BST热释电薄膜材料及在红外探测器中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热释电红外探测器具有响应光谱宽、功耗低、使用温度宽和灵敏度高等特点,能在室温实现红外探测和热成像,是国内外争相研究的高新技术。以热释电薄膜代替热释电陶瓷作为探测器的敏感材料既能降低成本又能大幅提升器件性能,可以获得更广泛的军、民应用,是当前研究的热点和重点之一。因此,开展热释电薄膜材料及在红外探测器中的应用基础研究,具有重要的价值。
     本论文针对上述背景,以BST热释电薄膜为研究对象,利用倒筒靶射频溅射技术和低温自缓冲层技术制备BST薄膜材料,根据漏电流随偏置电压、测试温度和测试时间的变化规律,研究BST薄膜的经时击穿机理和调控方法,采用微细加工工艺制备BST薄膜红外探测器,实现了以下研究目标:在和读出电路温度兼容的条件下,制备出高性能的BST薄膜材料;消除了经时击穿,使BST薄膜材料能长期、稳定的工作;测试了BST薄膜红外探测器的光电响应特性,验证了材料的热释电性能,为研制大阵列焦平面阵列器件提供了基础。主要包含如下内容:
     1.扼要介绍了倒筒靶射频溅射的原理,针对传统倒筒靶溅射枪存在二次溅射和沉积速度低的缺点,发明了新型倒筒靶溅射枪。采用双端口和埋入式多区域磁场设计,溅射枪能在500-7000C高温环境长期、稳定的工作,使射频溅射的自偏压提高了3-5倍,沉积速度高了4-5倍,为实现和读出电路的温度兼容奠定了基础。
     2.通过分析BST热释电机理和红外探测器的工作原理,发现了提高BST薄膜性能的关键是降低Pt/BST界面粗糙度和提高BST薄膜c轴取向度,以降低漏电流和提高热释电系数。为实现这一目标,在实验研究的基础上发明了低温自缓冲层技术,使Pt/BST界面RMS由10nm降为5.6nm,漏电流降低了1-2个数量级,BST薄膜由随机取向变为单一(001)择优取向,热释电系数增加到7.57×10-7Ccm-2·K-1,材料优值因子达到了2.18×10-4 pa-1/2,比其他热释电材料高了近1个数量级。
     3.通过对Pt/BST/NiCr导电机理的分析,计算出费米能级、氧空位陷阱能级及其随能级的分布规律等微观特征量。通过漏电流随偏置电压、测试温度和测试时间变化规律的研究,发现BST薄膜的氧空位俘获注入电子而形成空间电荷区是发生经时击穿的根本原因,发现在软击穿状态时,加反向偏置电压可以使已经增大的漏电流恢复到初始状态。研究表明,双电容结构和动态偏置电压法能调控氧空位俘获/脱俘电子的过程,使漏电流几乎不随时间发生变化,这是消除经时击穿的可靠方法,从根本上提高了BST热释电薄膜工作的可靠性。
     4.研究了双电容结构的BST薄膜红外探测器微细加工工艺,包括用剥离法进行Pt/Ti下电极和NiCr上电极的图形化,用化学蚀刻法进行BST薄膜的图形化。通过研究获得了BST薄膜图形化刻蚀剂的优化配比为HF:HCl:H2O=1:2:20,蚀刻温度为30℃,在此条件下蚀刻速率为21.2nm/s,侧蚀比接近1:1,图形误差0.6um,最大蚀刻容量为150mm2/ml(BST厚度500nm)。通过实验制备出以500nmSiO2薄膜为热绝缘层、敏感元面积为0.13mm2-0.79mm2的BST薄膜单元红外探测器。在测试温度25℃,黑体温度500K,偏置电压6V,斩波器调制频率8.5Hz时,测得探测器的D*为1.2×108cmHz1/2W-1,验证了BST薄膜的高热释电性能和微细加工工艺的可靠性。
Infrared sensors using pyroelectric materials shows some advantages as compared with the other types of infrared sensors such as photoconductors, thermopiles and resistance bolometers, because the pyroelectric can be operated even at room temperature, has little wavelength dependence of the response over wide infrared ranges and has fast response. (Ba,Sr)TiO3 (BST) thin film is currently one of the most interesting pyroelectric materials for uncooled infrared detectors and focal plane arrays application due to its high dielectric constants under the operational temperatures and fields coupled with very high pyroelectric coefficients. In the dissertation, BST thin films were deposited by inverted cylindrical magnetron sputtering, time dependent dielectric breakdown of BST films and fabrication of integrated BST thin film single element detectors were detail investigated. The main results are as follow:
     1.New inverted cylindrical magnetron (ICM) sputtering gun was developed to avoid re-sputtering and increase deposition speed. In the new ICM sputtering gun, hollow cylindrical BST ceramic target were double open-ended, and NdFeB magnets were even well-distributed arranged at the outside of BST ceramic target. Comparing to conventional inverted cylindrical sputtering gun, BST films deposition was increased by 4-5 times in radio frequency sputter system. For 500nm BST thin films, the deposition time was shortened to 8 hours. The improvement promoted the temperature compatibility of the Pt-Ti-W metallization readout IC to the BST thin films preparation process.
     2.Low-temperature self-buffer layer was developed to decrease leakage current and increase pyroelectric coefficient of BST films. For BST films grown on Pt/Ti bottom electrodes, large leakage current was attributed to coarse Pt/BST interface, and low pyroelectric coefficient was attributed to random orientation of BST films. (001) BST thin films were deposited on Pt/Ti/SiO2/Si substrates by using a low-temperature self-buffered layer. XRD and AFM investigations show that the microstructure of BST films strongly depends on surface morphology of annealed self-buffered layer. The mechanism of nucleus formation and growth initiation of BST films on self-buffered layers was proposed. It was found that the pyroelectric properties of BST films can be greatly enhanced. The pyroelectric coefficient and material merit figure of (001)-BST films are 7.57×10-7 C cm-2 K-1 and 2.18×10-4 Pa-1/2, respectively.
     3.Mechanism and controlling method of TDDB were investigated to make BST films work reliably under DC biased voltages. The TDDB of BST thin films were divided into two process, soft breakdown and hard breakdown, according to leakage current dependent with measuring time. At soft breakdown state, BST thin films had dielectric and pyroelectric properties, just leakage currents were sharply increased. At hard breakdown state, BST thin films were dielectric breakdown. The leakage currents of soft breakdown BST thin films can be recovered to initial low leakage current status by reverse bias voltages.The phenomena can be explained using oxygen vacancies. When electrons were injected into BST films, they were trapped by oxygen vacancies, and formed space charge. The process changed built-in electric field, and influenced leakage current through BST films. Leakage currents in BST thin films double capacitance element were almost independent with measuring time under dynamic bias voltages. The method eliminate BST thin films' TDDB, would make BST thin films infrared detectors work reliably under biased voltages.
     4. BST thin films single element infrared detectors were fabricated using semiconductor patterning method. Pt bottom electrodes and NiCr top electrodes were patterned by lift-off method. BST thin films were patterned by wet etching method. The optimized etching parameters were that HF:HCl:H2O=1:2:20, temperature 30℃,etching velocity 21.2nm/s, error amount 0.6um. BST thin film detectors were prepared with sensitive area ranging from 0.13 mm2 to 0.79mm2. The detectivity of 1.2×108cmHz1/2W-1 was obtained in the BST thin films infrared detectros thermally isolated by 500nm SiO2 thin films.
引文
[1]徐南荣,卞南华.红外辐射与制导(第1版).北京:国防工业出版社,1997,10-18
    [2]Zanatta JP, Noel F, Ballet P, Hdadach N, Million A, Destefanis G, Mottin E, Kopp C,Picard E, Hadji E. HgCdTe molecular beam epitaxy material for microcavity lightemitters Application to gas detection in the 2-6μm range. Journal of ElectronicMaterials,2003,32(7):602-607
    [3]吴诚,苏君红,潘顺臣,等.非致冷红外焦平面技术述评(上).红外技术,1999,21(1):6-9
    [4]Flannery RE, Miller JE. Status of Uncooled Infrared Images. SPIE,1992,379-384
    [5]何丽.走向新世纪的红外热成像技术.激光与光电子学进展,2002,39(12):48-51
    [6]傅灿鑫.非致冷红外焦平面阵列.半导体光电,1995,16(3):209-213
    [7]陈学荣,胡军志,韩文政,V02薄膜的结构、光学特性及其应用研究进展.材料导报,2007,22(7):16-21
    [8]宋婷婷,何捷,孟庆凯,等.二氧化钒的电子结构及光学性质计算.光散射学报,2008,22(2):194-200
    [9]潘小青,刘庆成.红外技术的发展.华东地质学院学报,2003,25(2):66-69
    [10]王义玉,叶文,王彬.红外探测器.北京:兵器工业出版社,2005,1-3
    [11]Whatmore Roger W, Watton Rex.Pyroelectric ceramics and thin films for uncooled thermal imaging.Ferroelectric,2000,236(2):259-279
    [12]傅灿鑫.非致冷红外焦平面阵列.半导体光电,1995,16(3):209-213
    [13]陈德详,吴海滨.近红外成像技术在工业电视系统中的应用.光电子技术与信息,2003,16(4):36-39
    [14]吴传贵,刘兴钊,张万里,等.热释电薄膜在红外探测器中的应用.红外,2004,25(3):5-9
    [15]Antoni Rogalski.Infrared detectors:status and trends. Progress in Quantum Electronics,2003, 27(1):59-210
    [16]Michael A. Todd, Paul A. Manning, Paul P. Donohue et al,Thin film ferroelectric materials for microbolometer arrays, SPIE,2000,128-139
    [17]Yi G.,Wu Z.,Sayer M. Preparation of Pb(Zr,Ti)O3 thin film by Sol-Gel processing electrical, optical and electroopic properties. J Appl Phys,1988,64(17):2717-2723
    [18]Huang Z.,Zhang Q. RF-sputter PLT thin films for infrared rared sensor arrays. Ferroelectrics, 1999,225(1):57-66
    [19]唐军,程建功,储君浩,等.BST铁电薄膜的制备非制冷红外探测器热成像应用.红外技术,2002,24(5):18-21
    [20]National Nano Technology Initiative. The Initiative and its implementation. Plan//N-SET. CT. NSTC:2000.897
    [21]戴逸松.电子系统噪声及低噪声设计方法.长春:吉林人民出版社,1984,19-108
    [22]A. Kormos, C.Hanson and C. Buettner. Next Generation Thermal Infrared Night Vision Systems. Proc. AMAA,2005,243-256
    [23]Halford D. A General Model for f Spectral Density Random Noise with Special Reference to Flicker Noise 1/f.Proc.IEEE,1968,251-258
    [24]赵明远,唐艳.非制冷型焦平面阵列设计和特性分析.传感器世界,2003,9(2):15-20
    [25]Li J. F.,Viehland D.,Bhalla A. S. Pyro-optic studies for infared imaging, J. Appl.Phys.,1992, 71(19):2106-2112
    [26]High performance uncooled focal plane arrays based on antimony sulpho-iodide ferroelectric thin films. DARPA contract# DAAH01-97-C-R003
    [27]刘卫国,金娜.集成非制冷热成像探测阵列.北京:国防工业出版社,2004,9-27
    [28]Holst G C. Test and Evaluation of Infrared Imaging Systems. Maitland:JCD Publishing House, 1993,5-24
    [29]Charles M. Hanson,Howard R.Beratan.Thin film ferroelectrics:breakthough. SPIE,2002, 91-98
    [30]Fang Hong bing, Jiao Jian, Pi De fu, et al. Performance prediction and computer simulation of staring thermal imaging systems with 0TL96. SPIE,1996,236-240
    [31]Fang Hong-bing, Pi De-fu, Wang Guang-min. The performance research of pyroelectric array infrared detector. SPIE,1998,197-200
    [32]唐军,郁启华,程建功,等.BST铁电薄膜非制冷红外探测器热成像应用.红外技术,2004,24(5):18-21
    [33]B.M. Kulwicki, A. Amin, H. R. Beratan, et al. Pyroelectric imaging. Applications of Ferroelectrics,IEEE,1992,8:1-10
    [34]陶伯万.3英寸YBCO双面超导薄膜的外延生长和均匀性研究.[博士学位论文],成都:电子科技大学,2002
    [35]Jochen Geerk, G. Linker,O. Meyer, et al, Inverted cylindrical magnetron sputtering for HTSC thin film growth,SPIE,1991,1597:147-153
    [36]N. P. Hartley, P. T. Squire, E. H. Putley, et al. A new method of measuring pyroelectric coefficients. J. Phys. E:Sci. Instrum.1972,5(3):787-789
    [37]Wu, GCh., Zhang, W.L.,Li, Y.R.,Liu, X.Zh.,Zhu, J. Measurement of induced pyroelectric coefficient using dynamic method:Theory and experiments. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers,2006,45(4A):2674-2677
    [38]Huaping Xu, Kazuhiko Hashimoto, Tomonori Mukaigaw, et al. Development of Si monolithic (Ba, Sr)TiO3 thin-film ferroelectric microbolometers for uncooled chopperless infrared sensing. SPIE,140-151
    [39]C. Dias, M. Simon, R. Quad, et al. Measurement of the pyroelectric coefficient in composites using a temperature-modulated excitation. J. Phys. D:Appl. Phys.1992,28(1):106-110
    [40]史鹏,姚熹,BST薄膜的反应离子刻蚀研究,压电与声光,2006,28(1):63-66
    [41]汤庭鳌.铁电薄膜的特性、制备及应用.半导体技术,1996,31(6):1-7
    [42]Stephen A.Campbell.微电子制作科学原理与工程技术.北京:电子工业出版社,2004,260-285
    [43]李建康,姚熹.红外热释电探测器的微图形化研究.功能材料与器件学报,2003,9(4):448-452
    [44]包定华,张良莹,姚熹.铁电薄膜的微图形化研究.硅酸盐通报,1998,(3):59-63
    [45]史鹏,姚熹,吴小清,等.PZT铁电薄膜刻蚀的研究进展.压电与声光,2003,25(5):386-389
    [46]郑可炉,褚家如,鲁健,等.PZT铁电薄膜湿发刻蚀技术研究.压电与声光,2004,27(2):209-212
    [47]王晨飞.半导体工艺中的新型刻蚀技术—ICP.红外,2005,26(1):17-22
    [48]J. Geerk, G. Linker,O. Meyer, F. Ratzel, J. Reiner, J. Remmel, T. Kroner, R. Henn, S. Massing, and B. Rauschenbach, Inverted cylindrical magnetron sputtering for HTSC thin film growth, SPIE,1991,147-151
    [49]J.Geerk, P.Ratzel,H. Rietschel,et al. Simultaneous double-sided deposition of HTS films on 3-inch wafers by ICM-sputtering. IEEE Trans. Appl. Supercond.,1999,9(2):1543-1546
    [50]Cheol Seong Hwang, Byoung Taek Lee, Chang Seok Kang, et al, A comparative study on the electrical conduction mechanisms of Ba0.5Sr0.5TiO3 thin films on Pt and IrO2 electrodes, J. Appl. Phys.,1998,83(7):3703-3713
    [51]Yang H., Tao K., Chen B.,et al, Leakage mechanism of (Ba0.7Sr0.3)TiO3 thin films in the low-temperature range, Appl. Phys. Lett.,2002,81(6):4817-4819
    [52]C. S.Hwang, S. O. Park, H-J. Cho, et al, Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application, Appl. Phys. Lett., 1995,67(6):2819-2821
    [53]Shao Te Chang, Joseph Ya-min Lee, Electrical conduction mechanism in high-dielectric-constant (Bao.5,Sro.5)Ti03 thin films, Appl. Phys. Lett.,2002,80(4):655-657
    [54]Cheol Seong Hwang, Byoung Taek Lee, Chang Seok Kang, et al, Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films, J. Appl. Phys.,1999,85(1):287-293
    [55]G. W. Dietz, M. Schumacher, R. Waser, et al, Leakage currents in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories, J. Appl. Phys.,1997,82(5):2359-2363
    [56]S. Maruno, T. Kuroiwa, N. Mikami, K. Sato, S.Ohmura, M. Kaida, T. Yasue, and T. Koshikawa, Model of leakage characteristics of (Ba, Sr)TiO3 thin films, Appl. Phys. Lett., 1998,73(7):954-956
    [57]刘恩科,朱秉升,半导体物理学.北京:国防工业出版社,1994,182-183
    [58]Ki Hoon Lee, Cheol Seong Hwang, Byoung Taek Lee, et al.,Variation of Electrical Conduction Phenomena of Pt/(Ba, Sr)TiO3/Pt Capacitors by Different Top Electrode Formation Processes, Jpn. J. Appl. Phys.,1997,36(9):5860-5865
    [59]Joon-Hyung Ahn, Paul C. McIntyre, Laura Wills Mirkarimi, et al, Deuterium-induced degradation of (Ba, Sr)TiO3 films, Appl. Phys. Lett.,2000,77(9):1378-1380
    [60]A. Rose, Space-Charge-Limited Currents in Solids, Phys. Rev.,1955,97(6):1538-1544
    [61]M. A. Lampert, Simplified theory of one-carrier currents with field-dependent mobilities, J. Appl. Phys.,1958,29(7):1082-1090
    [62]M. A. Lampert, Simplified theory of Space-Charge-Limited Currents in an insulator with traps, Phys. Rev.,1955,103(6):1648-1657
    [63]J. G. Simmons. Conduction in thin dielectric films. J. Phys. D:Appl. Phys.,1971,4(2):613-657
    [64]Matthew C. Werner, Indrajit Banerjee, Paul C.McIntyre, et al, Microstructure of (Ba, Sr)TiO3 thin films deposited by physical vapor deposition at 480℃ and its influence on the dielectric properties, Appl. Phys. Lett.,2000,77(8):1209-1211
    [65]J.O.Olowolafe, R.E.Jones et al. Effects of anneal ambients and Pt thickness on Pt/Ti and Pt/Ti/TiN interfacial reactions, J.Appl.Phys,1993,73(4):1764-1772
    [66]S.Aggarwal, A.M.Dhote et al. Hysteresis relaxation in (Pb,La)(Zr,Ti)O3 thin film capacitors with (La,Sr)CoO3 electrodes, Appl.Phys.Lett.1996,69(17):2540-2542
    [67]S.H.Yun, R.Vallejo et al, Systematic investigate of the growth of LiNO3/PZT/LaNiO3/Si and LiNO3/PZT/LaNiO3/polymer/Si for IR-detector applications, SPIE,2002,75-82
    [68]丁永平,BST铁电薄膜的sol-gel制备方法、微结构及电性能研究.[博士学位论文],上海:上海交通大学,2000
    [69]K.Sreenivas, Ian Reaney et al. Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration,1994,75(1):232-239
    [70]屈新萍,丁爱丽.Pt/Ti电极的扩散行为及其对铁电薄膜的影响.无机材料学报,1996,11(3):499-504
    [71]S. B.Majumder, B. Roy, R. S.Katiyar, et.al, Effect of neodymium (Nd) doping on the dielectric and ferroelectric characteristics of sol-gel derived lead zirconate titanate (53/47) thin films, J. Appl. Phys.,2001,90(6):2975-2981
    [72]Hyo-Jin Nam, Duck-Kyun Choi, Won-Jong Lee, Formation of hillocks in Pt/Ti electrodes and their effects on short phenomena of PZT films deposited by reactive sputtering, Thin solid films, 2000,371(1-2):264-271
    [73]S.Regnery, Y. Ding, P. Ehrhart, et al, Metal-organic chemical-vapor deposition of (Ba,Sr)TiO3: Nucleation and growth on Pt(111),J. Appl. Phys.,2005,98(8):084904-1-11
    [74]HZ Jin, J Zhu, P Ehrhart, et al, An interfacial defect layer observed at (Ba, Sr) TiO3/Pt interface, Thin solid films,2003,429(1-2):282-285
    [75]L. Sugiura, K. Itaya, J. Nishio, et al, Effects of thermal treatment of low-temperature GaN buffer layerson the quality of subsequent GaN layers, J. Appl. Phys.,1997,82(10):4877-4882
    [76]Sanghwa Lee, Hyeokmin Choe, Taegeon Oh, et al, Surface-morphology evolution and strain relaxation during hetero epitaxial growth of GaN films without low-temperature nucleation; layers, J. Appl. Phys.,2007,90(15):151905-1-11
    [77]K. Lorenz, M. Gonsalves, Wook Kim, Comparative study of GaN and A1N nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition, Appl.Phys.Lett.,2000,77(21):3391-3393
    [78]M. S.Yi, H. H. Lee, D. J. Kim, et al, Effects of growth temperature on GaN nucleation layers, Appl.Phys.Lett,1999,75(15):2187-2189
    [79]D.G.Zhao, J. J. Zhu, Z. S. Liu, et al, Surface morphology of A1N buffer layer and its effect on GaN growth by metalorganic chemical vapor deposition, Appl.Phys.Lett,2004, 85(9):1499-1501
    [80]Hui Han, Xiuyu Song, Jian Zhong, et.al, Highly a-axis-oriented Nb-doped Pb(TixZr1-x)O3 thin films grown by sol-gel technique for uncooled infrared dectors, Appl. Phys. Lett.,2004,85(22): 5310-5312
    [81]R. W. Whatmore, P. C.Osbond, and N. M. Shorrocks, Ferroelectric materials for thermal IR detectors,Ferroelectrics,1987,76(1):351-357
    [82]Mike A. Todd, Paul A. Manning, Paul P. Donohue, et.al, Thin film ferroelectric materials for microbolometer arrays,SPIE,2000,128-139
    [83]Bernard M. Kulwicki, Ahmed Amin, Howard R. Beratan, et.al, Ferroelectric ceramics and thin films for uncooled thermal imaging arrays, IEEE Proc. ISAF'92,1992,1-10
    [84]J. G. Simmons. Richardson-Schottky Effect In Solids. Phys. Rev. Lett.,1965,15 (25):967-968
    [85]J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev.,1938,54(8):647-648
    [86]I. C. Chen, S. E. Holland, and C. Hu. Electrical Breakdown in Thin Gate and Tunneling Oxides. IEEE Trans. Electron Devices,1985,32(2):413-422
    [87]A. Yassine, H. E. Nariman, and K.Olasupo. Field and Temperature Dependence of TDDB of Ultrathin Gate Oxide. IEEE Electron Device Letters,1999,20 (8):390-392
    [88]A. Yassine, H. Nariman, and K. Olasupo. A Study of Field Dependence of TDDB of Ultra-Thin Gate Oxide and Anomaly in the Ⅰ-Ⅴ of Mos Devices with Active Guard Ring. IEEE IRW Final Report,1998,44(5):23-26
    [89]J. W. McPherson, and H. C. Mogul. Disturbed Bonding States in SiO2 Thin-Films and Their Impact on Time-Dependent Dielectric Breakdown. IEEE IRPS Proceedings,1998,47-56
    [90]J. W. McPherson, and D. A. Baglee. Acceleration Factors for Thin Oxide Breakdown. J. Electrochem. Soc., Solid State Science and Technology,1985,132(8):1903-1908
    [91]J. W. McPherson, R. B.Khamankar, and A. Shanware. Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys.,2000,88 (9): 5351-5359
    [92]E. Harari. Dielectric Breakdown in electrically stressed thin films of thermal SiO2. J. Appl. Phys.,1978,49(4):2478-2489
    [93]B. Ricco, M. Y. Azbel, M. H. Brodsky. Novel Mechanism for Tunneling and Breakdown of Thin SiO2 Films. Phys. Rev. Lett.,1983,51(19):1795-1798
    [94]M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys.,2005,77(4):1083-1130
    [95]Yin-Pin Wang and Tseung-Yuen Tseng, Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thin films, J. Appl. Phys.,1996,81(10):6762-6765
    [96]Veng Cheong Lo, Modeling the role of oxygen vacancy on ferroelectric properties in thin films, J. Appl. Phys.,2002,92(11):6778-6783
    [97]R. Meyer, R. Liedtke, and R. Waser, Oxygen vacancy migration and time-dependent leakage current behavior of Ba0.3Sr0.7TiO3 thin films, Appl. Phys. Lett.,2005,86(11):112904-112906
    [98]Hao Yang, Bin Chen, Kun Tao, et al, Temperature-and field-dependent leakage current of Pt/(Ba0.7Sr0.3)TiO3 interface, Appl. Phys. Lett.,2003,83(8):1611-1613
    [99]C. J. Peng and S. B. Krupanidhi, Study of the dielectric and electrical properties of barium strontium titanate thin films grown by multi-ion-beam reactive sputtering technique, J. Mater. Res.,1995,10(3):708-713
    [100]Vikram K.,S. C. Jam, A. K. Kapoor, et al, Trap density in conduction organic semiconductors determined from temperature dependence of J-V characteristics, J. Appl. Phys.,2003,94(11): 1283-1285
    [101]M. A. Rafiq, Y. Tsuchiya, H. Mizuta, et al, Charge injection and trapping in silicon nanocrystals, Appl. Phys. Lett.,2005,87(8):182101-1-3
    [102]王晓泉.薄栅氧化层的TDDB研究.纳米器件与技术,2002,39(6):12-20
    [103]L. A. Delunova, I. V. Grekhov,D. V. Mashovets,et al,Transient-current measurement of the trap charge density at interface of a thin-film metal/ferroelectric/metal structure, Appl. Phys. Lett.,2005,87(19):192101-1-3
    [104]R. Waser, Bulk Conductivity and Defect Chemistry of Acceptor-Doped Strontium Titanate in the Quenched State, J. Am.Ceram. Soc.,1991,1934-1939
    [105]O. N. Tufte and P. W. Chapman, Electron mobility in semiconducting strontium titanate, Phys. Rev.,1967,155(2):796-799
    [106]Sufi Zafar, Robert E. Jones, Bo Jiang, Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films, Appl. Phys. Lett.,1998,73(13):3533-3535
    [107]M S Tsai and T Y Tseng, Effect of oxygen to argon ratio on defects and electrical conductivities in Ba0.47Sr0.53TiO3 capacitors, J. Phys. D:Appl.Phys.,1999,32(17):2141-2145
    [108]谭莉萍,半导体陶瓷Schottky势垒型器件晶界势垒问题探讨,压电与声光,2004,26(3):237-239
    [109]Chen Zh. X.,Lin G. C.,Fu G,et al, A grain boundary defect model for ZnO ceramic varistors by deep heat treatment, Science in China,1998,41(1):71-78
    [110]JG Cheng, J Tang, JH Chu, et al, Pyroelectric properties in sol-gel derived barium strontium titanate thin films using a highly diluted precursor solution, Appl.Phys. Lett.,2000,77(7): 1035-1037
    [111]Jian-Gong Cheng, Xiang-Jian Meng, Jun Tang, et al, Pyroelectric Ba0.5Sr0.2TiO3 thin films derived from a 0.05 M solution precursor by sol-gel processing, Appl. Phys. Lett.,1999,75(21): 3402-3404
    [112]顾文韵,皮德富.凝视热成像系统的噪声分析.红外与激光工程,1999,28(5):338-342
    [113]张盈.热成像系统的噪声.红外技术,2003,25(2):91-96
    [114]向世明.倪国强.光电子成像器件原理.北京:国防工业出版社,1999,113-120.
    [115]李相民,倪国强.红外热像仪的噪声分析.红外与激光工程,2008,S2:77-81
    [116]邹前进,戴睿,红外成像系统噪声测量仿真研究,红外技术,2008,30(6):142-147
    [117]Charles M. Hanson, Howard R. Beratan and James F. Belcher, Uncooled infrared imaging using thin-film ferroelectrics, SPIE,2001,298-302
    [118]Kazuhiko Hashimoto, Huaping Xu, Tomonori Mukaigawa, et al, An uncooled infrared sensor of dielectric bolometer mode using a new detection technique of operation bias voltage, Sens. and Actu. A,2001,77(1):329-336
    [119]S. O. Ryu and S. M. Cho, Surface micromachining and characterization of a pyroelectric infrared ray focal plane array utilizing SiO2 as the IR absorbing layer, J. Micromech. Microeng., 2005,15(1):104-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700