银、金纳米材料的光化学、化学和电化学制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属颗粒和纳米薄膜材料在非线性光学、力学、磁学、电学、表面催化和传感等领域表现出优异的物理和化学特性,可作为介电材料、电极材料、仿生材料、磁存储材料及敏感材料等,有着广泛的应用前景。本论文采用光化学、化学和电化学技术,制备贵金属Au、Ag 纳米颗粒和Ag 纳米薄膜,借助于TEM、SEM、XPS、XRD、UV-vis、IR、SERS等现代测试技术对材料的纳米尺度、形状、结构特点、晶型转变、化学物理特性及其生长机制进行了较为系统的研究。
    以聚乙烯吡咯烷酮(PVP)和柠檬酸三钠(TSC)为软模板,采用化学还原法制备球形Ag 纳米粒子。PVP在控制Ag 颗粒尺度方面明显优于TSC。实验结果表明PVP能够阻止Ag 粒子长大,经研究,这是由于PVP与Ag+ 首先发生配位络合反应,化学还原后的Ag 粒子表面吸附有PVP,产生较大的高分子链空间位阻作用,阻止了Ag 粒子之间的团聚和长大。
    首次将TSC和PVP作为稳定剂制备的球形Ag 纳米粒子置于500 W卤钨灯下,进行光诱导转化实验,球形Ag 颗粒转化为三角形和正方形Ag 单晶体。探讨了光照下球形Ag 粒子转化为三角形和正方形Ag 单晶体的原因。
    利用紫外线辐射PVP-AgNO3水溶液,光还原获得球形Ag 纳米粒子。经理论推导Ag+ 光还原反应属于准一级反应。此外,还提出了Ag+ 光还原反应机理及PVP 稳定Ag 粒子的机理。
    采用柠檬酸钠还原法制备球形Au 纳米粒子。增大柠檬酸钠用量,制得的Au 粒子直径变小,单分散性提高。在制备Au 溶胶的同时加入光照作用,所制备的Au 粒子较相同条件下无光照时的粒子直径大;但在PVP或PVA存在条件下,光照对粒子的直径不产生影响。使用柠檬酸钠-单宁酸还原法制备的Au 粒子的直径最小,约为1~3 nm,单分散性最好。
    首次采用光还原方法在线性壳聚糖膜内成功地制备了三角形、六边形Ag 单晶体,晶体结构由多晶转变为单晶结构的主要原因是配位稳定状态改变和光能的共同作用。首次采用电化学方法,在线性壳聚糖膜内获得粒径为5~8 nm的球形Ag 粒子,还原过程中无Ag 晶型转变现象。
    在气/液界面单分子膜上及气/固界面单层LB膜上自组装Ag 纳米材料。在单分子膜/单层LB膜的诱导下,通过化学沉积和电沉积方法得到光亮、细致及不同形貌(网状、树枝状)的纳米Ag薄膜。实验发现,镀液的pH值对Ag 膜产生显著影响,对此进行了理论分析与计算,提出了单分子膜及单层LB膜诱导沉积Ag 膜的生长机制。
    首次将硬脂酸单分子膜上化学/电化学沉积的Ag 膜作为表面增强拉曼效应的活性基底,测得了硬脂酸单分子膜的Raman光谱;以吡啶为探针分子测试了吡啶的表面增强拉曼光谱,结果表明该Ag 膜具有较强的表面增强拉曼散射(SERS)效应。通过对硬脂酸单分子膜Raman光谱分析,确定硬脂酸单分子膜垂直吸附在Ag 膜的表面。
Interest in metal nanoparticles and nano-films stems mainly from their size-dependent physicochemical properties, making them potential candidates for a wide variety of applications in nonlinear optics, mechanics, magnetics, electrics, catalyzer and sensor.
    The purposes of this dissertation are to study the preparation of Ag nanoparticles, Au nanoparticles and Ag nano-films by photochemical, chemical and electrochemical techniques. By means of characterization methods with TEM, SEM, XPS, XRD, UV-vis, IR and SERS, the influencing factors, growth mechanism and related properties of these metal nano-materials have been investigated.
    PVP and TSC used as soft-templates, spherical Ag nanoparticles were prepared by chemical reduction. PVP is superior in controlling the particle diameter of Ag nanoparticles to TSC. The results show that PVP firstly coordinates Ag+, then PVP adsorbs in the surface of Ag particles so that prevents Ag particles from growing and reuniting.
    For the first time, preparation of Ag nanoparticles with non-spherical shape has been conducted from spherical Ag nanoparticles by photoinduced conversion. Triangular and foursquare Ag nanoparticles were respectively obtained in the presence of TSC or PVP. These non-spherical Ag nanoparticles are single-crystals. The fundamental analysis and discussion about the changing causes of nanoparticles shape from spherical to non-spherical have been carried out in photoinduced process. The Ag nanoparticles were prepared by illuminated PVP-AgNO3 aqueous solution. The process of the Ag+ photo reduction follows guise first order reaction. Both the reduction mechanism of Ag+ and the stabilization mechanism of Ag nanoparticles have been presented.
    Au nanoparticles were prepared by sodium citrate reduction method. The results show that the increase of TSC results in the decrease of the particle diameter of Au nanoparticles and the improvement of monodispersity of Au nanoparticles. The particle diameter of these nanoparticles will become bigger when them are irradiated by photo, but their diameter does not change in the presence of PVA or PVP. The particle diameter of Au nanoparticles becomes smaller when sodium citrate-tannin are used as reducing agent.
    In-situ preparation of spherical silver nanoparticles(10~30 nm), triangular and
    
    
    hexangular single silver crystal(200~2000 nm) have been conducted in linear Chitosan films by photochemical reduction. The monodispersed spherical silver nanoparticles(5~8 nm) were also electrochemically obtained in the film. By means of characterization with TEM, SEM, IR Spectra and XRD, the fundamental analysis and discussion about the changing causes of silver crystal structure from multi crystal to single crystal have been carried out in photochemical reduction process. The cause lies in the function of both the change of coordinating stability and the photo irradiation.
    Ag nano-films were obtained by electroless deposition method through induction of stearic acid mono-Langmuir-Blodgett film at air/solid interface or stearic acid monolayer at air/solution interface. The results showed that the pH of sub-phase had an important effect on the microscopic structure of the Ag film, then the cause of which was theoretically analyzed and computed. The possible growing mechanism of silver deposition on monolayer was preliminarily discussed. A novel method fabricating Ag nano-film has been presented, by which we may control the surface microstructure of silver film easily.
    These Ag films prepared on stearic acid monolayer were used as SRES-active substrate, on which the surface-enhanced Raman scattering spectrum of stearic acid monolayer was obtained for the first time. Moreover, the SERS activity of the Ag film fabricated on mono-Langmuir-Blodgett films was investigated by pyridine as the probe, which strongly indicated their potential application in SERS substrate materials. It was found that stearic acid monolayer vertically adsorbed in the surface of Ag films by analyzing the SERS spectrum of stearic acid monolayer.
引文
[1] 王中林,纳米材料和纳米技术,科学中国人,2001(4):4~9
    [2] 张志焜,崔作林著,纳米技术与纳米材料[M],北京:国防工业出版社,2000
    [3] 张立德,牟季美著,纳米材料和纳米结构[M],北京:科学出版社,2001
    [4] 张立德编著,纳米材料[M],北京:化学工业出版社,2000
    [5] 方芳,朱敏,纳米材料和纳米技术发展的哲学思考,世界科技研究与发展,2001,23(4):51~54
    [6] 薛群基,徐康,纳米化学,化学进展,2000,12(4):431~444
    [7] Zhang Zhikun, Cui Zuolin, Chen Kezheng, et al., Structure of nano-conductive fibers, Chinese Science Bulletin, 1997, 42: 1535~1537
    [8] Goldstein A N, Echer C M, Alivisatos A P, Melting in semiconductor nanocrystals, Science, 1992, 256: 1425~1427
    [9] Murray C B, Norris D J, Bawendi M C, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115: 8706~8715
    [10]Brust M, Walker M, Bethell D, et al., Synthesis of thiol derivatised gold nanoparticles in a two-phase liquid/liquid system, J. Chem. Soc. Chem. Commun., 1994, 801~802
    [11]原弘,刘小玲,蔡汝秀等,两亲分子有序组合体中纳米金地可控合成,武汉大学学报(理学版),2002,48(2):129~132
    [12]张元,陈友存,球形SnO2纳米微粒的合成及机理分析,化学物理学报,2003,16(1):51~53
    [13]聂秋林,郑遗凡,岳林海等,PVP为模板控制合成球形碳酸钙,无机化学学报,2003,19(4):445~448
    [14]兰新哲,金志浩,赵西成等,PVP保护还原法制备纳米金溶胶,稀有金属材料与工程,2003,32(1):50~53
    [15]Isabel Pastoriza-Santos, Luis M. Liz-Marzan, Formation of PVP-protected metal nanoparticles in DMF, Langmuir, 2002, 18(7): 2888~2894
    [16]张聪慧,兰新哲,刘江,纳米金溶胶制备研究,有色金属,2002,54(增刊):61~63
    [17]Brown, L O, Hutchison, J E, Controlled growth of gold nanoparticles during ligand Exchange, J. Am. Chem. Soc. 1999, 121: 882-883
    
    [18]Scolan E, Sanchez C Synthesis and characterization of surface protected nanocrystalline titania particles, Chem. Mater., 1998, 10: 3217~3223
    [19]Trentler T J, Denler T E, Bertone J C, et al., Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions, J. Am. Chem. Soc., 1999, 121(7): 1613~1614
    [20]Nayral C, Ould-Ely C, Maisonnat A, et al., A novel mechanism for the synthesis of Tin/Tin Oxide nanoparticles of low size dispersion and of nanostructured SnO2 for the sensitive layers of gas sensors, 1999, 11: 61~63
    [21]Yu Y Y, Chang S S, Lee C L, et al., Gold nanorods: electrochemical synthesis and optical properties, J. Phys. Chem. B 1997, 101: 6661~6664
    [22]Mohamed M B, Ismail K Z, Link S, et al., Thermal reshaping of gold nanorods in micelles, J. Phys. Chem. B, 1999, 111: 1255~1259
    [23]Link S, Burda C, Wang Z L, et al., Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation, J. Chem. Phys., 1998, 102: 9370~9374
    [24]Wang Z L, Mohamed M B, Link S, et al., Crystallographic facets and shapes of gold nanorods of different aspect ratios, Surf. Sci., 1999, 440: L809~L813
    [25]Li M, Schnablegger H, Mann S, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature, 1999, 402: 393~395
    [26]Peng X G, Manna L, Yang W D, et al., Shape control of CdSe nanocrystals, Nature, 2000, 404: 59~61
    [27]齐航,朱涛,刘忠范,电解法制备棒状金纳米粒子溶胶,物理化学学报,2000,16(10):956~960
    [28]Zhu J J, Liao X H, Zhao X N, et al., Preparation of silver nanorads by electrochemical methods, Mater. Lett., 2001, 49: 91~95
    [29]Hiroshi Yao, Tsuguo Onishi, Seiichi Sato, et al., High aspect ratio gold nanorods grown normal to high-energy surfaces, Chem. Lett., 2002, (4): 458~459
    [30]Nikhil L Jana, Latha Gearheart, Catherine J Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B 2001, 105: 4065~4067
    [31]Nikhil L Jana, Latha Gearheart, Sherine O Obare, et al., Anisotropic chemical reactivity of gold spheroids and nanorods, Langmuir 2002, 18: 922~927
    [32]周海成,徐键,徐晟等,CaSO4纳米棒(线)的微乳法制备与表征,无机化学
    
    
    学报,2002,18(8):815~818
    [33]Zhou Y, Yu S H, Wang C Y, et al., A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrities, Adv. Mater. 1999, 11(10): 850~852
    [34]Morales A M,Lieber C M, A 1aser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279: 208~211
    [35]Yu D P, Lee C S, Bello L, et al., Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature, Solid State Commun, 1998, 105(6): 403~407
    [36]Duan X F, Lieber C M, Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. Soc., 2000, 122(1): 188~189
    [37]Duan X F, Wang J F, Lieber C M, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett., 2000, 76(9): 1116~118
    [38]Duan X F, Lieber C M, General synthesis of compound semiconductor naniwires, Adv. Mater. 2000, 12(4): 298~302
    [39]Gudiksen M S, Lieber C M, Diameter-selective synthesis of semiconductor nanowires, J. Am. Chem. Soc., 2000, 122(36): 8801~8802
    [40]Gudiksen M S, Wang J F, Lieber C M, Synthesis control of the diameter and length of single crystal semiconductor nanowires, J. Phys. Chem. B., 2001, 105(19): 4062~4064
    [41]Ahmadi T S, Wang Z L, Green T C, et al., Shape-controlled synthesis of colloidal Platinum Nanoparticles, Science., 1996, 272: 1924~1926
    [42]符小艺,王远,吴念祖等,铂胶体粒子的形貌控制研究,化学学报,2002,60(7):1324~1330
    [43]Bradley J S, Tesche B, Busser W, et al., Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids, J. Am. Chem. Soc., 2000, 122: 4631~4636
    [44]Zhou Y, Wang Y R, Zhu Y R, et al., A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature, Chem. Mater., 1999, 11: 2310~2312
    [45]Zhu J J, Wang H, Shu X, et al., Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles, Langmuir, 2002, 18: 3306~3310
    [46]王晓娟,张宪玺,马玉勤等,六角形氧化锌超晶格粒子的控制制备,无机化学学报,2003,19(1):29~36
    
    [47]Kabashin A V, Charbonneau-Lefort M, Meunier M, et al., Defects at the interface of ultra-thin VUV-grown oxide on Si studied by electron spin resonance, Appl Surf Sci, 2000, 168(1-4):328~331
    [48]Jiang H, New artificial functional metallic super-lattices, Progress of Material Science, 1991,3:193~196
    [49]Qian X M, Qin D Q, Song Q, et al., Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes, Thin Solid Films, 2001, 385(1-2):152~161
    [50]邱成军,曹茂盛,朱静等,纳米薄膜材料的研究进展,材料科学与工程,2001,19(4):132~137
    [51]Hwang D Q, Park C M, Lee S S, Exchange biasing in NiO spin valves, J. Magn. Magn. Mater., 1998, 186: 265~276
    [52]Schulthess T C, Butler W H, Consequences of spin-flop coupling in exchange biased films, Phys. Rev. Lett., 998, 81: 4516~4519
    [53]Antel W J J, Perjeru F, Harp G R, Spin structure at the interface of exchaoge biased FeMn/Co bilayers, Phys. Rev. Lett., 1999, 83: 1439~1442
    [54]Bruckner W, Baunack S, Hecker M, et al., Interdiffusion in NiFe/Cu/NiFe trilayer: posssble failure mechanism for magnetoelectronic devices, Appl. Phys. Lett., 2000, 77: 358~360
    [55]Thirle J U, Pocker D J, White R L, Interface reactions between quaternary cobalt alloys and carbon coating in thin film disk media, J. Appl. Phys., 2000, 87: 2989~2993
    [56]Chou S Y, Krauss P R, Zhang W, Sub-10 nm imprint lithography and applications, J. Vac. Sci. Technol., 1997,B15(6): 2897~2904
    [57]Zheng S K, Wang T M, Xiang G, et al., Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method, Vacuum, 2001, 62(4): 361~366
    [58]杨恢东,侯信,吴春亚等,薄膜a-Si PIN/OLED图像传感显示器的设计与模拟,半导体学报,2002,23(8):846~851
    [59]田永波,刘德令编译,薄膜科学与技术手册(下册)[M],北京:机械工业出版社,1991
    [60]钱新明,杜惠,李文明等,聚合物微球的自组装与微图形材料,应用化学,2000,17(1):55~57
    [61]崔大付,LB膜的物理性能和应用,物理,1996,25(1):54~59
    
    [62]Fendler J H著,程虎明,高月英译,膜模拟化学[M],北京:科学出版社,1991
    [63]Hideki Masoda, Zhang J D, Nobuyoshi Baba, Electroless metal plating on steric acid spread at air/water interface, Chemistry Letters, 1991, 240(12): 2109~2112
    [64]Hideki Masoda, Nobuyoshi Baba, Preparation of textured Ag thin films by using mixed monolecular layer spread at air/soulution interface, Chemistry Letters, 1993, 263(11): 2007~2010
    [65]Zhao X K, Xu S Q, Fendler J H, Electrochemical generation of two-dimensional silver particulate films at monolayer surfaces and their characterization on solid substrates, Langmuir, 1991, 7(3): 520~531
    [66]Zhao X K, Yang J, Fendler J H, Epitaxial Formation of PbS crystals under Arachidic Acid Monolayers, J. Phys. Chem., 1992, 96: 9933~9936
    [67]Yang J P, Meldrum F C, Fendler J H, Epitaxial Growth of Size-Quantized Cadmium Sulfide Crystals under Arachidic Acid Monolayers, J. Phys. Chem. 1995, 99:5500~5504
    [68]顾建华,潘志宇,张林刚,单分子膜诱导生长纳米线,化学物理学报,1996,9(4):326~331
    [69]Li H H, Mao G Z, Simon N K Y, AFM study of templated growth of cadmium sulfide nanoparticles using pure and mixed arachidate films, Thin Solid Film, 2000, 358(1-2): 62~72
    [70]Dhanabalan A, Talwar S S, Kudrolli H, et al, Structure of CdS nanoparticles containing cadmium arachidate LB films, Solid State Communications, 1996, 99(11):859~862
    [71]Peng X G, Wei Q, Jiang Y S, Lead sulfide monolayers in stearic-acid Langmuir-Blodgett-Films, Thin Solid Film, 1992, 211(1): 401~410
    [72]江龙,陈霄燕,李津如,CN1243888A,2000
    [73]Yogev D, Efrima S, Novel silver metal liquid films, J. Phys. Chem., 1988, 92(20):5755~5762
    [74]Serge Ravaine, Christophe Breton, Christophe Mingotaud, Electrodeposition of two-dimensional silver films under dihexadecyl phosphate monolayers, Materials Science and Engineering C, 1999, 8-9: 437~444
    [75]骆桂蓬,朱荣,韦钰,凝聚体生长过程中的分形结构,科技导报,1992,54(12):10~13
    [76]骆桂蓬,艾竹茗,韦钰,电化学沉积金属铜的分形结构,科技导报,1993,
    
    
    60(6):32~35
    [77]骆桂蓬,艾竹茗,韦钰,金属银膜生长过程中的分形现象及动力学模型,科学通报,1992,38(13):1191~1193
    [78]Luo G P, Ai Z M, Wei Y, Fractal phenomenon and kinetics model in electrochemical deposition of silver film induced by an organized Monolayer, Chinese science bulletin, 1993, 38(23): 1957~1962
    [79]Luo G P, Ai Z M, Wei Y, Fractal electrodeposits of silver and coper films induced by an organized Monolayer, Phys. Rev. B, 1992, 48(12): 15338~15342
    [80]骆桂蓬,韦钰,电化学沉积金属铜过程中的枝晶和分形形态,分形理论及应用[M],合肥:中国科学技术出版社,1993
    [81]骆桂蓬,艾竹茗,韦钰,基于电化学方法在单分子膜下生长金属膜过程中的分形现象、分形理论和应用,分形理论及应用[M],合肥:中国科学技术出版社,1993
    [82]Luo G P, Ai Z M, Wei Y, Dendritic and fractal patterns in electrochemical deposition of silver, Chinese Phys. Leet., 1994, 11(6): 341~345
    [83]Onyang J M, Zhang Z M, Ling W H, et al, Langmuir–Blodgett films and electroluminescent devices of amphiphilic 8-hydroxyquinoline cadmium, Appl. Surf. Sci., 1999, 151(1-2): 67~72
    [84]Zhao B, Li H, Zhang X, et al, Structure orientation and phase transition in ultrathin films amphiphilic microgel copolymer with the branching of octadecyl group studied by infrared spectroscopy, J. Phys. Chem. B, 1998, 102: 6515~6522
    [85]钟国伦,杨孔章,冯或,稀土-β-二酮配合物LB膜和三线态能量转移研究,高等学校化学学报,1997,17(7):1016~1022
    [86]Beattie D A, Haydock S, Bain C D, A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy, Vibrational Spectroscopy, 2000, 24(1): 109~123
    [87]Xiong Y Q, Liu L M, Lu W G, et al, Atomic force microscopy and X-ray photoelectron spectroscopy study on nanostructured silver thin films irradiated by atomic oxygen, Mater. Sci. and Eng. B, 2001, 79(1): 69~77
    [88]Zheng M S, Sun S G, In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions, Journal of Electroanalytical Chemistry, 2001, 500(1-2): 225~230
    [89]Mizsei J, Voutilainen J, Saukko S, et al, Structural transformations of ultra-thin sputtered Pd activator layers on glass and SnO2 surfaces, Thin Solid Film, 2001,
    
    
    391(2):209~215
    [90]Yang X M, Wang G M, Lu Z H, Characterization of CdS nanoparticles formed and aggregated in stearic acid Langmuir-Blodgett films by atomic force microscopy, Supramol.Sci., 1998, 5(5-6): 549~552
    [91]顾宁,杨晓敏,鲁武等,聚酰亚胺(PI)LB膜中长链单轴取向排列的AFM研究,应用科学学报,1995,13(2):229~234
    [92]欧阳健明,李串,林伟汉,胆红素有序分子膜的行为研究,无机化学学报,1999,15(4):487~482
    [93]Grigoriev D O, Senkel O, Kretzschmar G, Relationship between monolayer structure and dynamic surface properties of alkyl dimethyl phosphine oxides. BAM studies, Colloids Surf A, 1999, 149(1-3): 81~88
    [94]李景虹,程广金,董绍俊,一种有序超薄有机膜—自组装膜,化学通报,1995,58(10):11~18
    [95]Han W Q, Fan S S, Li Q Q, et al., Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,Science, 1997, 277: 1287~1289
    [96]Murphy C J, Nanocubes and Nanoboxes, Science, 2002, 298,: 2139~2141
    [97]姜立萍,张剑荣,王骏等,超声电化学制备PbSe纳米晶,无机化学学报,2002,18(11):1161~1164
    [98]Zhao S Y, Chen S H, Xu S, et al., Preparation, phase transfer, and self-assembled monolayers of cubic Pt nanoparticles, Langmuir, 2002 18(8): 3315~3318
    [99]Zhu J J, Liao X H, Chen H Y, Electrochemical preparation of silver dendrites in the presence of DNA, Mater. Res. Bull., 2001, 36: 1687~1692
    [100]Zhu J J, Qiu Z Q, Wang H, et al., Synthesis of silver nanowires by a sonoelectrochemical method, Inorg. Chem. Commun., 2002, 5: 242~244
    [101]Sun Y G, Xia Y N, Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002, 298: 2176~2179
    [102]Jin Y C, Cao Y W, Mirkin C A, et al., Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294: 1901~1903
    [103]彭必先,崔卫东,赵翔,银团簇的形成及性质研究,化学进展,1998,10(4):362~373
    [104]蒋治良,钟福新,李廷盛等,绿色银纳米粒子的共振散射光谱研究,化学学报,2001,59(3):438~441
    [105]钟福新,蒋治良,李廷盛等,绿色和黄色银胶的光化学制备及其共振散射光谱研究,感光科学与光化学,2001,51(1):13~18
    
    [106]覃爱苗,蒋治良,刘庆业等,聚丙烯酰胺存在下微波高压合成银纳米粒子及其光谱特性,分析化学,2002,30(10):1254~1256
    [107]李德刚,陈慎豪,赵世勇等,相转移方法制备银纳米粒子单层膜,化学学报,2002,60(3):408~412
    [108]赵斌,张宗涛,银超微粒子分散液中银粒子的粒径的控制,石油化工,1996,25(3):159~163
    [109]赵斌,张海燕,张宗涛等,银超微细粉的制备,华东理工大学学报,1996,22(2):221~226
    [110]张宗涛,赵斌,胡黎明等,化学还原法制备纳米级Ag粉高分子保护机理研究,化学学报,1996,54(4):379~384
    [111]赵斌,姚明懿,文东等,高分子保护银超微粒子分散液的制备及其导电性,华东理工大学学报,1996,21(4):428~434
    [112]张宗涛,胡黎明,袁留锁等,高分子保护化学还原法制备纳米银粉,贵金属,1995,16(4):47~51
    [113]侯万国,孙德军,张春光编著,应用胶体化学,北京:科学出版社,1998
    [114]江龙编著,胶体化学导论,北京:科学出版社,2002
    [115]沈钟,王果庭编著,胶体与表面化学,北京:化学工业出版社,1997
    [116]D J 肖著,张中路,张仁佑译,徐克敏校,胶体化学导论,北京:化学工业出版社,1997
    [117]Bourne J R, The eight international symposium on chemical reaction engineering[M], The institute of chemical engineering, 1984
    [118]Nielsen A E, Kinetics of precipation[M], Oxford: Pergamon press, 1964
    [119]姚连增,晶体生长基础,合肥:中国科技大学出版社,1995
    [120]Dirhen J A, Fundementals of crystallization: kinetic effects on partical size distributions and morphology, Chem. Eng. Sci., 1991, 46: 2389~2427
    [121]Sugimoto T, Preparation of monodispersed colloidal particles, Adv. Coolloid Interface Sci., 1987, 28: 65~78
    [122]陆杰,王静康,反应结晶(沉淀)研究进展,化学工程,1999,27(4):24~27
    [123]Zukoski C F, Aggregation in precipitation reactions: stability of primary particles, Trans. Ichem. E, 1996, 74, A(10): 723~731
    [124]Mayer A, Antonietti M, Investigation of polymer protected noble metal nanoparticles by transmission electron microscopy: control of particle morphology and shape, Colloid Polym. Sci., 1998, 276(9): 769~779
    [125]Mulvaney P, Surface plasmon spectroscopy of nanosized metal particles,
    
    
    Langmuir, 1996, 12: 788~792
    [126]Kapoor S, Lawless D, Kenneplhl P, et al., Reduction and aggregation of silver ions in aqueous gelatin solution, Langmuir, 1994, 10: 3018~3023
    [127]Henglein A, Small-particles research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 1998, 89: 1861~1868
    [128]Haruta M, Gold as a key element for green nanotechnology, Gold Bulletion, 2001, 34: 40~46
    [129]Bartlett N, Relativisitc effects and the chemistry of gold, Gold Bulletion, 1998, 31: 22~25
    [130]Pyykko P, Relativisitc effects in structural chemistry, Chem. Rev., 1988, 88: 563~594
    [131]Schmidbaur H, The fascinating implications of new results in gold chemistry, Gold Bulletion, 1990, 23: 11~21
    [132] Bond G C, Relativisitc effects in coordination chemisorption and catalysis, Molec. Catalysis. A: Chemical, 2000, 156: 1~20
    [133]Francis G M, Palme R E, The place of gold in nano world. Gold Bulletion, 1996, 29: 47~51
    [134]Whyman R, Gold nanoparticles A renaissance in gold chemistry, Gold Bulletion, 1996, 29: 11~15
    [135]Bond G C, Gold: a relatively new catalyst, Catalysis Today, 2002, 72: 5~9
    [136]Hutching G J, Gold: a gold future, Gold Bulletion, 1996, 29: 123~130
    [137]Thompson D, New advances in gold catalysis part Ⅰ, Gold Bulletion, 1998, 31: 111~118
    [138]Thompson D, New advances in gold catalysis part Ⅱ, Gold Bulletion, 1999, 32: 12~19
    [139]宁远涛,赵怀志,杨正芳,金催化剂的性能和应用,贵金属,1999, 20(4): 42~50
    [140]Haruta M, Date M, Advances in the catalysis of Au nanoparticles, Appl. Catal. A: General, 2001, 222: 427~437
    [141]Thompson D T, The international conference on catalytic, Cape Town, South Africa, 2~5 April, 2001, Gold Bulletion, 2001, 34: 56~66
    [142]Thompson D T, Highlights of the symposium on gold/silver catalysis, Europacatv, Limerick, Ireland, 3~5 September, 2001, Gold Bulletion, 2001, 34: 134~140
    
    [143]Ueda A, Haryta M, Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts, Gold Bulletion, 1999, 32: 3~11
    [144]Dekkers M A P, Lipppits M J, Nieuwenhuys B E, Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions, Catalysis Today, 1999, 54: 381~390
    [145]Mellor J R, Palazov A V, Grigorova B S, et al., The application of supported gold catalysts to automotive pollution abatement, Catalysis Today, 2002, 72: 145~156
    [146]Uphade B S, Yamada Y, Akita T, et al., Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti- MCM-41, Applied Catalysis A, General, 2001, 215: 137~148
    [147]Prati L, Martra G, New gold catalysts for liquid phase oxidation, Gold Bulletion, 1999, 32: 96~101
    [148]Prati L, Rossi M, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols, Journal of catalysis, 1998, 176: 552~560
    [149]Haruta M, Size and support dependency in the catalysis of gold, Catalysis Today, 1997, 36: 153~166
    [150]张晓梅,熊家聪,雷敏昆等,金诺芬薄层色谱分析,贵金属,1999,20(4):31~34
    [151]邓水沛,赵红秋,江 龙,纳米金颗粒在仿生工程中的应用,中国基础科学,2000(9):11~17
    [152]曹茂盛,关长斌,徐甲强编著,纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001
    [153]Link S, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys., 2000, 19: 362~367
    [154]Chang L T, Yen C C, Studies on the preparation and properties of condictive polymers: Use of heat treatment to prepare metallized films from silver chelate of PVA and PAN, J Appl. Polym. Sci., 1995, 55: 371~374
    [155]Ghosh K, Maiti S N, Mechanical properties of silver-power-filled polypropylene composies, J Appl. Polym. Sci., 1996, 60: 3231~3235
    [156]Antonietti M, Goltner C, Superstyuctures of functional colloids: Chemistry on the nanometer scale, Angen. Chem. Int. Ed. Engl, 1997, 36: 910~913
    [157]Frster S, Antonietti M, Amphiphilic block copolymers in structure controlled nanomaterial hybrids, Adv. Mater., 1998, 10: 195~196
    [158]Spatz J P, Roescher A, Moller M, Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide)films, Adv. Mater., 1996, 8: 337~339
    
    [159]Moffit M, Eisenberg A, Aqueous block copolyer micelles, Chem. Mater., 1995, 7: 1178~1183
    [160]Schmid C, Large clusters and colloids metal in the embryonic state, Chem, Rev., 1992, 92: 1709~1732
    [161]闽嘉华,桑文斌,史伟民,ZnS纳米微粒的形貌结构对其光学特性的影响,光学学报,2003,23(3):257~260
    [162]王灵玲,桑文斌,闻嘉华,掺铜ZnS纳米材料的制备及光学性质,半导体学报,2002,23(5):484~487
    [163]桑文斌,彭小雷,史伟民,溶胶络合转化法制备CdS纳米微晶及其特性研究,功能材料,2000,31(5):508~509
    [164]桑文斌,彭小雷,刘引峰,甲壳胺膜中MS(M=Cd,Zn)半导体纳米微粒形成机理的探讨,原子与分子物理学报,1999,16(3):358~362
    [165]刘引峰,桑文斌,钱永彪,用络合转化法在甲壳胺膜上制备CdS、ZnS纳米微粒,发光学报,1997,18(3):248~252
    [166]彭小雷,刘引峰,桑文斌,CdS纳米微晶在PAN膜中的形成与特性,稀有金属,1999,23(5):321~325
    [167]金炎,蒋雪茵,桑文斌,壳聚糖中ZnS:Mn纳米微晶的制备及其发光特性,发光学报,1997,18(3):253~257
    [168]金炎,王克胜,蒋雪茵,壳聚糖中ZnS:Mn纳米微晶的发光效率及时间分辨光谱,发光学报,1998,19(3):221~223
    [169]金炎,蒋雪茵,桑文斌,络合转换法制备Mn掺杂的ZnS纳米微晶及光致发光特性,功能材料给器件学报,1998,4(1):24~28
    [170]Motte L, Pileni M P, Self-assemblies of silver sulfide nanocrystals: influence of length of thio-alkyl chains used as coating agent, Applied Surface Science, 2000, 164(1-4): 60~67
    [171]Qi L M, Gao Y Y, Ma J M, Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals, Colloids and Surfaces A, 1999, 157(1-3): 285~294
    [172] He S T, Yao J N, Xie S S, et al., Investigation of passivated silver nanoparticles, Chemical Physics Letters, 2001, 343(1-2): 28~32
    [173] Sandmann G, Dieta H, Plieth W, Preparation of silver nanoparticles on ITO surfaces by a double-pulse method, Journal of Electroanalytical Chemistry, 2000, 491(1-2): 78~86
    [174]Rong M Z, Zhang M Q, Liu H,et al., Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin Polymer, 1999, 40(22): 6169 ~6178
    
    [175]Zhang Z P, Zhang L D, Wang S X,et al., A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization reduction approach, Polymer, 2001, 42(19): 8315~8318
    [176]Fritzsche W, Porwol H, Wiegand A, In-situ formation of Ag-containing nanoparticles in thin polymer films, Nanostructured Materials, 1998, 10(1): 89~97
    [177]廖学红,朱俊杰, 赵小宁等,纳米银的电化学合成,高等学校化学学报2000,21(12):1837~1839
    [178]廖学红,李鑫,电化学制备纳米银,黄冈师范学院学报,2001,21(5):58~59
    [179]廖学红,朱俊杰,邱晓峰等,类球形和树枝状纳米银的超声电化学制备,南京大学学报:自然科学版,2002,38(1):119~123
    [180]张韫宏,谢兆雄,华炳增等,L-B膜内银超微粒子的电化学制备及表征,中国科学:B辑,1996,26(6):522~528
    [181]Eric G, Klaus S, Jhon C J, et al., STM of silver, gold and aluminum monmers and small cluster on graphite, Vac. Sci. Technol. 1988, 6(2): 419~424
    [182]王武生,潘才元,曾俊等,在线性或交联的聚氨酯粒子内原位还原制备纳米银粒子,高等化学学报,2001,22(4):700~702
    [183]Yoshizuka Kazuharu, Lou Zhengrong, Inoue Katsutoshi, Silver-complexed chitosan microparticles for pesticide removal, Reactive & Fuctional Polymers, 2000, 44(1): 47~54
    [184]Li H X, Lin M Z, Hou J G, Submonolayer and single crystal film from ligand-stabilized silver nanoparticles, Thin Solid Films, 2000, 370(1-2): 85~88
    [185]Li H X, Lin M Z, Hou J G, Electrophoretic deposition of ligand-stabilized silver nanoparticles synthesized by the process of photochemical reduction, Journal of Crystal Growth, 2000, 212(1-2): 222~226
    [186]杨合情,张良莹,姚熹,膜模拟化学在纳米材料中的应用研究,材料研究学报,1999, 13(6), 561~568
    [187]Dieter W, Caplan S R, Bacterial Flagellar Moteor and H+/ATP Synthese:Two Proton-Driven Rotary Molecular Devices with Different Fuctions, Bioelectrochemistry, 2002, 55(1-2): 89~95
    [188]Takatoshi Kinoshita, Photoresponsive Membrane Systems, Journal of Photochemisty and Photobiology, 1998, 42(1): 12~16
    [189]欧阳健明,姚秀琼,单分子膜诱导下底矿物晶体生长,化学研究与应用,2001, 13(4): 353~358
    
    [190]徐冉,李薇,席时权,Ag2O胶体粒子底自组装单层膜合多层膜,光散射学报,1999, 11(2): 151~153
    [191]逯乐慧,霍立华,李薇灯,LB膜诱导CaF2单晶底生长研究,化学通报,2001, (1):33~36
    [192]平贵臣,杜滨阳,王丽颖等,表面活性剂包埋的硫化锌纳米粒子LB膜的研究,化学物理学报,1999, 12(6): 659~662
    [193]刘成林,李远光,张兆奎,PbTO3超微粒-硬脂酸复合LB膜底光谱特性,光学学报,1999, 19(6): 796~799
    [194]袁迅道,张引,席时权,酞菁铜掺杂SnO2超微粒子复合膜的研究,物理化学学报,1997, 13(5): 413~416
    [195]袁迅道,曹立新,曾广斌等,SnO2超微粒子LB膜初探,应用化学,1994, 11(4): 60~63
    [196]袁迅道,曹立新,任延志等, SnO2纳米粒子-花生酸LB膜有序组合体的研究,物理化学学报,1997, 13(11): 1014~1019
    [197]刘成林,李远光,钟菊花,用LB膜技术组装α-Fe2O3超微粒的研究,化学物理学报,1998, 11(2): 156~160
    [198]Fan C Y, Lu T, Li B F, et al., A new method for preparing nanometer-scale particles onto LB films, Thin solid films, 1996, 286: 37~37
    [199]Ji S X, Fan C Y, Ma X C, et al., The formation of quantum size particles in situ at the monolayer surface, Thin solid films, 1994, 242: 16~20
    [200]Serge Ravaine, Raphael Saliba, Christophe Mingotaud, et al., Electless formation of gold deposits under positively charged surfactant monolayers, Collolds and Surfaces A, 2001, 198-200: 401~407
    [201]Tai Z H, Zhang G C, Qian X P, Dendritic patterns of two-dimensional silver films formed with a series of amphiphilic schiff bases of diazafluorenone, Langmuir, 1993, 9(6): 1601~1603
    [202]Meldrum F C, Kotov N A, Fendler J H, Mono-and multiparticulate Langmuir-Blodgett films prepared from surfacant-stabilized silver particles, Materials Science and Engineering: C, 1995, 3: 149~152
    [203]Sathaye S D, Patil K R, Paranjape S R, et al., Nanocrystalline silver particulate films by liquid-liquid interface reaction technique, Materials Research Bulletin, 2001, 36: 1149~1155
    [204]Brown J J, Porter J A, Daghlian C P, et al., Ordered arrays of amphiphilic gold nanoparticles in Langmuir monolayers, Langmuir, 2001, 17(26):7966~7969
    
    [205]Sastry M, Patil V, Mayya K S, et al., Organization of polymer-capped platinum colloidal particles at the air water interface, The Solid Films, 1998, 324: 239~244
    [206]Nicholas A Kotov, Elisabete Darbello Zaniquelli, Fiona C Meldrum, et al., Two-dimensional silver electrocrystallization under monolayers spread on aqueous silver nitrate, Langmuir, 1993, 9(12): 371-~3716
    [207]Gleiche M, Chi L F, Fuchs H, Molecular poperty related silver decoration on fatty acid Langmuir-Blodgett monolayers, Thin Solid Film, 1998, 327-329; 268~272
    [208]Khomutov G B, Gubin S P, Khanin V V, et al, Formation of nanoparticles and one-dimensional nanostructures in floating and deposited Langmuir monolayers under applied electric and magnetic fields, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 593~597
    [209]张愠宏,谢兆雄,华炳增等,LB膜内银超微粒子的电化学制备及表征,中国科学 B辑,1996, 26(6): 522~528
    [210]姜晓霞,沈伟著,化学镀理论与实践[M],北京:国防工业出版社,2000
    [211]Tao Y T, Hietpas G D, Allara D L, HCl Vapor-Induced Structural Rearrangements of n-Alkanoate Self-Assembled Monolayers on Ambient Silver, Copper, and Aluminum Surfaces, J.Am.Chem.Soc., 1996, 118: 6724~6730
    [212]郭鹤桐,覃奇贤编著,电化学教程[M],天津:天津大学出版社,2000
    [213]肖玉方,姚钟麒,金道森,四(十六烷硫基)四硫富瓦烯/硬酸混合LB膜的结构研究,化学学报,1995, 53(3): 214~218
    [214]Fleischmann M, Hendra P J, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 1974, 26: 163~166
    [215]Van Duyne R P, Surface Raman spectraelectrochemistry: Part I, J Electroanal. Chem., 1977, 84: 1~20
    [216]Chen Y X, Zou S Z, Tian Z Q, SERS studies of electrode/electrolyte interfacial water: Part Ⅱ, J Raman Spectrosc., 1998, 29: 749~756
    [217]Nie S, Emory S R, Probing single molecules and single nanoparticles by surface-enhanced Raman scatreing, Science, 1997, 275: 1102~1106
    [218]Kneipp K, Wang Y, Kneipp H, et al., Single molecule detection using surface-enhanced Raman scatreing(SERS), Phys. Rev. Lett., 1997, 78(9): 1167~1670
    [219]Kim W, Safonow V P, Shalaev V M, et al., Fractals in microcavities: giant
    
    
    coupled, multiplicative enhancement of optical responses, Phys. Rev. Lett., 1999, 82: 4811~4814
    [220]Knoll W, Phiulpott M R, Golden W G, Surface infrared and surface enhanced Raman vibrational spectra of monolayer assemblies in contact with rough metal surfaces, J Chem. Phys., 1982, 77(1): 219~225
    [221]Harrand M, Masson M, Polarized Raman spectra of thin films, Ⅲ, conformational analysis of Langmuir-Blodgett multilayers(1 to 49)barium stearate, J Chem. Phys., 1987, 89(9): 5176~5185
    [222]Thompson W R, Pemberton J E, Characteration of octadecylsilane and stearic acid layers on Al2O3 surface by Raman Spectroscopy, Langmuir, 1995: 11(5):172-~1725
    [223]司民真,苗润才,纳米银的形貌对VB2和YDDS表面增强拉曼效应的影响,光散射学报,2000, 12(2): 101~104
    [224]郑军伟,李晓伟,周跃国等,银纳米粒子阵列的自组装及其表面增强拉曼光谱,光谱学与光谱分析,2000, 20(6): 814~816
    [225]胡家文,赵冰,徐薇青等,水汽界面二维银颗粒表面上的单分子拉曼光谱检测,高等学校化学学报,2000, 23(1): 123~125
    [226]司民真,武荣国,张鹏翔,一种具有较强表面增强拉曼散射效应的纳米银的特性,光散射学报,2002, 14(2): 69~71
    [227]纪小会,王连英,张昕彤等,Au/Ag核-壳结构纳米粒子的制备及其SERS效应,高等学校化学学报,2002, 23(12): 2357~2359
    [228]Saito Y, Wang J J, Smith D A, et al., A simple chemical method for the preparation of silver surface for efficient SERS, Langmuir, 2002, 18(8): 2959~2961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700