et al.诱导分化联合热休克处理对K562细胞JWA和热休克蛋白70表达的影响.中华劳动卫生职业病杂志22, 60-63 (2004).
    145.夏薇,李爱萍,周建伟, et al. JWA参与调控细胞分化的结构和功能.科学通报46, 734-738 (2001).
    146. Ingley, E., et al. A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61beta subunit. FEBS Lett 459, 69-74 (1999).
    147.朱婷,李爱萍,刘起展,王心如,周建伟.过氧化氢处理K562细胞中JWA基因的表达及其与DNA操作和凋亡的关系.中华预防医学杂志39, 182-186 (2005).
    148.曹海霞,朱婷,周建伟,. JWA参与维甲酸、佛波酯和三氧化二砷诱导急性早幼粒细胞性白血病细胞分化和凋亡的可能机制.科学通报23, 1979-1984 (2001).
    149.顾灯安,李爱萍,朱婷,叶健,周建伟.苯并(a)芘作用下人胚肺细胞JWA基因的表达及其与DNA修复的关系.中华预防医学杂志39, 187-190 (2005).
    150.汤唯艳,朱婷,周建伟, et al. JWA基因多态性与消化道肿瘤易感性关系的研究.南京医科大学学报(自然科学版) 26, 640-644 (2006).
    151.朱慧,王美林,李春平,李爱萍,沈洪兵,韩素萍. JWA基因-76G>C和454C>A多态性与宫颈癌易感性.南京医科大学学报(自然科学版)28, 464-466 (2008).
    1. Wakai K, Kojima M, Tamakoshi K, et al. Alcohol consumption and colorectal cancer risk: findings from the JACC Study. J Epidemiol JT - Journal of epidemiology / Japan Epidemiological Association, 2005,15 Suppl 2:S173-9.
    2. Ravasco P, Monteiro-Grillo I, Marques Vidal P, et al. Nutritional risks and colorectal cancer in a Portuguese population. Nutr Hosp, 2005,20:165-72.
    3. Pedersen A, Johansen C, Gronbaek M. Relations between amount and type of alcohol and colon and rectal cancer in a Danish population based cohort study. Gut JT - Gut, 2003,52:861-7.
    4. Yeh CC, Hsieh LL, Tang R, et al. Risk factors for colorectal cancer in Taiwan: a hospital-based case-control study. J Formos Med Assoc JT - Journal of the Formosan Medical Association = Taiwan yi zhi, 2003,102:305-12.
    5. Monroe KR, Hankin JH, Pike MC, et al. Correlation of dietary intake and colorectal cancer incidence among Mexican-American migrants: the multiethnic cohort study. Nutr Cancer JT - Nutrition and cancer, 2003,45:133-47.
    6. Sharpe CR, Siemiatycki J, Rachet B. Effects of alcohol consumption on the risk of colorectal cancer among men by anatomical subsite (Canada). Cancer Causes Control JT - Cancer causes & control : CCC, 2002,13:483-91.
    7. Chen K, Jiang Q, Ma X, et al. Alcohol drinking and colorectal cancer: a population-based prospective cohort study in China. Eur J Epidemiol JT - Europeanjournal of epidemiology, 2005,20:149-54.
    8. Matsuo K, Ito H, Wakai K, et al. One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan. Carcinogenesis JT - Carcinogenesis, 2005,26:2164-71.
    9. Simanowski UA, Stickel F, Maier H, et al. Effect of alcohol on gastrointestinal cell regeneration as a possible mechanism in alcohol-associated carcinogenesis. Alcohol, 1995,12:111-5.
    10. Freund G. Possible relationships of alcohol in membranes to cancer. Cancer Res, 1979,39:2899-901.
    11. Seitz HK, Simanowski UA, Garzon FT, et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology, 1990,98:406-13.
    12. Purohit, Vishnudutt, Khalsa, Jag, Serrano, Jose. Mechanisms of alcohol-associated cancers: introduction and summary of the symposium. Alcohol, 2005,35:155-160.
    13. Vaca CE, Nilsson JA, Fang JL, et al. Formation of DNA adducts in human buccal epithelial cells exposed to acetaldehyde and methylglyoxal in vitro. Chem Biol Interact, 1998,108:197-208.
    14. Molina PE, Hoek JB, Nelson S, et al. Mechanisms of alcohol-induced tissue injury. Alcohol Clin Exp Res, 2003,27:563-75.
    15. Castro GD, de Castro CR, Maciel ME, et al. Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: potential factors involved in alcohol drinking promotion of breast cancer. Toxicology, 2006,219:208-19.
    16. Petersen DR. Alcohol, iron-associated oxidative stress, and cancer. Alcohol, 2005,35:243-9.
    17. Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest, 2000,106:867-72.
    18. Stewart SF, Vidali M, Day CP, et al. Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease. Hepatology, 2004,39:197-203.
    19. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol, 2004,44:239-67.
    20. Giovannucci E. Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J Nutr JT - The Journal of nutrition, 2004,134:2475S-2481S.
    21. Cooper AJ. Biochemistry of sulfur-containing amino acids. Annu Rev Biochem, 1983,52:187-222.
    22. Hoffman RM. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta, 1984,738:49-87.
    23. Cravo ML, Mason JB, Dayal Y, et al. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res, 1992,52:5002-6.
    24. Wang XD. Alcohol, vitamin A, and cancer. Alcohol JT - Alcohol (Fayetteville, N.Y.), 2005,35:251-8.
    25. Jelski W, Zalewski B, Chrostek L, et al. The activity of class I, II, III, and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in colorectal cancer. Dig Dis Sci JT - Digestive diseases and sciences, 2004,49:977-81.
    26. Landi S, Gemignani F, Moreno V, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics, 2005,15:535-546.
    27. Matsuo K, Wakai K, Hirose K, et al. A gene-gene interaction between ALDH2 Glu487Lys and ADH2 His47Arg polymorphisms regarding the risk of colorectal cancer in Japan. Carcinogenesis, 2005.
    28. Yamauchi M, Maezawa Y, Mizuhara Y, et al. Polymorphisms in alcohol metabolizing enzyme genes and alcoholic cirrhosis in Japanese patients: a multivariate analysis. Hepatology, 1995,22:1136-42.
    29. Bosron WF, Li TK. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology, 1986,6:502-10.
    30. van der Logt EM, Bergevoet SM, Roelofs HM, et al. Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res, 2005.
    1. ParkinDM. Global cancer statistics in the year2000. LancetOncol, 2001, 2: 533-543.
    2. JemalA, Murray T, Ward E, et al. Cancer statistics, 2005. CA CancerJ Clin, 2005, 55: 10-30.
    3.上海市肿瘤研究所流行病研究室。2000年上海市恶性肿瘤发病率。肿瘤,2003,23:532.
    4.吴健民,主编。免疫检验理论与临床。北京:人民卫生出版社,2003.335-347.
    5. Ove Wiborg, Lars Berglund, Esper Boel, et al. Structure of a human gastrin gene. Peoc Natl Acad USA, 1984, 81:1067-1069.
    6.张鸿坤,林建灿.大肠癌中胃泌素和胃泌素mRNA检测的临床意义.大肠肛门病外科杂志, 1998.
    7.王小军,赖大年.胃泌素与结直肠癌.中华普通外科杂志, 2003.
    8. Shin s, Sung BJ, Cho YS, et al. An anti-apoptotic protein human surviving is a direct inhibitor of caspase-3 and caspase-7. J, Biochemistry, 2001,40:1117-1123.
    9. Suzuki a, Ito T, Kawano H, et al. Survivin initiates procaspase3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 2000, 19:1346-1353
    10. O’Connor DS, Schechner JS, Adida C, et al. Control of apoptosis during angiogenesis by seruvivin expression in endothelial cells. Am J Pathol, 2000, 156:393-398
    11.刘丰,傅仲学,宋炯. Survivin的表达与直肠癌细胞凋亡、血管形成及预后的关系.中国现代普通外科进展, 2004,7,3:162-164
    12.吴爱国,姚红兵,陈佑江,文明波,周魁平. Survivin在结直肠癌中的表达及其临床意义,中华肿瘤防治杂志,2006,13(7):501-504
    13.黄种心,邱建龙,吴瑞兰. Survivin在结直肠癌组织中表达的病理学意义.实用肿瘤学杂志, 2004,74:461-464.
    14.杨兵,武希润,谭朝晖,等.大肠癌组织中survivin表达及其与bcl-2和p53的相关性研究.山西医科大学学报, 2006,37(3):240-241.
    15. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature, 1997 ,386:623-7.
    16.来茂德.大肠癌发生的分子机理.实用肿瘤杂志,2000 ,15:73-8.
    17. Peltomaki P. Deficient DNA mismatch repair: A common etiologic factor for colon cancer. Hum Mol Genet , 2001 ,10:735-740.
    18. Thibodeau SN, French AJ, Roche PC, et al. Altered expression of hMLH1 and hMSH2 in tumors with microsatellite instability and genetic alternation in mismatch repair genes. Cancer Research, 1996, 56:4836-4840.
    19.蔡崎,陆洪芬,孙孟红,张太明,施达仁.散发性结直肠癌hMLH1和hMSH2蛋白表达.临床与实验病理学杂志,2003,19(5):521-525.
    20.周燕虹,刘晋祎,马恒太,等.结直肠癌中错配修复基因杂合性缺失的初步分析.消化外科, 2005,4(3):194-197
    21. Umar A, Buermeyer AB, Simon JA, et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell, 1996,87:65-73.
    22.史恩溢,杨雄华,谭云山,等.散发性结直肠癌中hMLH1及hMSH2基因与p53、PCNA表达关系的研究.中国临床医学, 2005,12(3):475-477.
    23.阎晓初,柳凤轩,房殿春等。大肠癌细胞周期调控因子表达与微卫星不稳定性的关系.中华肿瘤杂志,2000, 22:141-144.
    24. OhtaM, Inoue H, CotticelliMG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma– associated t (3;8) breakpoint, is abnormal in digestive tract cancers [J]. Cell, 1996, 84:587-597.
    25. Mady HH, Melhem MF. FHITprotein expression and its relation to apoptosis ,tumor histologic grade and prognosis in colorectal adenocarcinoma: an immunohistochemical and image analysis study〔J〕. Clin Exp Metastasis ,2002, 19(4) :351
    26.胡义奎,段晓明,刘莲叶,等.结直肠癌中FHIT蛋白的异常表达及其临床意义.现代肿瘤医学, 2006,14(2):190-192.
    27.程变巧,刘国永,郭长青.结直肠癌中FHIT、c-met基因表达与增殖的关系及其预后研究.河南肿瘤学杂志, 2004, 17(4):232-234.
    28.姚成才,林从尧,胡名柏,等.散发性结直肠癌中FHIT蛋白与Msh2、bcl-2、bax蛋白表达的关系.肿瘤防治研究, 2004, 31(9):548-549.
    29. Mitsuo T.M eanings of serum CEA in gastric cancer patients on prognosis [J]. J Am Coll Surgeors, 1998. 187(1):64-68.
    30.高文斌,戚晓军,伊淑珍,等.血清恶性肿瘤生长因子检测在肝癌介入治疗中的意义.上海免疫学杂志, 1998, 18(2): 126-128.
    31.赵昊,赵昕,杜秋红,等.大肠癌患者CEA测定的临床观察.社区医学杂志, 2006,4(5):83.
    32.左继红,席斌,马德林,等. CEA.TSGF联检在大肠癌诊断中的价值.中国误诊学杂志, 2004,4(10):1655-1656.
    33.申东兰,胡金森,郑海霞,等.外周血癌胚抗原mRNA在大肠癌组织中的表达及其临床意义.肿瘤防治杂志, 2005,12(22):1732-1734.
    34.王玲.粘附分子与肿瘤的浸润转移.国外医学肿瘤学分册. 1994,21(增刊):41.
    35.周仲玲。三种肿瘤标志物联检对妇科肿瘤诊治的评价。放射免疫学杂志。2001, 14(6):326.
    36.孟军,徐立群.结、直肠癌患者血清CEA、CA242联检的临床意义.放射免疫学杂志, 2005, 18(4):291-292.
    37.席亚鸣,谢庆芳,孙蓓.抑癌基因甲基化检测结直肠癌患者的研究.中华实验外科杂志,2003, 20:269-270.
    38.杨柏林.微卫星不稳定性结直肠癌分子病理特征及hMLH1基因甲基化.大肠肛门病外科杂志, 2005, 11(4):312-314.
    39.刘小方,张浩,孔凡民,等.大肠癌中TMS1/ASC基因甲基化及意义.中华实验外科杂志, 2005, 22(5):628.
    40. Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18 q gene that is altered in colorectal cancers J . Science , 1990 , 247: 49-56.
    41. Saito M, Yamaguchi A, Goi T, et al. Expression of DCC protein in colorectal tumors and its relationship to tumor progression and metastasis J . Oncology, 1999 , 56: 134-141.
    42. Goi T, Yamguchi A, Nakagawara G, et al. Reduced expression of deleted colorectal carcinoma (DCC) protein in established colon cancers J . BrJ Cancer , 1998 , 77(3) : 466-471.
    43.仇容,司马军,范兴丽.结直肠癌组织缺陷基因的杂合性缺失及其意义.肿瘤防治杂志, 2005,12(11):833-835.
    44.伍世余,吴文溪,华一兵.结直肠癌缺陷基因蛋白在大肠肿瘤中的表达及临床意义.南京医科大学学报(自然科学版), 2002,22(1):38-41.
    45. Roboz J, Ma L, Sung M, Holland JF. Protein profiles in colon cancer by SELDI-TOF mass spectrometry. Proc AACR, 2002, 43:37.
    46. Watkins B, Szaro R,Ball S, Knubovets T, Briggman J, Hlavaty JJ, Kusinitz F, Stieg A,Wu YJ, Detection of early-stage cancer by serum protein analysis. American Laboratory, 2001, 73:32-36.
    47. Shiwa M, Nishimura Y, Wakatabe R, Fukawa A, Arikuni H, Ota H, Kato Y, Yamori T. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Bilchem Biophys Res Common, 2003, 309:18-25.
    48.刘善润,王振军,赵博,等.遗传性非息肉病性结直肠癌患者的临床特点及hMSH2与hMLH1种系突变的筛查.中华医学杂志, 2004, 84(9):714-717.
    1. Rehm Jea. Comparative quantification of health risks global and regional burden of disease attributable to selected major risk factors. World Health Organization, Geneva, 2004.
    2. Toriola AT, Kurl S, Laukanen JA, Mazengo C, Kauhanen J. Alcohol consumption and risk of colorectal cancer: the Findrink study. Eur J Epidemiol 2008;23:395--401.
    3. Thygesen LC, Wu K, Grnbaek M, Fuchs CS, Willett WC, Giovannucci E. Alcohol intake and colorectal cancer: a comparison of approaches for including repeated measures of alcohol consumption. Epidemiology 2008;19:258--264.
    4. Bongaerts BWC, van den Brandt PA, Goldbohm RA, de Goeij AFPM, Weijenberg MP. Alcohol consumption, type of alcoholic beverage and risk of colorectal cancer at specific subsites. Int J Cancer 2008;123:2411--2417.
    5. Mizoue T, Inoue M, Wakai K, Nagata C, Shimazu T, Tsuji I, Otani T, Tanaka K, Matsuo K, Tamakoshi A, Sasazuki S, Tsugane S, for Development RG, of Cancer Prevention Strategies in Japan E. Alcohol drinking and colorectal cancer in Japanese: a pooled analysis of results from five cohort studies. Am J Epidemiol 2008;167:1397--1406.
    6. Lim HJ, Park BJ. [Cohort study on the association between alcohol consumption and the risk of colorectal cancer in the Korean elderly]. J Prev Med Public Health 2008;41:23--29.
    7. Seitz H PG, Salaspuro M. Alcohol, Tobacco and Cancer. In: Cho CH PV, ed. Volume pp63-77: Basel, Karger, 2006.
    8. Cho E, Smith-Warner SA, Ritz J, van den Brandt PA, Colditz GA, Folsom AR, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, Holmberg L, Kim D-H, Malila N, Miller AB, Pietinen P, Rohan TE, Sellers TA, Speizer FE, Willett WC, Wolk A, Hunter DJ. Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann Intern Med 2004;140:603--613.
    9. China Health Care Association. Healthy Drinking Habits Survey in 25 provinces over China, 2007-2008. China Health Care Association, 2008.
    10. Zhou ZY, Wang WC, Cao J, et al. Designing of a data-based semi-quantitative food frequency questionnaire of the nutrient intake in the urban and rural areas of Chongqing. Acta Academiae Medicinae Militaris Tertiae, 2003; 25 (19):1701-05 (in Chinese).
    11. Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 2007;7:599-612.
    12. Badger TM, Ronis MJ, Seitz HK, Albano E, Ingelman-Sundberg M, Lieber CS. Alcohol metabolism: role in toxicity and carcinogenesis. Alcohol Clin Exp Res 2003;27:336-47.
    13. Seitz HK, Simanowski UA, Garzon FT, Rideout JM, Peters TJ, Koch A, Berger MR, Einecke H, Maiwald M. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 1990;98:406-13.
    14. Jokelainen K, Siitonen A, Jousimies-Somer H, Nosova T, Heine R, Salaspuro M. In vitro alcohol dehydrogenase-mediated acetaldehyde production by aerobic bacteria representing the normal colonic flora in man. Alcohol Clin Exp Res 1996;20:967-72.
    15. Jokelainen K, Matysiak-Budnik T, Makisalo H, Hockerstedt K, Salaspuro M. High intracolonic acetaldehyde values produced by a bacteriocolonic pathway for ethanol oxidation in piglets. Gut 1996;39:100-4.
    16. Visapaa JP, Jokelainen K, Nosova T, Salaspuro M. Inhibition of intracolonic acetaldehyde production and alcoholic fermentation in rats by ciprofloxacin. Alcohol Clin Exp Res 1998;22:1161-4.
    17. Seitz HK, Homann N. The role of acetaldehyde in alcohol-associated cancer of the gastrointestinal tract. Novartis Found Symp 2007;285:110-9; discussion 119-4, 198-9.
    18. Rosenberg DW, Mankowski DC. Induction of cyp2e-1 protein in mouse colon. Carcinogenesis 1994;15:73-8.
    19. Ingelman-Sundberg M, Johansson I, Yin H, Terelius Y, Eliasson E, Clot P, Albano E.Ethanol-inducible cytochrome P4502E1: genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol 1993;10:447-52.
    20. Hakkak R, Korourian S, Ronis MJ, Ingelman-Sundberg M, Badger TM. Effects of diet and ethanol on the expression and localization of cytochromes P450 2E1 and P450 2C7 in the colon of male rats. Biochem Pharmacol 1996;51:61-9.
    21. Oneta CM, Lieber CS, Li J, Ruttimann S, Schmid B, Lattmann J, Rosman AS, Seitz HK. Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 2002;36:47-52.
    22. Morita M, Tabata S, Tajima O, Yin G, Abe H, Kono S. Genetic polymorphisms of CYP2E1 and risk of colorectal adenomas in the Self Defense Forces Health Study. Cancer Epidemiol Biomarkers Prev 2008;17:1800--1807.
    23. Gao C-M, Takezaki T, Wu J-Z, Zhang X-M, Cao H-X, Ding J-H, Liu Y-T, Li S-P, Cao J, Matsuo K, Hamajima N, Tajima K. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males. World J Gastroenterol 2008;14:5078--5083.
    24. Gao C-M, Takezaki T, Wu J-Z, Chen M-B, Liu Y-T, Ding J-H, Sugimura H, Cao J, Hamajima N, Tajima K. CYP2E1 Rsa I polymorphism impacts on risk of colorectal cancer association with smoking and alcohol drinking. World J Gastroenterol 2007;13:5725--5730.
    25. Jelski W, Zalewski B, Chrostek L, Szmitkowski M. Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the sera of patients with colorectal cancer. Clin Exp Med 2007;7:154--157.
    26. Matsuo K, Wakai K, Hirose K, Ito H, Saito T, Suzuki T, Kato T, Hirai T, Kanemitsu Y, Hamajima H, Tajima K. A gene-gene interaction between ALDH2 Glu487Lys and ADH2 His47Arg polymorphisms regarding the risk of colorectal cancer in Japan. Carcinogenesis 2006;27:1018-23.
    27. Yin G, Kono S, Toyomura K, Moore MA, Nagano J, Mizoue T, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, Maekawa T, Takenaka K, Ichimiya H, Imaizumi N. Alcohol dehydrogenase and aldehyde dehydrogenase polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci 2007;98:1248--1253.
    28. Matsuo K, Hamajima N, Hirai T, Kato T, Koike K, Inoue M, Takezaki T, Tajima K.Aldehyde dehydrogenase 2 (ALDH2) genotype affects rectal cancer susceptibility due to alcohol consumption. J Epidemiol 2002;12:70-6.
    29. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263-5.
    30. Gudmundur A. Thorisson AVS, Lalitha Krishnan, Lincoln D. Stein. A User's Guide to the International HapMap Project Web Site, 2005.
    31. ICAP Reports 1: Safe alcohol consumption: A comparison of Nutrition and your Health: Dietary guidelines for Americans and Sensible Drinking, International Center for Alcohol Policies, 1996
    32. Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004;369:89-104.
    33. Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 2006;387:349-60.
    34. Gouillon Z, Lucas D, Li J, Hagbjork AL, French BA, Fu P, Fang C, Ingelman-Sundberg M, Donohue TM, Jr., French SW. Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc Soc Exp Biol Med 2000;224:302-8.
    35. Yang CX, Matsuo K, Wang ZM, Tajima K. Phase I/II enzyme gene polymorphisms and esophageal cancer risk: a meta-analysis of the literature. World J Gastroenterol 2005;11:2531-8.
    36. Wong NA, Rae F, Simpson KJ, Murray GD, Harrison DJ. Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis. Mol Pathol 2000;53:88-93.
    37. Morita M, Le Marchand L, Kono S, Yin G, Toyomura K, Nagano J, Mizoue T, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Maekawa T, Yasunami Y, Takenaka K, Ichimiya H, Imaizumi N. Genetic Polymorphisms of CYP2E1 and Risk of Colorectal Cancer: The Fukuoka Colorectal Cancer Study. Cancer Epidemiol Biomarkers Prev 2009;18:235-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700